

Service Manual

RXYQ5-54PAY1, PAYL, PTL R-410A Heat Pump 50Hz, 60Hz

¥₹¥ **/// R-410A Heat Pump** 50Hz, 60Hz

	 Introduction 1.1 Safety Cautions 1.2 PREFACE 	vi
Part 1	General Information	
	1. Model Names of Indoor/Outdoor Units	2
	2. External Appearance	
	2.1 Indoor Units	
	2.2 Outdoor Units	4
	3. Combination of Outdoor Units	6
	4. Model Selection	8
Part 2	Specifications	11
	1. Specifications	12
	1.1 Outdoor Units	
	1.2 Indoor Units	54
Part 3	Refrigerant Circuit	77
	1. Refrigerant Circuit	78
	1.1 RXYQ5P(A)	
	1.2 RXYQ8P(A)	
	1.3 RXYQ10P(A), 12P(A)	
	 1.4 RXYQ14P(A), 16P(A), 18P(A) 1.5 Outdoor Air Processing Unit FXMQ125MFV1~250MFV1 	
	2. Functional Parts Layout	
	2.1 RXYQ5P(A)	
	2.2 RXYQ8P(A)	
	2.3 RXYQ10P(A)	
	2.4 RXYQ12P(A)	
	2.5 RXYQ14P(A), 16P(A), 18P(A)	91
	3. Refrigerant Flow for Each Operation Mode	92
Part 4	Function	109
	1. Function general	110
	1.1 Symbol	
	1.2 Operation Mode	
	2. Basic Control	
	2.1 Normal Operation	
	2.2 Compressor PI Control	
	2.3 Electronic Expansion Valve PI Control2.4 Step Control of Outdoor Unit Fans	
	2.4 Step Control of Outdoor Onit Fans	
		·····················

	3	. Spe	cial Control	143
		3.1	Startup Control	143
		3.2	Large Capacity Start Up Control (Heating)	144
		3.3	Oil Return Operation	145
		3.4	Defrosting Operation	147
		3.5	Pump-down Residual Operation	148
		3.6	Standby	149
		3.7	Stopping Operation	150
	4	Prot	ection Control	
		4.1	High Pressure Protection Control	
		4.2	Low Pressure Protection Control	
		4.3	Discharge Pipe Protection Control	
		4.4	Inverter Protection Control	
		4.5	STD Compressor Overload Protection	
		4.6	Injection Control (only for RXYQ5P(A))	
	5		er Control	
	0	5.1	Outdoor Unit Rotation	
		5.2	Emergency Operation	
		5.3	Demand Operation	
		5.4	Heating Operation Prohibition	
	6		•	
	0	. Ouii 6.1	ine of Control (Indoor Unit) Drain Pump Control	
		6.2	Louver Control for Preventing Ceiling Dirt	
		6.3	Thermostat Sensor in Remote Controller	
		6.4	Thermostat Control While in Normal Operation	
			-	
		6.5	Thermostat Control in Dry Operation Electronic Expansion Valve Control	
		6.6		
		6.7	Hot Start Control (In Heating Operation Only)	
		6.8	Freeze Prevention	
		6.9	Heater Control	
) List of Swing Flap Operations	1/3
		0.11	Control of Outdoor Air Processing Unit	174
			(Unique Control for Outdoor Air Processing Unit)	174
Dout E	Teet O		41	470
Part 5	lest U	pera	ation	
	1	Test	t Operation	
		1.1	Installation Process	
		1.2	Procedure and Outline	
			Operation When Power is Turned On	
	2		door Unit PC Board Layout	
	3		d Setting	
			Field Setting from Remote Controller	
		3.2	Field Setting from Outdoor Unit	214
Part 6	Trouble	esha	ooting	239
	1	. Svm	ptom-based Troubleshooting	
		-	ubleshooting by Remote Controller	
	Ľ	2.1	The INSPECTION / TEST Button	
		2.2	Self-diagnosis by Wired Remote Controller	
		2.3		
		<u> </u>		

	2.4	Operation of The Remote Controller's Inspection /	
		Test Operation Button	
	2.5	Remote Controller Service Mode	251
	2.6	Remote Controller Self-Diagnosis Function	253
3.	Trou	bleshooting by Indication on the Remote Controller	260
	3.1	"80" Indoor Unit: Error of External Protection Device	
	3.2	"8 (" Indoor Unit: PC Board Defect	261
	3.3	"83" Indoor Unit: Malfunction of Drain Level Control System (S1L)	262
	3.4	"85" Indoor Unit: Fan Motor (M1F) Lock, Overload	264
	3.5	"8" Indoor Unit: Malfunction of Swing Flap Motor (M1S)	268
	3.6	Abnormal Power Supply Voltage	270
	3.7	"গণ্ড" Indoor Unit: Malfunction of Moving Part of	
		Electronic Expansion Valve (Y1E)	271
	3.8	"##" Indoor Unit: Drain Level above Limit	
	3.9	"84" Indoor Unit: Malfunction of Capacity Determination Device	274
	3.10	"C /" Indoor Unit: Failure of Transmission	
		(Between Indoor unit PC Board and Fan PC Board)	275
	3.11	"ርዓ" Indoor Unit: Malfunction of Thermistor (R2T) for	
		Heat Exchanger	277
	3.12	"C5" Indoor Unit: Malfunction of Thermistor (R3T) for Gas Pipes	278
	3.13	"£8" Indoor Unit: Failure of Combination	
		(Between Indoor unit PC Board and Fan PC Board)	279
	3.14	"C3" Indoor Unit: Malfunction of Thermistor (R1T) for Suction Air	280
	3.15	"CC" Indoor Unit: Malfunction of Humidity Sensor System	281
	3.16	"Ca" Indoor Unit: Malfunction of Thermostat Sensor	
		in Remote Controller	282
	3.17	"E I" Outdoor Unit: PC Board Defect	283
	3.18	"E3" Outdoor Unit: Actuation of High Pressure Switch	284
	3.19	"ይץ" Outdoor Unit: Actuation of Low Pressure Sensor	286
	3.20	"ES" Outdoor Unit: Inverter Compressor Motor Lock	288
	3.21	"E&" Outdoor Unit: STD Compressor Motor Overcurrent/Lock	290
	3.22	"E" Outdoor Unit: Malfunction of Outdoor Unit Fan Motor	291
	3.23	"ES" Outdoor Unit: Malfunction of Moving Part of	
		Electronic Expansion Valve (Y1E, Y2E)	294
	3.24	"F3" Outdoor Unit: Abnormal Discharge Pipe Temperature	296
	3.25	"F&" Outdoor Unit: Refrigerant Overcharged	297
	3.26	""" Outdoor Unit: Abnormal Outdoor Fan Motor Signal	298
	3.27	"HS" Outdoor Unit: Malfunction of Thermistor (R1T) for Outdoor Air	299
	3.28	"Ja" Outdoor Unit: Current Sensor Malfunction	300
	3.29	"" Outdoor Unit: Malfunction of Discharge Pipe Thermistor	
		(R3, R31~33T)	301
	3.30	"الے" Outdoor Unit: Malfunction of Thermistor (R2T, R7T) for	
		Suction Pipe	302
	3.31	"45" Outdoor Unit: Malfunction of Thermistor (R4T) for	
		Outdoor Unit Heat Exchanger	303
	3.32	"تاي" Outdoor Unit: Malfunction of Liquid Pipe Thermistor (R6T)	304
	3.33	"JS" Outdoor Unit: Malfunction of Subcooling Heat Exchanger	
		Gas Pipe Thermistor (R5T)	305
	3.34	"JS" Outdoor Unit: Malfunction of High Pressure Sensor	306
	3.35	"JC" Outdoor Unit: Malfunction of Low Pressure Sensor	307
	3.36	"ሬ ዓ" Outdoor Unit: Malfunction of Inverter Radiating	
		Fin Temperature Rise	308

		3.38 "LS" Outdoor Unit: Inverter Current Abnormal	312
		3.39 "LS" Outdoor Unit: Inverter Start up Error	314
		3.40 "LC" Outdoor Unit: Malfunction of Transmission Between	
		Inverter and Control PC Board	316
		3.41 "? " Outdoor Unit: Inverter Over-Ripple Protection	319
		3.42 "ምና" Outdoor Unit: Malfunction of Inverter Radiating	
		Fin Temperature Rise Sensor	320
		3.43 "Pd" Outdoor Unit: Faulty Field Setting after Replacing Main PC	
		Faulty Combination of PC Board	
		3.44 "UC" Outdoor Unit: Low Pressure Drop Due to Refrigerant Shorta	
		Electronic Expansion Valve Failure	-
		3.45 "U " Reverse Phase, Open Phase	
		3.46 "@" Outdoor Unit: Power Supply Insufficient or	-
		Instantaneous Failure	
		3.47 "U3" Outdoor Unit: Check Operation not Executed	
		3.48 "Us" Malfunction of Transmission Between Indoor Units	
		3.49 "U5" Indoor Unit: Malfunction of Transmission Between	
		Remote Controller and Indoor Unit	
		3.50 "U"" Indoor Unit: Malfunction of Transmission Between	
		Outdoor Units	
		3.51 "US" Indoor Unit: Malfunction of Transmission Between	
		Main and Sub Remote Controllers	
		3.52 "US" Indoor Unit: Malfunction of Transmission Between	
		Indoor and Outdoor Units in the Same System	
		3.53 "US" Improper Combination of Indoor and Outdoor Units,	
		Indoor Units and Remote Controller	
		3.54 "UC" Address Duplication of Centralized Controller	
		3.55 "UE" Malfunction of Transmission Between	
		Centralized Controller and Indoor Unit	339
		3.56 "UF" System is not Set yet	
		3.57 "UK" Malfunction of System, Refrigerant System Address Undefi	
	4	Troubleshooting (OP: Central Remote Controller)	
	ч.	4.1 <i>"11"</i> PC Board Defect	
		4.2 "18" Malfunction of Transmission Between Optional Controllers	
		Centralized Control.	
		4.3 "Ma" Improper Combination of Optional Controllers for	
		Centralized Control	348
		4.4 "MC" Address Duplication, Improper Setting	
	5	Troubleshooting (OP: Unified ON/OFF Controller)	
	5.	5.1 Operation Lamp Blinks	
		5.2 Display "Under Centralized Control" Blinks (Repeats Single Blin	
		5.3 Display "Under Centralized Control" Blinks (Repeats Double Bli	
			ik)000
Dart 7	Annon	lix	363
r ai t 1	whheild		
	1.	Piping Diagrams	364
		1.1 Outdoor Unit	364
		1.2 Indoor Unit	371
	2.	Wiring Diagrams for Reference	375
		2.1 Outdoor Unit	
		2.2 Field Wiring	
		-	

3. List of Electrical and Functional Parts 40 3.1 Outdoor Unit 40 3.2 Outdoor Unit - 60Hz 40 3.3 Indoor Side 41 4. Option List 41 4.1 Option List of Controllers 41 4.2 Option List (Outdoor Unit) 42 5. Piping Installation Point 42 5.1 Piping Installation Point 42 5.2 The Example of a Wrong Pattern 42 6. Example of connection (R-410A Type) 42 7. Thermistor Resistance / Temperature Characteristics 42 8. Pressure Sensor 42 9. Method of Checking The Inverter's Power Transistors and Diode Modules 43 9.1 Method of Checking The Inverter's Power Transistors and Diode Modules 43	06 09 12 19 21 23 23 24
3.2 Outdoor Unit - 60Hz 40 3.3 Indoor Side 41 4. Option List 41 4.1 Option List of Controllers 41 4.2 Option Lists (Outdoor Unit) 42 5. Piping Installation Point 42 5.1 Piping Installation Point 42 5.2 The Example of a Wrong Pattern 42 6. Example of connection (R-410A Type) 42 7. Thermistor Resistance / Temperature Characteristics 42 8. Pressure Sensor 42 9. Method of Checking The Inverter's Power Transistors and 43 9.1 Method of Checking The Inverter's Power Transistors and 43	09 12 19 19 21 23 23 24
3.3 Indoor Side 41 4. Option List 41 4.1 Option List of Controllers 41 4.2 Option Lists (Outdoor Unit) 42 5. Piping Installation Point 42 5.1 Piping Installation Point 42 5.2 The Example of a Wrong Pattern 42 6. Example of connection (R-410A Type) 42 7. Thermistor Resistance / Temperature Characteristics 42 8. Pressure Sensor 42 9. Method of Checking The Inverter's Power Transistors and 43 9.1 Method of Checking The Inverter's Power Transistors and 43	12 19 21 23 23 24
 4. Option List	19 19 21 23 23 24
4.1 Option List of Controllers 41 4.2 Option Lists (Outdoor Unit) 42 5. Piping Installation Point 42 5.1 Piping Installation Point 42 5.2 The Example of a Wrong Pattern 42 6. Example of connection (R-410A Type) 42 7. Thermistor Resistance / Temperature Characteristics 42 8. Pressure Sensor 42 9. Method of Checking The Inverter's Power Transistors and 43 9.1 Method of Checking The Inverter's Power Transistors and 43	19 21 23 23 24
4.2 Option Lists (Outdoor Unit)	21 23 23 24
 5. Piping Installation Point	23 23 24
5.1 Piping Installation Point 42 5.2 The Example of a Wrong Pattern 42 6. Example of connection (R-410A Type) 42 7. Thermistor Resistance / Temperature Characteristics 42 8. Pressure Sensor 42 9. Method of Checking The Inverter's Power Transistors and 43 9.1 Method of Checking The Inverter's Power Transistors and 43	23 <mark>24</mark>
5.2 The Example of a Wrong Pattern 42 6. Example of connection (R-410A Type) 42 7. Thermistor Resistance / Temperature Characteristics 42 8. Pressure Sensor 42 9. Method of Checking The Inverter's Power Transistors and 43 9.1 Method of Checking The Inverter's Power Transistors and 43	24
 6. Example of connection (R-410A Type)	
 7. Thermistor Resistance / Temperature Characteristics	
 8. Pressure Sensor	
 Method of Checking The Inverter's Power Transistors and Diode Modules	27
Diode Modules	29
9.1 Method of Checking The Inverter's Power Transistors and	
	30
Diode Modules43	
	30
Part 8 Precautions for New Refrigerant (R-410A)43	3
1. Precautions for New Refrigerant (R-410A)43	34
1.1 Outline	
1.2 Refrigerant Cylinders43	36
1.3 Service Tools43	37
Index	. i

Drawings & Flow Charts	ii	Í
-----------------------------------	----	---

Introduction Safety Cautions

Cautions and Warnings

- Be sure to read the following safety cautions before conducting repair work.
- The caution items are classified into " A Warning" and " Caution". The " Warning" items are especially important since they can lead to death or serious injury if they are not followed closely. The " Caution" items can also lead to serious accidents under some conditions if they are not followed. Therefore, be sure to observe all the safety caution items described below.
- About the pictograms
 - \triangle This symbol indicates an item for which caution must be exercised.
 - The pictogram shows the item to which attention must be paid.
 - O This symbol indicates a prohibited action.
 - The prohibited item or action is shown inside or near the symbol.
 - This symbol indicates an action that must be taken, or an instruction.
 - The instruction is shown inside or near the symbol.
- After the repair work is complete, be sure to conduct a test operation to ensure that the equipment operates normally, and explain the cautions for operating the product to the customer

1.1.1 Caution in Repair

Warning	
Be sure to disconnect the power cable plug from the plug socket before disassembling the equipment for a repair. Working on the equipment that is connected to a power supply can cause an electrical shook. If it is necessary to supply power to the equipment to conduct the repair or inspecting the circuits, do not touch any electrically charged sections of the equipment.	₽ €
If the refrigerant gas discharges during the repair work, do not touch the discharging refrigerant gas. The refrigerant gas can cause frostbite.	\bigcirc
When disconnecting the suction or discharge pipe of the compressor at the welded section, release the refrigerant gas completely at a well-ventilated place first. If there is a gas remaining inside the compressor, the refrigerant gas or refrigerating machine oil discharges when the pipe is disconnected, and it can cause injury.	
If the refrigerant gas leaks during the repair work, ventilate the area. The refrigerant gas can generate toxic gases when it contacts flames.	0
The step-up capacitor supplies high-voltage electricity to the electrical components of the outdoor unit. Be sure to discharge the capacitor completely before conducting repair work. A charged capacitor can cause an electrical shock.	A
Do not start or stop the air conditioner operation by plugging or unplugging the power cable plug. Plugging or unplugging the power cable plug to operate the equipment can cause an electrical shock or fire.	\bigcirc

Caution	
Do not repair the electrical components with wet hands. Working on the equipment with wet hands can cause an electrical shock.	\bigcirc
Do not clean the air conditioner by splashing water. Washing the unit with water can cause an electrical shock.	\bigcirc
Be sure to provide the grounding when repairing the equipment in a humid or wet place, to avoid electrical shocks.	Ę
Be sure to turn off the power switch and unplug the power cable when cleaning the equipment. The internal fan rotates at a high speed, and cause injury.	
Do not tilt the unit when removing it. The water inside the unit can spill and wet the furniture and floor.	\bigcirc
Be sure to check that the refrigerating cycle section has cooled down sufficiently before conducting repair work. Working on the unit when the refrigerating cycle section is hot can cause burns.	
Use the welder in a well-ventilated place. Using the welder in an enclosed room can cause oxygen deficiency.	0

1.1.2 Cautions Regarding Products after Repair

Warning	
Be sure to use parts listed in the service parts list of the applicable model and appropriate tools to conduct repair work. Never attempt to modify the equipment. The use of inappropriate parts or tools can cause an electrical shock, excessive heat generation or fire.	
When relocating the equipment, make sure that the new installation site has sufficient strength to withstand the weight of the equipment. If the installation site does not have sufficient strength and if the installation work is not conducted securely, the equipment can fall and cause injury.	
Be sure to install the product correctly by using the provided standard installation frame. Incorrect use of the installation frame and improper installation can cause the equipment to fall, resulting in injury.	For integral units only
Be sure to install the product securely in the installation frame mounted on a window frame. If the unit is not securely mounted, it can fall and cause injury.	For integral units only
Be sure to use an exclusive power circuit for the equipment, and follow the technical standards related to the electrical equipment, the internal wiring regulations and the instruction manual for installation when conducting electrical work. Insufficient power circuit capacity and improper electrical work can cause an electrical shock or fire.	

Varning	
Be sure to use the specified cable to connect between the indoor and outdoor units. Make the connections securely and route the cable properly so that there is no force pulling the cable at the connection terminals. Improper connections can cause excessive heat generation or fire.	
When connecting the cable between the indoor and outdoor units, make sure that the terminal cover does not lift off or dismount because of the cable. If the cover is not mounted properly, the terminal connection section can cause an electrical shock, excessive heat generation or fire.	
Do not damage or modify the power cable. Damaged or modified power cable can cause an electrical shock or fire. Placing heavy items on the power cable, and heating or pulling the power cable can damage the cable.	\bigcirc
Do not mix air or gas other than the specified refrigerant (R-410A) in the refrigerant system. If air enters the refrigerating system, an excessively high pressure results, causing equipment damage and injury.	
If the refrigerant gas leaks, be sure to locate the leak and repair it before charging the refrigerant. After charging refrigerant, make sure that there is no refrigerant leak. If the leak cannot be located and the repair work must be stopped, be sure to perform pump-down and close the service valve, to prevent the refrigerant gas from leaking into the room. The refrigerant gas itself is harmless, but it can generate toxic gases when it contacts flames, such as fan and other heaters, stoves and ranges.	0
When replacing the coin battery in the remote controller, be sure to disposed of the old battery to prevent children from swallowing it. If a child swallows the coin battery, see a doctor immediately.	

Caution	
Installation of a leakage breaker is necessary in some cases depending on the conditions of the installation site, to prevent electrical shocks.	
Do not install the equipment in a place where there is a possibility of combustible gas leaks. If a combustible gas leaks and remains around the unit, it can cause a fire.	\bigcirc
Be sure to install the packing and seal on the installation frame properly. If the packing and seal are not installed properly, water can enter the room and wet the furniture and floor.	For integral units only

1.1.3 Inspection after Repair

Varning	
Check to make sure that the power cable plug is not dirty or loose, then insert the plug into a power outlet all the way. If the plug has dust or loose connection, it can cause an electrical shock or fire.	0
If the power cable and lead wires have scratches or deteriorated, be sure to replace them. Damaged cable and wires can cause an electrical shock, excessive heat generation or fire.	0
Do not use a joined power cable or extension cable, or share the same power outlet with other electrical appliances, since it can cause an electrical shock, excessive heat generation or fire.	\bigcirc

Caution	
Check to see if the parts and wires are mounted and connected properly, and if the connections at the soldered or crimped terminals are secure. Improper installation and connections can cause excessive heat generation, fire or an electrical shock.	
If the installation platform or frame has corroded, replace it. Corroded installation platform or frame can cause the unit to fall, resulting in injury.	
Check the grounding, and repair it if the equipment is not properly grounded. Improper grounding can cause an electrical shock.	Ę
Be sure to measure the insulation resistance after the repair, and make sure that the resistance is 1 Mohm or higher. Faulty insulation can cause an electrical shock.	
Be sure to check the drainage of the indoor unit after the repair. Faulty drainage can cause the water to enter the room and wet the furniture and floor.	

1.1.4 Using Icons

Icons are used to attract the attention of the reader to specific information. The meaning of each icon is described in the table below:

1.1.5 Using Icons List

Icon	Type of Information	Description
i Note:	Note	A "note" provides information that is not indispensable, but may nevertheless be valuable to the reader, such as tips and tricks.
Caution	Caution	A "caution" is used when there is danger that the reader, through incorrect manipulation, may damage equipment, loose data, get an unexpected result or has to restart (part of) a procedure.
Warning	Warning	A "warning" is used when there is danger of personal injury.
L	Reference	A "reference" guides the reader to other places in this binder or in this manual, where he/she will find additional information on a specific topic.

1.2 PREFACE

Thank you for your continued patronage of Daikin products.

This is the new service manual for Daikin's Year 2008 VRVIII series Heat Pump System. Daikin offers a wide range of models to respond to building and office air conditioning needs. We are confident that customers will be able to find the models that best suit their needs.

This service manual contains information regarding the servicing of VRVIII series R-410A Heat Pump System.

June, 2008

After Sales Service Division

Part 1 General Information

1.	Model Names of Indoor/Outdoor Units	2
	External Appearance	
	2.1 Indoor Units	
	2.2 Outdoor Units	4
3.	Combination of Outdoor Units	6
4.	Model Selection	8

1. Model Names of Indoor/Outdoor Units

Indoor Units

Туре			Model Name										Power Supply
Ceiling Mounted Cassette Type (Round Flow)	FXFQ	-	25P	32P	40P	50P	63P	80P	100P	125P	_	-	VE
Ceiling Mounted Cassette Type (Double Flow)	FXCQ	20M	25M	32M	40M	50M	63M	80M	_	125M	_	-	VL
Ceiling Mounted Cassette Corner Type	FXKQ	—	25MA	32MA	40MA	_	63MA	_	—	_	_	—	
	FXDQ- PBVE	20PB	25PB	32PB	—	-	-	_	—	—	—	—	
Slim Ceiling Mounted	FXDQ- PBVET	20PB	25PB	32PB	_	_	_	_	_	_	—	—	
Duct Type	FXDQ- NBVE	_	_	_	40NB	50NB	63NB	_	_	_	_	_	
	FXDQ- NBVET	_			40NB	50NB	63NB		—	_	_	_	
Ceiling Mounted Built-In Type	FXSQ	20M	25M	32M	40M	50M	63M	80M	100M	125M	_	_	
Ceiling Mounted Duct Type (Middle and high static pressure)	FXMQ	_	_	_	40P	50P	63P	80P	100P	125P	_	_	VE
Ceiling Mounted Duct Type	FXMQ	—	_	_	—	_	_	_	—	_	200MA	250MA	
Ceiling Suspended Type	FXHQ			32MA			63MA		100MA	_	_		
Wall Mounted Type	FXAQ	20MA	25MA	32MA	40MA	50MA	63MA	_	_	_	_	_	
Floor Standing Type	FXLQ	20MA	25MA	32MA	40MA	50MA	63MA	_	_	_	_	—	
Concealed Floor Standing Type	FXNQ	20MA	25MA	32MA	40MA	50MA	63MA	_	_	_	_	_	
Outdoor Air Processing Unit	FXMQ- MF	—	—	—	_	_	—	—	_	125MF	200MF	250MF	V1
Ceiling Suspended Cassette Type	FXUQ	—	—	—	_	_	-	71MA	100MA	125MA	_	—	VI
Connection Unit	BEVQ- MA	_	-	-	—	-	_	71MA	100MA	125MA	—	_	VE

Note:FXDQ has following 2 Series, as show below.

FXDQ-PB, NBVET: without Drain Pump

FXDQ-PB, NBVE: with Drain Pump

BEV unit is required for each indoor unit.

MA: RoHS Directive models; Specifications, Dimensions and other functions are not changed compared with M type.

Outdoor Units

Normal Series

Series		Model Name									
		5P(A)	8P(A)	10P(A)	12P(A)	14P(A)	16P(A)	18P(A)	20P(A)	22P(A)	Y1(E)
Heat Pump	RXYQ	24P(A)	26P(A)	28P(A)	30P(A)	32P(A)	34P(A)	36P(A)	38P(A)	40P(A)	YL(E)
		42P(A)	44P(A)	46P(A)	48P(A)	50P(A)	52P(A)	54P(A)			TL(E)

High COP Series (Energy Saving Series)

Series		Model Name									
	5.0.0	16P(A)H	18P(A)H	24P(A)H	26P(A)H	28P(A)H	30P(A)H	32P(A)H	34P(A)H	36P(A)H	Y1(E)
Heat Pump	RXYQ	38P(A)H	40P(A)H	42P(A)H	44P(A)H	46P(A)H	48P(A)H	50P(A)H			YL(E) TL(E)

*Power Supply

VE : 1 phase 220~240V, 50Hz V1 : 1 phase 220~240V, 50Hz Y1 : 3 phase 380~415V, 50Hz YL : 3 phase 380V, 60Hz TL : 3 phase 220V, 60Hz

E:The unit with anti corrosion treatment

2. External Appearance

2.1 Indoor Units

Ceiling Mounted Cassette Type (Round Flow)	Ceiling Mounted Duct Type
FXFQ25P FXFQ32P FXFQ40P FXFQ50P FXFQ63P FXFQ80P FXFQ100P FXFQ100P FXFQ125P	FXMQ200MA FXMQ250MA
Ceiling Mounted Cassette Type (Double Flow)	Ceiling Suspended Type
FXCQ20M FXCQ25M FXCQ32M FXCQ40M FXCQ50M FXCQ63M FXCQ80M FXCQ125M	FXHQ32MA FXHQ63MA FXHQ100MA
Ceiling Mounted Cassette Corner Type	Wall Mounted Type
FXKQ25MA FXKQ32MA FXKQ40MA FXKQ63MA	FXAQ20MA FXAQ25MA FXAQ32MA FXAQ40MA FXAQ50MA FXAQ63MA
Slim Ceiling Mounted Duct Type	Floor Standing Type
FXDQ20PB FXDQ40NB FXDQ25PB FXDQ50NB FXDQ32PB FXDQ63NB with Drain Pump (VE) without Drain Pump (VET)	FXLQ20MA FXLQ25MA FXLQ32MA FXLQ40MA FXLQ50MA FXLQ63MA
Ceiling Mounted Built-In Type	Concealed Floor Standing Type
FXSQ20M FXSQ25M FXSQ32M FXSQ32M FXSQ50M FXSQ63M FXSQ63M FXSQ100M FXSQ125M	FXNQ20MA FXNQ25MA FXNQ32MA FXNQ40MA FXNQ50MA FXNQ63MA
Ceiling Mounted Duct Type (Middle and high static pressure)	Ceiling Suspended Cassette Type (Connection Unit Series)
FXMQ40P FXMQ50P FXMQ63P FXMQ100P FXMQ125P	FXUQ71MA + FXUQ100MA + FXUQ125MA + Connection Unit

2.2 Outdoor Units

Normal Series (Space Saving Series)

RXYQ5P(A)	RXYQ8P()	A), 10P(A)	RXYQ12P(A), 14P(A), 16P(A), 18P(A)			
5HP	8, 10		12, 14, 16, 18HP			
RXYQ20P(A), 22P(A), 24P(A), 2	6P(A), 28P(A)	RXYQ30P	(A), 32P(A), 34P(A), 36P(A)			
20, 22, 24, 26, 28HP		0, 32, 34, 36HP				
RXYQ38P(A), 40P(A), 42P(A), 4	4P(A) 46P(A)	BXYQ48P	(A), 50P(A), 52P(A), 54P(A)			
38, 40, 42, 44, 46HP			48, 50, 52, 54HP			

High COP Series (Energy Saving Series)

3. Combination of Outdoor Units

Normal Series

System Number Module								Outdoor Unit Multi Connection	
Capacity	of units	5	8	10	12	14	16	18	Piping Kit (Option)
5HP	1	•							
8HP	1		•						
10HP	1								
12HP	1				•				—
14HP	1					•			
16HP	1						•		
18HP	1							•	
20HP	2		۲		•				
22HP	2			•	•				
24HP	2		•				•		
26HP	2		•					•	
28HP	2			•				•	Heat Pump: BHFP22P100
30HP	2				•			•	
32HP	2						••		
34HP	2						•		
36HP	2							$\bullet \bullet$	
38HP	3		•		•			•	
40HP	3		•				••		
42HP	3		•				•		
44HP	3		•					$\bullet \bullet$	
46HP	3			•				$\bullet \bullet$	Heat Pump: BHFP22P151
48HP	3				•			$\bullet \bullet$	
50HP	3					•		$\bullet \bullet$	
52HP	3							$\bullet \bullet$	
54HP	3							•••	

For multiple connection of 18HP system or more, an optional Daikin Outdoor Unit Multi Connection Piping Kit is required.

System	Number			Мос	hule			
-		0	10	1		16	18	Outdoor Unit Multi Connection Piping Kit (Option)
Capacity		8	10	12	14	16	10	
16HP	2	$\bullet \bullet$						
18HP	2	\bullet	\bullet					
24HP	3	$\bullet \bullet \bullet$						
26HP	3	••	•					
28HP	3	••		•				Heat Pump: BHFP22P100
30HP	3	•	•	•				
32HP	3	•		••				
34HP	3		•	••				
36HP	3							
38HP	3			••	•			
40HP	3			••		•		
42HP	3			••			٠	
44HP	3			•		••		Heat Pump: BHFP22P151
46HP	3			•			\bullet	
48HP	3							7
50HP	3					••	\bullet	

High COP Series (Energy Saving Series)

For multiple connection of 16HP system or more, an optional Daikin Outdoor Unit Multi Connection Piping Kit is required.

4. Model Selection

VRV III Heat Pump Series

Outdoor Units

Normal Type (Space Saving Type)

HP	Model name	Combination	Outdoor unit multi connection piping kit	Total capacity index of connectable indoor units*	Maximum number of connectable indoor units*
5 HP	RXYQ5P(A)	RXYQ5P(A)	-	62.5 to 162.5 (250)	8 (12)
8 HP	RXYQ8P(A)	RXYQ8P(A)	-	100 to 260 (400)	13 (20)
10 HP	RXYQ10P(A)	RXYQ10P(A)	-	125 to 325 (500)	16 (25)
12 HP	RXYQ12P(A)	RXYQ12P(A)	-	150 to 390 (600)	19 (30)
14 HP	RXYQ14P(A)	RXYQ14P(A)	-	175 to 455 (700)	23 (35)
16 HP	RXYQ16P(A)	RXYQ16P(A)	-	200 to 520 (800)	26 (40)
18 HP	RXYQ18P(A)	RXYQ18P(A)	-	225 to 585 (900)	29 (45)
20 HP	RXYQ20P(A)	RXYQ8P(A) + RXYQ12P(A)		250 to 650 (800)	32 (40)
22 HP	RXYQ22P(A)	RXYQ10P(A) + RXYQ12P(A)		275 to 715 (880)	35 (44)
24 HP	RXYQ24P(A)	RXYQ8P(A) + RXYQ16P(A)		300 to 780 (960)	39 (48)
26 HP	RXYQ26P(A)	RXYQ8P(A) + RXYQ18P(A)		325 to 845 (1,040)	42 (52)
28 HP	RXYQ28P(A)	RXYQ10P(A) + RXYQ18P(A)	BHFP22P100	350 to 910 (1,120)	45 (56)
30 HP	RXYQ30P(A)	RXYQ12P(A) + RXYQ18P(A)		375 to 975 (1,200)	48 (60)
32 HP	RXYQ32P(A)	RXYQ16P(A) x 2		400 to 1,040 (1,280)	52 (64)
34 HP	RXYQ34P(A)	RXYQ16P(A) + RXYQ18P(A)		425 to 1,105 (1,360)	55 (64)
36 HP	RXYQ36P(A)	RXYQ18P(A) x 2		450 to 1,170 (1,440)	58 (64)
38 HP	RXYQ38P(A)	RXYQ8P(A) + RXYQ12P(A) + RXYQ18P(A)		475 to 1,235 (1,235)	61 (61)
40 HP	RXYQ40P(A)	RXYQ8P(A) + RXYQ16P(A) x 2		500 to 1,300 (1,300)	
42 HP	RXYQ42P(A)	RXYQ8P(A) + RXYQ16P(A) + RXYQ18P(A)		525 to 1,365 (1,365)	
44 HP	RXYQ44P(A)	RXYQ8P(A) + RXYQ18P(A) x 2		550 to 1,430 (1,430)	
46 HP	RXYQ46P(A)	RXYQ10P(A) + RXYQ18P(A) x 2	BHFP22P151	575 to 1,495 (1,495)	64 (64)
48 HP	RXYQ48P(A)	RXYQ12P(A) + RXYQ18P(A) x 2		600 to 1,560 (1,560)	
50 HP	RXYQ50P(A)	RXYQ14P(A) + RXYQ18P(A) x 2		625 to 1,625 (1,625)	
52 HP	RXYQ52P(A)	RXYQ16P(A) + RXYQ18P(A) x 2		650 to 1,690 (1,690)	
54 HP	RXYQ54P(A)	RXYQ18P(A) x 3		675 to 1,755 (1,755)	

Note: •For multiple connection of 20 HP systems and above, the above Daikin optional kit (separately sold) is required. *Values inside brackets are based on connection of indoor units rated at maximum capacity, 200% for single outdoor units, 160% for double outdoor units, and 130% for triple outdoor units.

High-COP Type (Energy Saving Type)

HP	Model name	Combination	Outdoor unit multi connection piping kit	Total capacity index of connectable indoor units*	Maximum number of connectable indoor units*
16 HP	RXYQ16P(A)H	RXYQ8P(A) x 2	BHFP22P100	200 to 520 (640)	26 (32)
18 HP	RXYQ18P(A)H	RXYQ8P(A) + RXYQ10P(A)	DH11221100	225 to 585 (720)	29 (36)
24 HP	RXYQ24P(A)H	RXYQ8P(A) x 3		300 to 780 (780)	39 (39)
26 HP	RXYQ26P(A)H	RXYQ8P(A) x 2 + RXYQ10P(A)		325 to 845 (845)	42 (42)
28 HP	RXYQ28P(A)H	RXYQ8P(A) x 2 + RXYQ12P(A)		350 to 910 (910)	45 (45)
30 HP	RXYQ30P(A)H	RXYQ8P(A) + RXYQ10P(A) + RXYQ12P(A)		375 to 975 (975)	48 (48)
32 HP	RXYQ32P(A)H	RXYQ8P(A) + RXYQ12P(A) x 2		400 to 1,040 (1,040)	52 (52)
34 HP	RXYQ34P(A)H	RXYQ10P(A) + RXYQ12P(A) x 2		425 to 1,105 (1,105)	55 (55)
36 HP	RXYQ36P(A)H	RXYQ12P(A) x 3	BHFP22P151	450 to 1,170 (1,170)	58 (58)
38 HP	RXYQ38P(A)H	RXYQ12P(A) x 2 + RXYQ14P(A)	DHIFZZF151	475 to 1,235 (1,235)	61 (61)
40 HP	RXYQ40P(A)H	RXYQ12P(A) x 2 + RXYQ16P(A)		500 to 1,300 (1,300)	
42 HP	RXYQ42P(A)H	RXYQ12P(A) x 2 + RXYQ18P(A)		525 to 1,365 (1,365)	
44 HP	RXYQ44P(A)H	RXYQ12P(A) + RXYQ16P(A) x 2		550 to 1,430 (1,430)	64 (64)
46 HP	RXYQ46P(A)H	RXYQ12P(A) + RXYQ16P(A) + RXYQ18P(A)		575 to 1,495 (1,495)	
48 HP	RXYQ48P(A)H	RXYQ16P(A) x 3		600 to 1,560 (1,560)	
50 HP	RXYQ50P(A)H	RXYQ16P(A) x 2 + RXYQ18P(A)		625 to 1,625 (1,625)	

Note: •For multiple connection of 16 HP systems and above, the above Daikin optional kit (separately sold) is required. *Values inside brackets are based on connection of indoor units rated at maximum capacity, 200% for single outdoor units, 160% for double outdoor units, and 130% for triple outdoor units.

Туре						M	odel Nar	ne					Power Supply
Ceiling Mounted Cassette Type (Multi Flow)	FXFQ	_	25P	32P	40P	50P	63P	80P	100P	125P	_	_	
Ceiling Mounted Cassette Type (Double Flow)	FXCQ	20M	25M	32M	40M	50M	63M	80M	_	125M	_	_	
Ceiling Mounted Cassette Corner Type	FXKQ	_	25MA	32MA	40MA		63MA	—	_	-	_	_	
	FXDQ- PBVE	20PB	25PB	32PB	_	_	_	_	_	_	_	_	
Slim Ceiling Mounted	FXDQ- PBVET	20PB	25PB	32PB	_		_	_	_	_	_	_	
Duct Type	FXDQ- NBVE	_			40NB	50NB	63NB	_	_		_	_	
	FXDQ- NBVET	_	_	_	40NB	50NB	63NB	_	_	_	_	_	VE
Ceiling Mounted Built-In Type	FXSQ	20M	25M	32M	40M	50M	63M	80M	100M	125M	_	_	
Ceiling Mounted Duct Type (Middle and high static pressure)	FXMQ	_			40P	50P	63P	80P	100P	125P	_	_	
Ceiling Mounted Duct Type	FXMQ	—	_	_	—	-	—	—	—	_	200MA	250MA	
Ceiling Suspended Type	FXHQ	—	_	32MA	_	-	63MA	_	100MA	_	_	—	
Wall Mounted Type	FXAQ	20MA	25MA	32MA	40MA	50MA	63MA	_	_	_	_	—	
Floor Standing Type	FXLQ	20MA	25MA	32MA	40MA	50MA	63MA	_	_	_	_	—	
Concealed Floor Standing Type	FXNQ	20MA	25MA	32MA	40MA	50MA	63MA	—	—	_	—	—	
Outdoor Air Processing Unit	FXMQ- MF	_	—	_	_	_	_	_	_	125MF	200MF	250MF	V1
Ceiling Suspended Cassette Type	FXUQ	_	_	_	_	_	_	71MA	100MA	125MA	_	_	V I
Connection Unit	BEVQ-MA	_	_	—	—	—	—	71MA	100MA	125MA	—	—	VE

Note: FXDQ has following 2 Series, as show below.

FXDQ-PB, NBVET: without Drain Pump

FXDQ-PB, NBVE : with Drain Pump

BEV unit is required for each indoor unit.

Indoor unit capacity

New refrigerant model code	P20	P25	P32	P40	P50	P63	P80	P100	P125	P200	P250
	type	type	type	type	type	type	type	type	type	type	type
Selecting model capacity	2.2	2.8	3.5	4.5	5.6	7.0	9.0	11.2	14.0	22.4	28.0
	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW
Equivalent output	0.8HP	1HP	1.25HP	1.6HP	2.0HP	2.5HP	3.2HP	4HP	5HP	8HP	10HP

Use the above tables to determine the capacities of indoor units to be connected. Make sure the total capacity of indoor units connected to each outdoor unit is within the specified value (kW).

- The total capacity of connected indoor units must be within a range of 50 to 130% of the rated capacity of the outdoor unit.
- In some models, it is not possible to connect the maximum number of connectable indoor units. Select models so the total capacity of connected indoor units conforms to the specification.

Differences from Conventional Models

Item		Differences								
nem	Object	New model (P(A) Model)	Conventional model (P Model)							
Compressor	Connection of equalizer oil pipe	 NONE (No particular changes in terms of service) 	 NONE (No particular changes in terms of service) 							
	Equalizer oil pipe for multi- outdoor-unit system	• NONE	• NONE							
Workability	Procedure for calculating refrigerant refilling quantity	 Refilling quantity due to piping length + Adjustment quantity according to models of outdoor units 	 Refilling quantity due to piping length + Adjustment quantity according to models of outdoor units 							
Optional accessories	Branch pipe for outdoor unit connection	 Y branch Type: BHFP22P100/151 	 Y branch Type: BHFP22P100/151 							
Refrigerant charge	Change of refrigerant amount Refrigerant amount reduced to less than 12 kg.	 Less than 12 kg 	 Some of heat pump units require refrigerant amount of not less than 12 kg. (Heat recovery units have been designed for refrigerant amount of less than 12 kg.) 							

Part 2 Specifications

1.	Spec	cifications	12
		Outdoor Units	
	1.2	Indoor Units	54

1. Specifications

1.1 Outdoor Units

Heat Pump 50Hz Standard Series <RXYQ-PA>

Model Name			RXYQ5PAY1(E)	RXYQ8PAY1(E)		
		kcal / h	12,100	19,400		
★1 Cooling Capacity (19.5°CWB) Btu / h		Btu / h	48,100	76,800		
		kW	14.1	22.5		
★2 Cooling C	apacity (19.0°CWB)	kW	14.0	22.4		
		kcal / h	13,800	21,500		
★3 Heating C	apacity	Btu / h	54,600	85,300		
		kW	16.0	25.0		
0		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)		
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)		
Dimensions: ((H×W×D)	mm	1680×635×765	1680×930×765		
Heat Exchang	ger		Cross Fin Coil	Cross Fin Coil		
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type		
	Piston Displacement	m³/h	13.34	16.90		
Comp.	Number of Revolutions	r.p.m	6300	7980		
	Motor Output×Number of Units	kW	2.8×1	4.5×1		
	Starting Method		Soft Start	Soft Start		
	Туре		Propeller Fan	Propeller Fan		
Fan	Motor Output	kW	0.35×1	0.75×1		
ran	Air Flow Rate	m³/min	95	180		
	Drive		Direct Drive	Direct Drive		
Connecting	Liquid Pipe	mm	φ9.5 (Brazing Connection)	φ9.5 (Brazing Connection)		
Pipes	Gas Pipe	mm	<pre></pre>	<pre></pre>		
Product Mass	(Machine weight)	kg	160	205		
Safety Device	es		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector		
Defrost Metho	bd		Deicer	Deicer		
Capacity Control %		%	28~100	20~100		
	Refrigerant Name		R-410A	R-410A		
Refrigerant	Charge	kg	6.2	7.2		
Control			Electronic Expansion Valve	Electronic Expansion Valve		
Refrigerator C	Dil		Refer to the nameplate of compressor	Refer to the nameplate of compressor		
Standard Accessories			Installation Manual, Operation Manual, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps		
Drawing No.			C: 4D061005	C: 4D061006		

Notes:

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m.

4 The units with anti-corrosion treatment will be available as standard. Please specify the suffix "E" as RXYQ5PAY1E.

The Reference Number

C~: Partly corrected drawings.

J~: Original drawing is Japanese

V~: Printing Convenience

Conversion Formulae

kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Model Name			RXYQ10PAY1(E)	RXYQ12PAY1(E)		
		kcal / h	24,300	29,000		
★1 Cooling Capacity (19.5°CWB) Btu / h		Btu / h	96,200	115,000		
		kW	28.2	33.7		
★2 Cooling C	apacity (19.0°CWB)	kW	28.0	33.5		
		kcal / h	27,100	32,300		
★3 Heating C	apacity	Btu / h	107,000	128,000		
		kW	31.5	37.5		
		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)		
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)		
Dimensions: (H×W×D)	mm	1680×930×765	1680×1240×765		
Heat Exchang	jer		Cross Fin Coil	Cross Fin Coil		
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type		
	Piston Displacement	m³/h	13.34+10.53	13.34+10.53		
Comp.	Number of Revolutions	r.p.m	6300, 2900	6300, 2900		
oomp.	Motor Output×Number of Units	kW	(1.4+4.5)×1	(2.5+4.5)×1		
	Starting Method		Soft Start	Soft Start		
	Туре		Propeller Fan	Propeller Fan		
Fan	Motor Output	kW	0.75×1	0.35×2		
ran	Air Flow Rate	m³/min	185	233		
	Drive		Direct Drive	Direct Drive		
Connecting	Liquid Pipe	mm	φ9.5 (Brazing Connection)	φ12.7 (Brazing Connection)		
Pipes	Gas Pipe	mm	<pre> \$\$\phi22.2 (Brazing Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	<pre></pre>		
Product Mass	(Machine Weight)	kg	249	285		
Safety Device	S		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector		
Defrost Metho	od		Deicer	Deicer		
Capacity Control %		%	14~100	14~100		
	Refrigerant Name		R-410A	R-410A		
Refrigerant	Charge	kg	7.9	9.5		
Control			Electronic Expansion Valve	Electronic Expansion Valve		
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor		
Standard Acc	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps		
Drawing No.			C: 4D061007	C: 4D061008		

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
 ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Model Name			RXYQ14PAY1(E)	RXYQ16PAY1(E)		
		kcal / h	34,600	39,000		
★1 Cooling Capacity (19.5°CWB) Btu / h		Btu / h	137,000	155,000		
		kW	40.2	45.3		
★2 Cooling C	apacity (19.0°CWB)	kW	40.0	45.0		
		kcal / h	38,700	43,000		
★3 Heating C	apacity	Btu / h	154,000	171,000		
		kW	45.0	50.0		
Casing Calar		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)		
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)		
Dimensions: (H×W×D)	mm	1680×1240×765	1680×1240×765		
Heat Exchang	jer		Cross Fin Coil	Cross Fin Coil		
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type		
	Piston Displacement	m³/h	13.34+10.53+10.53	13.34+10.53+10.53		
Comp.	Number of Revolutions	r.p.m	6300, 2900×2	6300, 2900×2		
	Motor Output×Number of Units	kW	(1.6+4.5+4.5)×1	(2.7+4.5+4.5)×1		
	Starting Method		Soft Start	Soft Start		
	Туре		Propeller Fan	Propeller Fan		
Fan	Motor Output	kW	0.35×2	0.35×2		
Fan	Air Flow Rate	m³/min	233	233		
	Drive		Direct Drive	Direct Drive		
Connecting	Liquid Pipe	mm	φ12.7 (Brazing Connection)	φ12.7 (Brazing Connection)		
Pipes	Gas Pipe	mm	<pre></pre>	<pre></pre>		
Product Mass	(Machine Weight)	kg	329	329		
Safety Device	s		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector		
Defrost Metho	bd		Deicer	Deicer		
Capacity Control %		%	10~100	10~100		
	Refrigerant Name		R-410A	R-410A		
Refrigerant	Charge	kg	11.3	11.5		
Control			Electronic Expansion Valve	Electronic Expansion Valve		
Refrigerator C	Dil		Refer to the nameplate of compressor	Refer to the nameplate of compressor		
Standard Acc	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps		
Drawing No.			C: 4D061009	C: 4D061010		
			•			

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
 ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Model Name (Combination Unit)			RXYQ18PAY1(E)	RXYQ20PAY1(E)
Model Name	(Independent Unit)		_	RXYQ8PAY1(E)+RXYQ12PAY1(E)
kcal / h			42,000	48,300
★1 Cooling C	★1 Cooling Capacity (19.5°CWB)		168,000	192,000
		kW	49.3	56.2
★2 Cooling C	apacity (19.0°CWB)	kW	49.0	55.9
		kcal / h	48,600	53,800
★3 Heating C	apacity	Btu / h	193,000	213,000
		kW	56.5	62.5
		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H×W×D)	mm	1680×1240×765	(1680×930×765)+(1680×1240×765)
Heat Exchang	jer		Cross Fin Coil	Cross Fin Coil
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
Comp.	Piston Displacement	m³/h	16.90+10.53+10.53	(16.90)+(13.34+10.53)
	Number of Revolutions	r.p.m	7980, 2900, 2900	(7980)+(6300, 2900)
	Motor Output×Number of Units	kW	(4.3+4.5+4.5)×1	(4.5×1)+((2.5+4.5)×1)
	Starting Method		Soft Start	Soft Start
	Туре		Propeller Fan	Propeller Fan
F	Motor Output	kW	0.75×2	(0.75×1)+(0.35×2)
Fan	Air Flow Rate	m³/min	239	180+233
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	φ15.9 (Brazing Connection)	φ15.9 (Brazing Connection)
Pipes	Gas Pipe	mm	φ28.6 (Brazing Connection)	φ28.6 (Brazing Connection)
Product Mass	(Machine Weight)	kg	341	205+285
Safety Device	25		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	od		Deicer	Deicer
Capacity Control %		%	9~100	8~100
	Refrigerant Name		R-410A	R-410A
Refrigerant	Charge	kg	11.7	7.2+9.5
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator C	Dil		Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acc	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.			C: 4D061011	
Brannig Her				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level *3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (Combination Unit)			RXYQ22PAY1(E)	RXYQ24PAY1(E)
Model Name (Independent Unit)			RXYQ10PAY1(E)+RXYQ12PAY1(E)	RXYQ8PAY1(E)+RXYQ16PAY1(E)
kcal / h			53,200	58,300
★1 Cooling Capacity (19.5°CWB)		Btu / h	211,000	231,000
		kW	61.9	67.8
★2 Cooling Ca	pacity (19.0°CWB)	kW	61.5	67.4
		kcal / h	59,300	64,500
★3 Heating Ca	apacity	Btu / h	235,000	256,000
		kW	69.0	75.0
		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	H×W×D)	mm	(1680×930×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)
Heat Exchange	er		Cross Fin Coil	Cross Fin Coil
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
Comp.	Piston Displacement	m³/h	(13.34+10.53)+(13.34+10.53)	16.90+(13.34+10.53+10.53)
	Number of Revolutions	r.p.m	(6300, 2900)+(6300, 2900)	7980+(6300, 2900×2)
	Motor Output×Number of Units	kW	((1.4+4.5)×1)+((2.5+4.5)×1)	(4.5×1)+((2.7+4.5+4.5)×1)
	Starting Method		Soft Start	Soft Start
	Туре		Propeller Fan	Propeller Fan
F	Motor Output	kW	(0.75×1)+(0.35×2)	(0.75×1)+(0.35×2)
Fan	Air Flow Rate	m³/min	185+233	180+233
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	φ15.9 (Brazing Connection)	φ15.9 (Brazing Connection)
Pipes	Gas Pipe	mm	φ28.6 (Brazing Connection)	φ34.9 (Brazing Connection)
Product Mass	(Machine Weight)	kg	249+285	205+329
Safety Devices	3		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method			Deicer	Deicer
Capacity Control		%	7~100	6~100
	Refrigerant Name		R-410A	R-410A
Refrigerant	Charge	kg	7.9+9.5	7.2+11.5
	Control	•	Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator O	il		Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Accessories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (Combination Unit)			RXYQ26PAY1(E)	RXYQ28PAY1(E)
Model Name (Independent Unit)			RXYQ8PAY1(E)+RXYQ18PAY1(E)	RXYQ10PAY1(E)+RXYQ18PAY1(E)
kcal / h			61,700	66,700
★1 Cooling Ca	apacity (19.5°CWB)	Btu / h	250,000	26,400
		kW	71.8	77.5
★2 Cooling Ca	apacity (19.0°CWB)	kW	71.4	77.0
		kcal / h	70,100	75,700
★3 Heating C	apacity	Btu / h	278,000	300,000
		kW	81.5	88.0
Casing Color		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H×W×D)	mm	(1680×930×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)
Heat Exchang	er		Cross Fin Coil	Cross Fin Coil
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(16.90)+(16.90+10.53+10.53)	(13.34+10.53)+(16.90+10.53+10.53)
Comp.	Number of Revolutions	r.p.m	(7980)+(7980, 2900, 2900)	(6300, 2900)+(7980, 2900×2)
comp.	Motor Output×Number of Units	kW	(4.5×1)+((4.3+4.5+4.5)×1)	((1.4+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method		Soft Start	Soft Start
	Туре		Propeller Fan	Propeller Fan
Fan	Motor Output	kW	(0.75×1)+(0.75×2)	(0.75×1)+(0.75×2)
Fan	Air Flow Rate	m³/min	180+239	185+239
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	<pre></pre>	φ19.1 (Brazing Connection)
Pipes	Gas Pipe	mm	φ34.9 (Brazing Connection)	φ34.9 (Brazing Connection)
Product Mass	(Machine Weight)	kg	205+341	249+341
Safety Device	S		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method			Deicer	Deicer
Capacity Control %		%	6~100	5~100
	Refrigerant Name		R-410A	R-410A
Refrigerant	Charge	kg	7.2+11.7	7.9+11.7
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator C	Dil		Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level *3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (Combination Unit)			RXYQ30PAY1(E)	RXYQ32PAY1(E)		
Model Name (Independent Unit)			RXYQ12PAY1(E)+RXYQ18PAY1(E)	RXYQ16PAY1(E)+RXYQ16PAY1(E)		
kcal / h			71,400	77,800		
★1 Cooling Ca	apacity (19.5°CWB)	Btu / h	283,000	309,000		
		kW	83	90.5		
★2 Cooling Ca	apacity (19.0°CWB)	kW	82.5	90.0		
		kcal / h	80,800	86,000		
★3 Heating Ca	apacity	Btu / h	321,000	341,000		
		kW	94.0	100		
		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)		
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)		
Dimensions: (H	H×W×D)	mm	(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)		
Heat Exchange	er		Cross Fin Coil	Cross Fin Coil		
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type		
Comp.	Piston Displacement	m³/h	(13.34+10.53)+(16.90+10.53+10.53)	(13.34+10.53+10.53)+(13.34+10.53+10.53)		
	Number of Revolutions	r.p.m	(6300, 2900)+(7980, 2900, 2900)	(6300, 2900, 2900)+(6300, 2900, 2900)		
	Motor Output×Number of Units	kW	((2.5+4.5)×1)+((4.3+4.5+4.5)×1)	((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)		
	Starting Method		Soft Start	Soft Start		
	Туре		Propeller Fan	Propeller Fan		
F ar	Motor Output	kW	(0.35×2)+(0.75×2)	(0.35×2)+(0.35×2)		
Fan	Air Flow Rate	m³/min	233+239	233+233		
	Drive		Direct Drive	Direct Drive		
Connecting	Liquid Pipe	mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)		
Pipes	Gas Pipe	mm	φ34.9 (Brazing Connection)	φ34.9 (Brazing Connection)		
Product Mass	(Machine Weight)	kg	285+341	329+329		
Safety Devices	5		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector		
Defrost Method			Deicer	Deicer		
Capacity Control %		%	5~100	5~100		
	Refrigerant Name		R-410A	R-410A		
Refrigerant	Charge	kg	9.5+11.7	11.5+11.5		
	Control		Electronic Expansion Valve	Electronic Expansion Valve		
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor		
Standard Accessories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps		
Drawing No.						

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (Combination Unit)			RXYQ34PAY1(E)	RXYQ36PAY1(E)
Model Name (Independent Unit)			RXYQ16PAY1(E)+RXYQ18PAY1(E)	RXYQ18PAY1(E)+RXYQ18PAY1(E)
★1 Cooling Capacity (19.5°CWB) kcal / h Btu / h kW		kcal / h	81,400	85,100
		Btu / h	323,000	338,000
		kW	94.6	99.0
★2 Cooling Ca	pacity (19.0°CWB)	kW	94.0	98.0
		kcal / h	92,000	97,200
		Btu / h	365,000	386,000
		kW	107	113
Oneiran Onlan		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (I	H×W×D)	mm	(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)
Heat Exchang	er		Cross Fin Coil	Cross Fin Coil
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(13.34+10.53+10.53)+(16.90+10.53+10.53)	(16.90+10.53+10.53)+(16.90+10.53+10.53)
Comp.	Number of Revolutions	r.p.m	(6300, 2900, 2900)+(7980, 2900, 2900)	(7980, 2900, 2900)+(7980, 2900, 2900)
Comp.	Motor Output×Number of Units	kW	((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method		Soft Start	Soft Start
	Туре		Propeller Fan	Propeller Fan
F	Motor Output	kW	(0.35×2)+(0.75×2)	(0.75×2)+(0.75×2)
Fan	Air Flow Rate	m³/min	233+239	239+239
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)
Pipes	Gas Pipe	mm	φ34.9 (Brazing Connection)	φ41.3 (Brazing Connection)
Product Mass (Machine Weight) kg		kg	329+341	341+341
Safety Devices			High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method			Deicer	Deicer
Capacity Control %		%	5~100	4~100
Refrigerant	Refrigerant Name		R-410A	R-410A
	Charge	kg	11.5+11.7	11.7+11.7
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Accessories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

tependent Unit) city (19.5°CWB)	kcal / h	RXYQ8PAY1(E)+RXYQ12PAY1(E)+RXYQ18PAY1(E)	RXYQ8PAY1(E)+RXYQ16PAY1(E)+RXYQ16PAY1(E)
, ,		01.000	
, ,	DI (1	91,200	97,200
	Btu / h	362,000	386,000
	kW	106	113
city (19.0°CWB)	kW	105	112
		102,000	108,000
		406,000	427,000
		119	125
	Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
	With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
W×D)	mm	(1680×930×765)+(1680×1240×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)+(1680×1240×765)
		Cross Fin Coil	Cross Fin Coil
Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
iston Displacement	m³/h	(16.90)+(13.34+10.53)+(16.90+10.53+10.53)	(16.90)+(13.34+10.53+10.53)+(13.34+10.53+10.53)
umber of Revolutions	r.p.m	(7980)+(6300, 2900)+(7980, 2900, 2900)	(7980)+(6300, 2900, 2900)+(6300, 2900, 2900)
lotor Output×Number i Units	kW	(4.5×1)+((2.5+4.5)×1)+((4.3+4.5+4.5)×1)	(4.5×1)+((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)
Starting Method		Soft Start	Soft Start
уре		Propeller Fan	Propeller Fan
lotor Output	kW	(0.75×1)+(0.35×2)+(0.75×2)	(0.75×1)+(0.35×2)+(0.35×2)
ir Flow Rate	m³/min	180+233+239	180+233+233
rive		Direct Drive	Direct Drive
quid Pipe	mm	<pre> \$\$\phi19.1 (Brazing Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	φ19.1 (Brazing Connection)
as Pipe	mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)
achine Weight)	kg	205+285+341	205+329+329
		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
		Deicer	Deicer
Capacity Control %		4~100	4~100
Refrigerant Name		R-410A	R-410A
harge	kg	7.2+9.5+11.7	7.2+11.5+11.5
Control		Electronic Expansion Valve	Electronic Expansion Valve
		Refer to the nameplate of compressor	Refer to the nameplate of compressor
ories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
	V×D) pe ston Displacement Imber of Revolutions otor Output×Number Units arting Method pe otor Output r Flow Rate ive quid Pipe as Pipe icchine Weight) effigerant Name harge ontrol	kW kW without(E) Without(E) With(E) With(E) VxD) mm pe ston Displacement m³/n otor Output×Number kW arting Method pe otor Output kW arting Method pe otor Output kW r Flow Rate m³/min ive quid Pipe mm as Pipe mm chine Weight) kg parage kg	Btu / h 406,000 kW 119 Without(E) Ivory White (5Y7.5/1) With(E) Light Camel (2.5Y6.5/1.5) /xD) mm (1680×930×765)+(1680×1240×765)+(1680×1240×765) pe Cross Fin Coil pe Hermetically Sealed Scroll Type ston Displacement m³/h (16.90)+(13.34+10.53)+(16.90+10.53+10.53) umber of Revolutions r.p.m (7980)+(6300, 2900)+(7980, 2900, 2900) otor OutputxNumber kW (4.5×1)+((2.5+4.5)×1)+((4.3+4.5+4.5)×1) arting Method Soft Start pe Propeller Fan otor Output kW (0.75×1)+(0.35×2)+(0.75×2) r Flow Rate m³/min 180+233+239 ive Direct Drive puid Pipe mm 0411.3 (Brazing Connection) as Pipe mm 0411.3 (Brazing Connection) chine Weight) kg 205+285+341 High Pressure Switch, Fan Driver Overload Protector Overload frigerant Name R-410A arge kg 7.2+9.5+11.7 ontr

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (Combination Unit)			RXYQ42PAY1(E)	RXYQ44PAY1(E)
Model Name (Independent Unit)			RXYQ8PAY1(E)+RXYQ16PAY1(E)+RXYQ18PAY1(E)	RXYQ8PAY1(E)+RXYQ18PAY1(E)+RXYQ18PAY1(E)
★1 Cooling Capacity (19.5°CWB) kW		kcal / h	101,000	104,000
		Btu / h	399,000	413,000
		kW	117	121
★2 Cooling Ca	★2 Cooling Capacity (19.0°CWB) kW		116	120
		kcal / h	114,000	119,000
		Btu / h	450,000	471,000
		kW	132	138
		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (I	H×W×D)	mm	(1680×930×765)+(1680×1240×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchang	er		Cross Fin Coil	Cross Fin Coil
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(16.90)+(13.34+10.53+10.53)+(16.90+10.53+10.53)	(16.90)+(16.90+10.53+10.53)+(16.90+10.53+10.53)
Comp.	Number of Revolutions	r.p.m	(7980)+(6300, 2900, 2900)+(7980, 2900, 2900)	(7980)+(7980, 2900×2)+(7980, 2900, 2900)
comp.	Motor Output×Number of Units	kW	(4.5×1)+((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	(4.5×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method		Soft Start	Soft Start
	Туре		Propeller Fan	Propeller Fan
E	Motor Output	kW	(0.75×1)+(0.35×2)+(0.75×2)	(0.75×1)+(0.75×2)+(0.75×2)
Fan	Air Flow Rate	m³/min	180+233+239	180+239+239
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)
Pipes	Gas Pipe	mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)
Product Mass	(Machine Weight)	kg	205+329+341	205+341+341
Safety Device	S		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method			Deicer	Deicer
Capacity Control %		%	4~100	4~100
Refrigerant	Refrigerant Name		R-410A	R-410A
	Charge	kg	7.2+11.5+11.7	7.2+11.7+11.7
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Accessories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

RXYQ48PAY1(E)
(E)+RXYQ18PAY1(E)
7.5/1)
6.5/1.5)
'65)+(1680×1240×765)
bil
Scroll Type
3)+(16.90+10.53+10.53)
)+(7980, 2900, 2900)
)+((4.3+4.5+4.5)×1)
n
(0.75×2)
9
)
nection)
nection)
1
verload Protector, Over rotector
.7
on Valve
of compressor
ual, Connection Pipes,

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (Combination Unit)			RXYQ50PAY1(E)	RXYQ52PAY1(E)
Model Name (Independent Unit)			RXYQ14PAY1(E)+RXYQ18PAY1(E)+RXYQ18PAY1(E)	RXYQ16PAY1(E)+RXYQ18PAY1(E)+RXYQ18PAY1(E)
★1 Cooling Capacity (19.5°CWB) kW		kcal / h	120,000	124,000
		Btu / h	474,000	491,000
		kW	139	144
★2 Cooling Ca	apacity (19.0°CWB)	kW	138	143
*3 Heating Capacity Kcal / h Btu / h kW		kcal / h	136,000	140,000
		Btu / h	539,000	556,000
		kW	158	163
a . a .		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (I	H×W×D)	mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchang	er		Cross Fin Coil	Cross Fin Coil
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(13.34+10.53+10.53)+(16.90+10.53+10.53)+(16.90+10.53+10.53)	(13.34+10.53+10.53)+(16.90+10.53+10.53)+(16.90+10.53+10.53)
Comp.	Number of Revolutions	r.p.m	(6300, 2900×2)+(7980, 2900, 2900)+(7980, 2900, 2900)	(6300, 2900×2)+(7980, 2900, 2900)+(7980, 2900, 2900)
comp.	Motor Output×Number of Units	kW	((1.6+4.5+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method		Soft Start	Soft Start
	Туре		Propeller Fan	Propeller Fan
Fair	Motor Output	kW	(0.35×2)+(0.75×2)+(0.75×2)	(0.35×2)+(0.75×2)+(0.75×2)
Fan	Air Flow Rate	m³/min	233+239+239	233+239+239
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)
Pipes	Gas Pipe	mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)
Product Mass	(Machine Weight)	kg	329+341+341	329+341+341
Safety Devices			High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	d		Deicer	Deicer
Capacity Control %		%	3~100	3~100
Refrigerant	Refrigerant Name		R-410A	R-410A
	Charge	kg	11.3+11.7+11.7	11.5+11.7+11.7
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Accessories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (Combination Unit)			RXYQ54PAY1(E)	
Model Name (Independent Unit)			RXYQ18PAY1(E)+RXYQ18PAY1(E)+RXYQ18PAY1(E)	
		kcal / h	127,000	
		Btu / h	505,000	
		kW	148	
★2 Cooling Capacity (19.0°CWB)		kW	147	
★3 Heating Capacity		kcal / h	146,000	
		Btu / h	580,000	
		kW	170	
Casing Color		Without(E)	Ivory White (5Y7.5/1)	
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	
Dimensions:	(H×W×D)	mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	
Heat Exchang	ger		Cross Fin Coil	
	Туре		Hermetically Sealed Scroll Type	
	Piston Displacement	m³/h	(16.90+10.53+10.53)+(16.90+10.53+10.53)+(16.90+10.53+10.53)	
Comp.	Number of Revolutions	r.p.m	(7980, 2900, 2900)+(7980, 2900, 2900)+(7980, 2900, 2900)	
eemp.	Motor Output×Number of Units	kW	((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	
	Starting Method		Soft Start	
	Туре		Propeller Fan	
Fan	Motor Output	kW	(0.75×2)+(0.75×2)+(0.75×2)	
ran	Air Flow Rate	m³/min	239+239+239	
	Drive		Direct Drive	
Connecting	Liquid Pipe	mm	φ19.1 (Brazing Connection)	
Pipes	Gas Pipe	mm	φ41.3 (Brazing Connection)	
Product Mass	(Machine Weight)	kg	341+341	
Safety Device	es		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	
Defrost Metho	bd		Deicer	
Capacity Control %		%	3~100	
Refrigerant	Refrigerant Name		R-410A	
	Charge	kg	11.7+11.7+11.7	
	Control		Electronic Expansion Valve	
Refrigerator Oil			Refer to the nameplate of compressor	
Standard Accessories			Installation Manual, Operation Manual, Connection Pipes, Clamps	
Drawing No.				

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
 ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.
- 4 The units with anti-corrosion treatment will be available as standard. Please specify the suffix "E" as RXYQ5PAY1E.

Heat Pump 50Hz High COP Series <RXYQ-PAH>

Model Name			RXYQ16PAHY1(E)	RXYQ18PAHY1(E)
Model Name (Independent Unit)			RXYQ8PAY1(E)+RXYQ8PAY1(E)	RXYQ8PAY1(E)+RXYQ10PAY1(E)
★1 Cooling Capacity (19.5°CWB) kcal / h Btu / h kW		kcal / h	38,800	43,600
		Btu / h	154,000	173,000
		kW	45.1	50.7
★2 Cooling Ca	apacity (19.0°CWB)	kW	44.8	50.4
★3 Heating Capacity Btu /		kcal / h	43,000	48,600
		Btu / h	171,000	193,000
		kW	50.0	56.5
		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H×W×D)	mm	(1680×930×765)+(1680×930×765)	(1680×930×765)+(1680×930×765)
Heat Exchang	er		Cross Fin Coil	Cross Fin Coil
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(16.90)+(16.90)	(16.90)+(13.34+10.53)
Comp.	Number of Revolutions	r.p.m	(7980)+(7980)	(7980)+(6300,2900)
comp.	Motor Output×Number of Units	kW	(4.5×1)+(4.5×1)	(4.5×1)+((1.4+4.5)×1)
	Starting Method		Soft start	Soft start
	Туре		Propeller Fan	Propeller Fan
F ee	Motor Output	kW	(0.75×1)+(0.75×1)	(0.75×1)+(0.75×1)
Fan	Air Flow Rate	m³/min	180+180	180+185
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	φ12.7(Brazing Connection)	φ15.9(Brazing Connection)
Pipes	Gas Pipe	mm	φ28.6(Brazing Connection)	φ28.6(Brazing Connection)
Product Mass	(Machine weight)	kg	205+205	205+249
Safety Device	s		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	d		Deicer	Deicer
Capacity Control %		%	10~100	8~100
Refrigerant	Refrigerant Name		R-410A	R-410A
	Charge	kg	7.2+7.2	7.2+7.9
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Accessories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

Notes:

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name			RXYQ24PAHY1(E)	RXYQ26PAHY1(E)
Model Name	(Independent Unit)	RXYQ8PAY1(E)+RXYQ8PAY1(E)+RXYQ8PAY1(E)		RXYQ8PAY1(E)+RXYQ8PAY1(E)+RXYQ10PAY1(E)
★1 Cooling Capacity (19.5°CWB) kcal / h Btu / h			58,100	63,000
			231,000	250,000
kW		kW	67.6	73.2
★2 Cooling C	apacity (19.0°CWB)	kW	67.2	72.8
		kcal / h	64,500	70,100
★3 Heating C	apacity	Btu / h	260,000	278,000
		kW	75.0	81.5
a . a .		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: ((H×W×D)	mm	(1680×930×765)+(1680×930×765)+(1680×930×765)	(1680×930×765)+(1680×930×765)+(1680×930×765)
Heat Exchang	ger		Cross Fin Coil	Cross Fin Coil
Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(16.90)+(16.90)+(16.90)	(16.90)+(16.90)+(13.34+10.53)
Comp.	Number of Revolutions	r.p.m	(7980)+(7980)+(7980)	(7980)+(7980)+(6300,2900)
Comp.	Motor Output×Number of Units	kW	(4.5×1)+(4.5×1)+(4.5×1)	(4.5×1)+(4.5×1)+((1.4+4.5)×1)
	Starting Method		Soft start	Soft start
	Туре		Propeller Fan	Propeller Fan
F	Motor Output	kW	(0.75×1)+(0.75×1)+(0.75×1)	(0.75×1)+(0.75×1)+(0.75×1)
Fan	Air Flow Rate	m³/min	180+180+180	180+180+185
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	φ15.9(Brazing Connection)	φ19.1(Brazing Connection)
Pipes	Gas Pipe	mm	φ34.9(Brazing Connection)	φ34.9(Brazing Connection)
Product Mass	(Machine weight)	kg	205+205+205	205+205+249
Safety Device	25		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	bd		Deicer	Deicer
Capacity Control %		%	7~100	6~100
	Refrigerant Name		R-410A	R-410A
Refrigerant	Charge	kg	7.2+7.2+7.2	7.2+7.2+7.9
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator C	Dil		Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acc	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Comp. Nu	icity (19.5°CWB) icity (19.0°CWB) icity	kcal / h Btu / h kW kW kcal / h Btu / h kW Without(E) With(E)	RXYQ8PAY1(E)+RXYQ8PAY1(E)+RXYQ12PAY1(E) 67,800 269,000 78.8 78.3 75,300 299,000 87.5	RXYQ8PAY1(E)+RXYQ10PAY1(E)+RXYQ12PAY1(E) 72,600 288,000 84.4 83.9 80,800 321,000
★2 Cooling Capaci ★3 Heating Capaci Casing Color Dimensions: (H×W Heat Exchanger Typ Pis Comp. Nu Mo	ucity (19.0°CWB)	Btu / h kW kW kcal / h Btu / h kW Without(E)	269,000 78.8 78.3 75,300 299,000 87.5	288,000 84.4 83.9 80,800 321,000
★2 Cooling Capaci ★3 Heating Capaci Casing Color Dimensions: (H×W Heat Exchanger Typ Pis Comp. Nu Mo	ucity (19.0°CWB)	kW kW kcal / h Btu / h kW Without(E)	78.8 78.3 75,300 299,000 87.5	84.4 83.9 80,800 321,000
★3 Heating Capaci Casing Color Dimensions: (H×W Heat Exchanger Tyr Pis Comp. Nui Mo	ıcity	kW kcal / h Btu / h kW Without(E)	78.3 75,300 299,000 87.5	83.9 80,800 321,000
★3 Heating Capaci Casing Color Dimensions: (H×W Heat Exchanger Tyr Pis Comp. Nui Mo	ıcity	kcal / h Btu / h kW Without(E)	75,300 299,000 87.5	80,800 321,000
Casing Color Dimensions: (H×W Heat Exchanger Pis Comp. Nui Mo		Btu / h kW Without(E)	299,000 87.5	321,000
Casing Color Dimensions: (H×W Heat Exchanger Pis Comp. Nui Mo		kW Without(E)	87.5	,
Dimensions: (H×W Heat Exchanger Pis Comp.	N×D)	Without(E)		
Dimensions: (H×W Heat Exchanger Pis Comp.	W×D)	. ,		94.0
Dimensions: (H×W Heat Exchanger Pis Comp.	W×D)	With(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Heat Exchanger Typ Pis Comp. Nur Mo	W×D)		Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Comp.		mm	(1680×930×765)+(1680×930×765)+(1680×1240×765)	(1680×930×765)+(1680×930×765)+(1680×1240×765)
Comp. Nu			Cross Fin Coil	Cross Fin Coil
Comp. Nu	уре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
Comp. Mo	iston Displacement	m³/h	(16.90)+(16.90)+(13.34+10.53)	(16.90)+(13.34+10.53)+(13.34+10.53)
Mo	lumber of Revolutions	r.p.m	(7980)+(7980)+(6300,2900)	(7980)+(6300,2900)+(6300,2900)
ort	lotor Output×Number f Units	kW	(4.5×1)+(4.5×1)+((2.5+4.5)×1)	(4.5×1)+((1.4+4.5)×1)+((2.5+4.5)×1)
Sta	Starting Method		Soft start	Soft start
Тур	Туре		Propeller Fan	Propeller Fan
Fan	lotor Output	kW	(0.75×1)+(0.75×1)+(0.35×2)	(0.75×1)+(0.75×1)+(0.35×2)
Air	ir Flow Rate	m³/min	180+180+233	180+185+233
Driv	Drive		Direct Drive	Direct Drive
Connecting Liq	iquid Pipe	mm	<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	<pre> ø19.1(Brazing Connection) </pre>
Pipes Ga	ias Pipe	mm	<pre> \$4.9(Brazing Connection) </pre>	<pre>ø34.9(Brazing Connection)</pre>
Product Mass (Mac	achine weight)	kg	205+205+285	205+249+285
Safety Devices			High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method			Deicer	Deicer
Capacity Control %		%	6~100	5~100
Ret	efrigerant Name		R-410A	R-410A
Refrigerant Cha	harge	kg	7.2+7.2+9.5	7.2+7.9+9.5
Co	ontrol		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Accessor	ories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.			olampa	olampo

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name			RXYQ32PAHY1(E)	RXYQ34PAHY1(E)
Model Name (Independent Unit)	RXYQ8PAY1(E)+RXYQ12PAY1(E)+RXYQ12PAY1(E)		RXYQ10PAY1(E)+RXYQ12PAY1(E)+RXYQ12PAY1(E)
		kcal / h	77,300	82,200
			307,000	326,000
★1 Cooling Capacity (19.5°CWB) Btu / h kW		kW	89.9	95.6
★2 Cooling Ca	pacity (19.0°CWB)	kW	89.4	95.0
		kcal / h	86,000	92,000
★3 Heating Ca	pacity	Btu / h	341,000	365,000
		kW	100	107
		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	H×W×D)	mm	(1680×930×765)+(1680×1240×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchange	er		Cross Fin Coil	Cross Fin Coil
Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(16.90)+(13.34+10.53)+(13.34+10.53)	(13.34+10.53)+(13.34+10.53)+(13.34+10.53)
Comp.	Number of Revolutions	r.p.m	(7980)+(6300,2900)+(6300,2900)	(6300,2900)+(6300,2900)+(6300,2900)
oomp.	Motor Output×Number of Units	kW	(4.5×1)+((2.5+4.5)×1)+((2.5+4.5)×1)	((1.4+4.5)×1)+((2.5+4.5)×1)+((2.5+4.5)×1)
	Starting Method		Soft start	Soft start
	Туре		Propeller Fan	Propeller Fan
F	Motor Output	kW	(0.75×1)+(0.35×2)+(0.35×2)	(0.75×1)+(0.35×2)+(0.35×2)
Fan	Air Flow Rate	m³/min	180+233+233	185+233+233
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	<pre></pre>	<pre></pre>
Pipes	Gas Pipe	mm	<pre></pre>	<pre></pre>
Product Mass	(Machine weight)	kg	205+285+285	249+285+285
Safety Devices	3		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method	b		Deicer	Deicer
Capacity Control %		%	5~100	5~100
	Refrigerant Name	•	R-410A	R-410A
Refrigerant	Charge	kg	7.2+9.5+9.5	7.9+9.5+9.5
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	ssories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name			RXYQ36PAHY1(E)	RXYQ38PAHY1(E)
Model Name	(Independent Unit)		RXYQ12PAY1(E)+RXYQ12PAY1(E)+RXYQ12PAY1(E)	RXYQ12PAY1(E)+RXYQ12PAY1(E)+RXYQ14PAY1(E)
★1 Cooling Capacity (19.5°CWB) kcal / h Btu / h			87,700	92,900
			348,000	368,000
kW		kW	102	108
★2 Cooling C	apacity (19.0°CWB)	kW	101	107
		kcal / h	97,200	103,000
★3 Heating C	apacity	Btu / h	386,000	409,000
		kW	113	120
		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H×W×D)	mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchang	er		Cross Fin Coil	Cross Fin Coil
Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(13.34+10.53)+(13.34+10.53)+(13.34+10.53)	(13.34+10.53)+(13.34+10.53)+(13.34+10.53+10.53)
Comp.	Number of Revolutions	r.p.m	(6300,2900)+(6300,2900)+(6300,2900)	(6300,2900)+(6300,2900)+(6300,2900,2900)
comp.	Motor Output×Number of Units	kW	((2.5+4.5)×1)+((2.5+4.5)×1)+((2.5+4.5)×1)	((2.5+4.5)×1)+((2.5+4.5)×1)+((1.6+4.5+4.5)×1)
	Starting Method		Soft start	Soft start
	Туре		Propeller Fan	Propeller Fan
F	Motor Output	kW	(0.35×2)+(0.35×2)+(0.35×2)	(0.35×2)+(0.35×2)+(0.35×2)
Fan	Air Flow Rate	m³/min	233+233+233	233+233+233
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	<pre></pre>	<pre></pre>
Pipes	Gas Pipe	mm	φ41.3(Brazing Connection)	φ41.3(Brazing Connection)
Product Mass	(Machine weight)	kg	285+285+285	285+285+329
Safety Device	S	•	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	d		Deicer	Deicer
Capacity Control %		%	5~100	4~100
	Refrigerant Name		R-410A	R-410A
Refrigerant	Charge	kg	9.5+9.5+9.5	9.5+9.5+11.3
	Control	•	Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acc	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name			RXYQ40PAHY1(E)	RXYQ42PAHY1(E)
Model Name	(Independent Unit)	RXYQ12PAY1(E)+RXYQ12PAY1(E)+RXYQ16PAY1(E)		RXYQ12PAY1(E)+RXYQ12PAY1(E)+RXYQ18PAY1(E)
		kcal / h	97,200	101,000
★1 Cooling C	apacity (19.5°CWB)	Btu / h	386,000	399,000
kW		kW	113	117
★2 Cooling C	apacity (19.0°CWB)	kW	112	116
		kcal / h	108,000	114,000
★3 Heating C	apacity	Btu / h	427,000	450,000
		kW	125	132
0		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: ((H×W×D)	mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchang	ger		Cross Fin Coil	Cross Fin Coil
Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(13.34+10.53)+(13.34+10.53)+(13.72+10.53+10.53)	(13.34+10.53)+(13.34+10.53)+(16.90+10.53+10.53)
Comp.	Number of Revolutions	r.p.m	(6300,2900)+(6300,2900)+(6300,2900,2900)	(6300,2900)+(6300,2900)+(7980,2900,2900)
comp.	Motor Output×Number of Units	kW	((2.5+4.5)×1)+((2.5+4.5)×1)+((2.7+4.5+4.5)×1)	((2.5+4.5)×1)+((2.5+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method		Soft start	Soft start
	Туре		Propeller Fan	Propeller Fan
Fee.	Motor Output	kW	(0.35×2)+(0.35×2)+(0.35×2)	(0.35×2)+(0.35×2)+(0.75×2)
Fan	Air Flow Rate	m³/min	233+233+233	233+233+239
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	<pre></pre>	<pre></pre>
Pipes	Gas Pipe	mm	φ41.3(Brazing Connection)	<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
Product Mass	(Machine weight)	kg	285+285+329	285+285+341
Safety Device	25		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method			Deicer	Deicer
Capacity Control %		%	4~100	4~100
	Refrigerant Name		R-410A	R-410A
Refrigerant	Charge	kg	9.5+9.5+11.5	9.5+9.5+11.7
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acc	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (RXYQ46PAHY1(E)
	Independent Unit)		RXYQ12PAY1(E)+RXYQ16PAY1(E)+RXYQ16PAY1(E)	RXYQ12PAY1(E)+RXYQ16PAY1(E)+RXYQ18PAY1(E)
★1 Cooling Capacity (19.5°CWB) kcal / h Btu / h			108,000	111,000
			427,000	440,000
kW		kW	125	129
★2 Cooling Ca	pacity (19.0°CWB)	kW	124	128
-		kcal / h	119,000	124,000
★3 Heating Ca	apacity	Btu / h	471,000	491,000
		kW	138	144
0		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	H×W×D)	mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchange	er		Cross Fin Coil	Cross Fin Coil
-	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(13.34+10.53)+(13.34+10.53+10.53)+(13.34+10.53+10.53)	(13.34+10.53)+(13.34+10.53+10.53)+(16.90+10.53+10.53)
Comp.	Number of Revolutions	r.p.m	(6300,2900)+(6300,2900,2900)+(6300,2900,2900)	(6300,2900)+(6300,2900,2900)+(7980,2900,2900)
comp.	Motor Output×Number of Units	kW	((2.5+4.5)×1)+((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)	((2.5+4.5)×1)+((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method		Soft start	Soft start
	Туре		Propeller Fan	Propeller Fan
Fan	Motor Output	kW	(0.35×2)+(0.35×2)+(0.35×2)	(0.35×2)+(0.35×2)+(0.75×2)
Fan	Air Flow Rate	m³/min	233+233+233	233+233+239
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	<pre> \$\$\phi19.1(Brazing Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	<pre> \$\$\phi19.1(Brazing Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>
Pipes	Gas Pipe	mm	φ41.3(Brazing Connection)	φ41.3(Brazing Connection)
Product Mass	(Machine weight)	kg	285+329+329	285+329+341
Safety Devices	3		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method	d		Deicer	Deicer
Capacity Control %		%	4~100	3~100
	Refrigerant Name		R-410A	R-410A
Refrigerant	Charge	kg	9.5+11.5+11.5	9.5+11.5+11.7
	Control		Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name			RXYQ48PAHY1(E)	RXYQ50PAHY1(E)
Model Name (Independent Unit)			RXYQ16PAY1(E)+RXYQ16PAY1(E)+RXYQ16PAY1(E)	RXYQ16PAY1(E)+RXYQ16PAY1(E)+RXYQ18PAY1(E)
		kcal / h	117,000	120,000
★1 Cooling C	apacity (19.5°CWB)	Btu / h	464,000	478,000
kW		kW	136	140
★2 Cooling C	apacity (19.0°CWB)	kW	135	139
		kcal / h	129,000	134,000
★3 Heating C	apacity	Btu / h	512,000	532,000
		kW	150	156
<u> </u>		Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color		With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H×W×D)	mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchang	jer		Cross Fin Coil	Cross Fin Coil
	Туре		Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston Displacement	m³/h	(13.34+10.53+10.53)+(13.34+10.53+10.53)+(13.34+10.53 +10.53)	(13.34+10.53+10.53)+(13.34+10.53+10.53)+(16.90+10.53 +10.53)
Comp.	Number of Revolutions	r.p.m	(6300,2900,2900)+(6300,2900,2900)+(6300,2900,2900)	(6300,2900,2900)+(6300,2900,2900)+(7980,2900,2900)
	Motor Output×Number of Units	kW	((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)	((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method		Soft start	Soft start
	Туре		Propeller Fan	Propeller Fan
E	Motor Output	kW	(0.35×2)+(0.35×2)+(0.35×2)	(0.35×2)+(0.35×2)+(0.75×2)
Fan	Air Flow Rate	m³/min	233+233+233	233+233+239
	Drive		Direct Drive	Direct Drive
Connecting	Liquid Pipe	mm	<pre></pre>	<pre></pre>
Pipes	Gas Pipe	mm	φ41.3(Brazing Connection)	φ41.3(Brazing Connection)
Product Mass	(Machine weight)	kg	329+329+329	329+329+341
Safety Device	S		High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method			Deicer	Deicer
Capacity Control %		%	3~100	3~100
	Refrigerant Name		R-410A	R-410A
Refrigerant	Charge	kg	11.5+11.5+11.5	11.5+11.5+11.7
	Control	•	Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acc	essories		Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.				

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
 ★2 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Heat Pump 60Hz-Normal Series (Space Saving Series) <RXYQ-P(A)>

		0011-	YL(E)	RXYQ5PAYL(E)	RXYQ8PAYL(E)
Model Name		60Hz	TL(E)	RXYQ5PTL(E)	RXYQ8PTL(E)
kcal / h			kcal / h	12,100	19,400
★1 Cooling C	apacity (19.5°CW	/B)	Btu / h	48,100	76,800
			kW	14.1	22.5
★2 Cooling (Capacity (19.0°C	CWB)	kW	14.0	22.4
			kcal / h	13,800	21,500
★3 Heating (Capacity		Btu / h	54,600	85,300
			kW	16.0	25.0
<u>a i a i</u>			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H×W×D)		mm	1680×635×765	1680×930×765
Heat Exchang	ler			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston		YL(E)	13.34	16.90
	Displacement	m³/h	TL(E)	13.34	16.90
Comp.	Number of		YL(E)	6300	7980
Comp.	Revolutions	r.p.m	TL(E)	6300	7980
	Motor Output× of Units	Number	kW	2.8×1	4.5×1
	Starting Metho	d		Soft Start	Soft Start
	Туре			Propeller Fan	Propeller Fan
F	Motor Output	Motor Output		0.35×1	0.75×1
Fan	Air Flow Rate	Air Flow Rate		95	180
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe		mm	φ9.5 (Brazing Connection)	φ9.5 (Brazing Connection)
Pipes	Gas Pipe		mm	φ15.9 (Brazing Connection)	φ19.1 (Brazing Connection)
Product Mass	(Machine weight	t)	kg	160	205
Safety Device	s		•	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	d			Deicer	Deicer
Capacity Con	trol		%	28~100	20~100
	Refrigerant Na	me		R-410A	R-410A
Refrigerant	Charge		kg	6.2	7.2
	Control		•	Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil				Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acc	essories			Installation Manual, Operation Manual, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
		604-	YL(E)	4D061025	4D061026
Drawing No.		60Hz	TL(E)	4D060845A	4D060846A

Notes:

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- ★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
- ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.
- 4 The units with anti-corrosion treatment will be available as standard. Please specify the suffix "E" as RXYQ5PAYLE.

The Reference Number

C~: Partly corrected drawings.

J~: Original drawing is Japanese

V~: Printing Convenience

Model Name		60Hz	YL(E)	RXYQ10PAYL(E)	RXYQ12PAYL(E)
Model Name		00112	TL(E)	RXYQ10PTL(E)	RXYQ12PTL(E)
kcal / h ★1 Cooling Capacity (19.5°CWB) Btu / h			kcal / h	24,300	29,000
			Btu / h	96,200	115,000
kW				28.2	33.7
★2 Cooling C	apacity (19.0°C	CWB)	kW	28.0	33.5
			kcal / h	27,100	32,300
★3 Heating C	apacity		Btu / h	107,000	128,000
			kW	31.5	37.5
Casing Color			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	l×W×D)		mm	1680×930×765	1680×1240×765
Heat Exchange	ər			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston	m³/h	YL(E)	13.34+12.52	13.34+12.52
	Displacement	1119/11	TL(E)	13.34+12.52	13.34+12.52
Comp.	Number of	r.p.m	YL(E)	6300, 3450	6300, 3450
	Revolutions	r.p.m	TL(E)	6300, 3450	6300, 3450
	Motor Output× of Units	lotor Output×Number Units		(1.4+4.5)×1	(2.5+4.5)×1
	Starting Metho	d		Soft Start	Soft Start
	Туре			Propeller Fan	Propeller Fan
Fan	Motor Output		kW	0.75×1	0.35×2
Fan	Air Flow Rate	Air Flow Rate		185	233
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe		mm	φ9.5 (Brazing Connection)	<pre> \$\$\phi12.7 (Brazing Connection) </pre>
Pipes	Gas Pipe		mm	<pre></pre>	<pre> \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>
Product Mass	(Machine Weigh	it)	kg	249	285
Safety Devices	3			High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	b			Deicer	Deicer
Capacity Contr	ol		%	14~100	14~100
	Refrigerant Na	me		R-410A	R-410A
Refrigerant	Charge		kg	7.9	9.5
	Control			Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil				Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	ssories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.		60Hz	YL(E)	4D061027	4D061028
Drawing NO.		00112	TL(E)	4D060847A	4D060848A

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Model Name		60Hz	YL(E)	RXYQ14PAYL(E)	RXYQ16PAYL(E)
		60HZ	TL(E)	RXYQ14PTL(E)	RXYQ16PTL(E)
kcal / h			kcal / h	34,600	39,000
★1 Cooling Ca	apacity (19.5°CW	VB)	Btu / h	137,000	155,000
			kW	40.2	45.3
★2 Cooling C	Capacity (19.0°C	CWB)	kW	40.0	45.0
			kcal / h	38,700	43,000
★3 Heating C	Capacity		Btu / h	154,000	171,000
			kW	45.0	50.0
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (I	H×W×D)		mm	1680×1240×765	1680×1240×765
Heat Exchang	ler			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston		YL(E)	12.84+12.52+12.52	12.84+12.52+12.52
	Displacement	m³/h	TL(E)	12.84+12.52+12.52	12.84+12.52+12.52
Comp.	Number of		YL(E)	6060, 3450, 3450	6060, 3450, 3450
comp.	Revolutions	r.p.m	TL(E)	6060, 3450, 3450	6060, 3450, 3450
	Motor Output× of Units	Number	kW	(1.6+4.5+4.5)×1	(2.7+4.5+4.5)×1
	Starting Method			Soft Start	Soft Start
	Туре			Propeller Fan	Propeller Fan
-	Motor Output	Motor Output k		0.35×2	0.35×2
Fan	Air Flow Rate	Air Flow Rate		233	233
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe		mm	φ12.7 (Brazing Connection)	φ12.7 (Brazing Connection)
Pipes	Gas Pipe		mm	φ28.6 (Brazing Connection)	φ28.6 (Brazing Connection)
Product Mass	(Machine Weigh	it)	kg	329	329
Safety Device	s			High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	d			Deicer	Deicer
Capacity Cont	trol		%	10~100	10~100
	Refrigerant Na	me		R-410A	R-410A
Refrigerant	Charge		kg	11.3	11.5
	Control		•	Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil				Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drowing No.		60H-	YL(E)	4D061029	4D061030
Drawing No. 60Hz		TL(E)	4D060849A	4D060850A	

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Model Name	(Combination U	nit)		RXYQ18PAYL(E)	RXYQ20PAYL(E)
Model Name (Independent Unit)		YL(E)		RXYQ8PAYL(E)+RXYQ12PAYL(E)	
Model Name (Combination Unit)				RXYQ18PTL(E)	RXYQ20PTL(E)
Model Name (Independent Unit)			TL(E)	_ ``	RXYQ8PTL(E)+RXYQ12PTL(E)
		,	kcal / h	42,400	48,300
★1 Cooling C	apacity (19.5°CW	/B)	Btu / h	168,000	192,000
-			kW	49.3	56.2
★2 Cooling (Capacity (19.0°C	CWB)	kW	49.0	55.9
			kcal / h	48,600	53,800
★3 Heating (Capacity		Btu / h	193,000	213,000
			kW	56.5	62.5
a : a :			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: ((H×W×D)		mm	1680×1240×765	(1680×930×765)+(1680×1240×765)
Heat Exchang	ger			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston	2/1	YL(E)	12.84+12.52+12.52	(16.90)+(13.34+12.52)
	Displacement	m³/h	TL(E)	12.84+12.52+12.52	(16.90)+(13.34+12.52)
Comp.	Number of		YL(E)	6060, 3450, 3450	(7980)+(6300, 3450)
oomp.	Revolutions	r.p.m	TL(E)	6060, 3450, 3450	(7980)+(6300, 3450)
	Motor Output×I of Units	lotor Output×Number Units		(4.3+4.5+4.5)×1	(4.5×1)+((2.5+4.5)×1)
	Starting Metho	Starting Method		Soft Start	Soft Start
	Туре	Туре		Propeller Fan	Propeller Fan
Fan	Motor Output	Motor Output		0.75×2	(0.75×1)+(0.35×2)
Fall	Air Flow Rate	Air Flow Rate		239	180+233
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe		mm		
Pipes	Gas Pipe		mm	<pre></pre>	φ28.6 (Brazing Connection)
Product Mass	6 (Machine Weigh	t)	kg	341	205+285
Safety Device	es			High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	bd			Deicer	Deicer
Capacity Con	Capacity Control %			9~100	8~100
	Refrigerant Na	me		R-410A	R-410A
Refrigerant	Charge		kg	11.7	7.2+9.5
	Control			Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator C	Dil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acc	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.		60Hz	YL(E)	4D061031	
Drawing NO.		00112	TL(E)	4D060851A	

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Model Name (Combination Unit)		X (1 (F)	RXYQ22PAYL(E)	RXYQ24PAYL(E)	
Model Name (Independent Unit)		YL(E)	RXYQ10PAYL(E)+RXYQ12PAYL(E)	RXYQ8PAYL(E)+RXYQ16PAYL(E)	
Model Name (Combination Unit)				RXYQ22PTL(E)	RXYQ24PTL(E)
Model Name (Independent Unit)			IL(E)	RXYQ10PTL(E)+RXYQ12PTL(E)	RXYQ8PTL(E)+RXYQ16PTL(E)
			kcal / h	53,200	58,300
★1 Cooling Ca	pacity (19.5°CW	′B)	Btu / h	211,000	231,000
			kW	61.9	67.8
★2 Cooling C	apacity (19.0°C	WB)	kW	61.5	67.4
-			kcal / h	59,300	64,500
★3 Heating C	apacity		Btu / h	235,000	256,000
			kW	69.0	75.0
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	l×W×D)		mm	(1680×930×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)
Heat Exchange	er			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston	m³/h	YL(E)	(13.34+12.52)+(13.34+12.52)	(16.90)+(12.84+12.52+12.52)
	Displacement		TL(E)	(13.34+12.52)+(13.34+12.52)	(16.90)+(12.84+12.52+12.52)
Comp.	Number of Revolutions		YL(E)	(6300, 3450)+(6300, 3450)	(7980)+(6060, 3450, 3450)
Comp.		r.p.m	TL(E)	(6300, 3450)+(6300, 3450)	(7980)+(6060, 3450, 3450)
	Motor Output×Number of Units		kW	((1.4+4.5)×1)+((2.5+4.5)×1)	(4.5×1)+((2.7+4.5+4.5)×1)
	Starting Method			Soft Start	Soft Start
	Туре			Propeller Fan	Propeller Fan
Fan	Motor Output		kW	(0.75×1)+(0.35×2)	(0.75×1)+(0.35×2)
Fan	Air Flow Rate		m³/min	185+233	180+233
	Drive		•	Direct Drive	Direct Drive
Connecting	Liquid Pipe		mm	φ15.9 (Brazing Connection)	φ15.9 (Brazing Connection)
Pipes	Gas Pipe		mm	φ28.6 (Brazing Connection)	φ34.9 (Brazing Connection)
Product Mass	Machine Weight	t)	kg	249+285	205+329
Safety Devices	;		•	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method	k			Deicer	Deicer
Capacity Control %			%	7~100	6~100
	Refrigerant Nar	ne	•	R-410A	R-410A
Refrigerant	Charge		kg	7.9+9.5	7.2+11.5
	Control			Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oi	I			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	ssories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.					

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model Name	Combination U	nit)		RXYQ26PAYL(E)	RXYQ28PAYL(E)
Model Name (Independent Unit) TL(E) RXY08PTL(E)+RXY018PTL(E) RXY010PTL(E)+RXY018PTL(E) *1 Cooling Capacity (19.5°CWB) Kcal / h 61.700 66.700 *2 Cooling Capacity (19.0°CWB) But / h 250.000 264.000 *3 Heating Capacity (19.0°CWB) KW 71.8 77.5 *3 Heating Capacity (19.0°CWB) KW 71.4 77.0 *3 Heating Capacity (19.0°CWB) KW 71.8 77.5 *3 Heating Capacity (19.0°CWB) KW 71.4 77.0 *3 Heating Capacity (19.0°CWB) KW 71.8 77.0 *3 Heating Capacity But / h 278.000 300.000 Casing Color Without(5) Iwn 10610-3302/755)+(1080x1240x765) Light Camel (25/6.5/1.5) Dimensions: (HxWxD) mm (1680x390x765)+(1680x1240x765) (1680x490x765)+(1680x1240x765) 1680.240x765) Heat Exchanger Type Hermetically Sealed Scroll Type Hermetically Sealed Scroll Type 16800-4900x,3450,3450) Moor Output-KNumber of LPL (16.80)+(12.84+12.52) (13.34+12.52)+(12.44+12.52)+(12.44+12.52)+(12.44+12.52)+(12.44+12.52)+(12.44+12.52)+(12.44+12	Model Name	Independent U	nit)	YL(E)	RXYQ8PAYL(E)+RXYQ18PAYL(E)	RXYQ10PAYL(E)+RXYQ18PAYL(E)
Model Name (Independent Unit)VRXY08PTL(E)+RXY018PTL(E)RRY010PTL(E)+RXY018PTL(E)**1 Cooling Capacity (19.5°CW)ku/h61.70066.700**2 Cooling Capacity (19.5°CW)ku/h250,000264,000**3 Heating Capacity (19.5°CW)kW71.477.5**2 Cooling Capacity (19.5°CW)kW71.477.0**3 Heating Capacity (19.5°CW)kW71.477.0**3 Heating Capacity (19.5°CW)kW71.477.0**3 Heating Capacity (19.5°CW)kw/h81.588.0Casing ColorWith (19.1000)10000075.700Mithelia Status (19.1000)With (19.1000)10000001000000Mithelia Status (19.1000)With (19.1000)10000001000000Immanian Status (19.1000)With (19.1000)10000001000000Mithelia Status (19.1000)Mithelia Status (19.1000)10000001000000Mithelia Status (19.1000)Mithelia Status (19.1000)101000000101000000Mithelia Status (19.1000)Mithelia Status (19.10000)10100000001010000000Mithelia Status (19.10000)Mithelia Status (19.100000)10100000001010000000Mithelia Status (19.10000)Mithelia Status (19.1000000)101000000010100000000000000Mithelia Status (19.100000)Mithelia Status (19.100000000000000000000000000000000000	Model Name	Combination U	nit)		RXYQ26PTL(E)	RXYQ28PTL(E)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model Name	Independent U	nit)	TL(E)	RXYQ8PTL(E)+RXYQ18PTL(E)	RXYQ10PTL(E)+RXYQ18PTL(E)
kW 71.8 77.5 *2 Cooling Capacity (19.0°CWB) kW 71.4 77.0 *3 Heating Capacity Keal / h 70.100 75.700 *3 Heating Capacity But / h 278.000 300.000 KW 81.5 88.0 Casing Color Without[E V7.5/1] Ivory White (SY7.5/1) Ivory White (SY7.5/1) Dimensions: (H-XWxD) m (1680x930x765)+(1680x1240x765) (1680x930x765)+(1680x1240x765) Heat Exchanger Cross Fin Coll Cross Fin Coll Cross Fin Coll Type Hermetically Sealed Scroll Type Hermetically Sealed Scroll Type Piston rpiston r.p.m YL(E) (16.90)+(12.84+12.52) (13.34+12.52)+(12.84+12.5				kcal / h	61,700	
	★1 Cooling Ca	apacity (19.5°CW	/B)	Btu / h	250,000	264,000
kai Heating Capacity keal / h 70,100 75,700 *3 Heating Capacity Btu / h 278,000 300,000 kW 81.5 88.0 Casing Color With(E) Light Camel (2.5Y6.5/1.5) Light Camel (2.5Y6.5/1.5) Dimensions: (HxWxD) mm (1680x930x765)+(1680x1240x765) (1680x930x765)+(1680x1240x765) Heat Exchanger Cross Fin Coll Cross Fin Coll Cross Fin Coll Type Hermetically Sealed Scroll Type Hermetically Sealed Scroll Type Hermetically Sealed Scroll Type Number of Units r.p.m YL(E) (1690y+(12.84+12.52+12.52) (13.34+12.52)+(12.84+12.52+12.52) Number of Units r.p.m YL(E) (1990y+(6060, 3450, 3450) (6300, 3450)+(6060, 3450, 3450) Motor Output>Number of Units r.p.m YL(E) (7980)+(6060, 3450, 3450) (61300, 3450)+(6060, 3450, 3450) Motor Output>Number of Units r.p.m YL(E) (7980)+(6060, 3450, 3450) (61300, 3450)+(6060, 3450, 3450) Satring Method r.p.m YL(E) (7980)+(6060, 3450, 3450) (61300, 3450)+(6600, 3450, 3450) Gas Nipe moi	•		,	kW	71.8	77.5
$ + 3 \text{ Heating Capacity } \\ \hline \begin{tabular}{ c c c c c c } \hline Btu / h & 278,000 & 300,000 \\ \hline WW & 81.5 & 88.0 \\ \hline Wthout[2] & Ivory White (5Y7.5/1) & Ivory White (5Y7.5/1) \\ \hline Wthout[2] & Ivory White (5Y7.5/1) & Ivory White (5Y7.5/1) \\ \hline Dimensions: (H×WxD) & mm & (1680×930×765)+(1680×1240×765) & (1680×930×765)+(1680×1240×765) \\ \hline Heat Exchanger & Cross Fin Coll & Cross Fin Coll \\ \hline Type & Hermetically Sealed Scroll Type & Hermetically Sealed Scroll Type \\ \hline Piston \\ Displacement & m3h & YL(E) & (16.90)+(12.84+12.52+12.52) & (13.34+12.52)+(12.84+12.52+12.52) \\ \hline TL(E) & (16.90)+(12.84+12.52+12.52) & (13.34+12.52)+(12.84+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44+12.52+12.52) & (13.44$	★2 Cooling C	apacity (19.0°C	WB)	kW	71.4	77.0
$ \begin{array}{ c c c c c } \hline k W & 81.5 & 88.0 \\ \hline k W & 81.5 & k 0 \\ \hline k W & 0 & 0 \\ \hline k W & 0$,	kcal / h	70,100	75,700
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	★3 Heating C	apacity		Btu / h	278,000	300,000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0			kW	81.5	88.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Heat ExchangerCross Fin CollCross Fin CollHernetically Sealed Scroll TypeHermetically Sealed Scroll TypeHermetically Sealed Scroll TypePiston Displacement m^3/h YL(E)((16.90)+(12.84+12.52+12.52)((13.34+12.52)+(12.84	Casing Color			. ,		
TypeHermetically Sealed Scroll TypeHermetically Sealed Scroll TypePiston Displacement m^3/h $\frac{YL(E)}{TL(E)}$ $(16.90)+(12.84+12.52+12.52)$ $(13.34+12.52)+(12.84+12.52+12.52)$ Number of Revolutionsr.p.m $\frac{YL(E)}{TL(E)}$ $(7980)+(6060, 3450)$ $(6300, 3450)+(6060, 3450, 3450)$ Motor Output/Number of Unitsr.p.m $\frac{YL(E)}{TL(E)}$ $(7980)+(6060, 3450, 3450)$ $(6300, 3450)+(6060, 3450, 3450)$ Motor Output/Number of UnitskW $(4.5x1)+((4.3+4.5+4.5)x1)$ $((1.4+4.5)x1)+((4.3+4.5+4.5)x1)$ Starting MethodkW $(0.75x1)+(0.75x2)$ $(0.75x1)+(0.75x2)$ Fan $\frac{Motor Output}{Air Flow Rate}$ m³/min180+239185+239DriveDirect DriveDirect DriveDirect DriveConnecting PipesInm ϕ 19.1 (Brazing Connection) ϕ 19.1 (Brazing Connection)Product Mass (Machine Weight)kg205+341249+341Safety DevicesHigh Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload ProtectorHigh Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload ProtectorDefored Method%6-1005-100Refrigerant NameRefrigerant NameRefrigerant NameRefrigerant NameRefrigerantKg7.2+11.77.9+11.7ControlSilent Chargekg7.2+11.7ControlElectronic Expansion ValveElectronic Expansion Valve	Dimensions: (H×W×D)		mm	(1680×930×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)
Type Hermetically Sealed Scroll Type Hermetically Sealed Scroll Type Comp. Piston Displacement m³/h YL(E) (16.90)+(12.84+12.52+12.52) (13.34+12.52)+(12.84+12.52+12.52) Number of Revolutions r.p.m YL(E) (16.90)+(12.84+12.52+12.52) (13.34+12.52)+(12.84+12.52)+(12.84+12.52) Number of Revolutions r.p.m YL(E) (7980)+(6060, 3450, 3450) (6300, 3450)+(6060, 3450, 3450) Motor Output/Number of Units kW (4.5x1)+((4.3+4.5+4.5)x1) ((1.4+4.5)x1)+((4.3+4.5+4.5)x1) Starting Method kW (0.75x1)+(0.75x2) (0.75x1)+(0.75x2) Air Flow Rate m³/min 180+239 185+239 Drive Direct Drive Direct Drive Direct Drive Connecting Pipes Ingle Pipe mm 0434.9 (Brazing Connection) 0434.9 (Brazing Connection) Product Mass (Machine Weight) kg 205+341 249+341 249+341 Safety Devices High Pressue Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector High Pressue Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector Current Relay, Inverter Overload Protector	Heat Exchang	er			Cross Fin Coil	Cross Fin Coil
$ \begin{array}{ c c c c c c c } \hline Piston \\ $					Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				YL(E)	(16.90)+(12.84+12.52+12.52)	(13.34+12.52)+(12.84+12.52+12.52)
$ \begin{array}{ c c c c } \label{eq:comp.} \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			m³/h	. ,		
$ \begin{array}{ c c c c c c c c c c } \hline \mbox{r}, p,m & \hline $	0	Number of		. ,	(7980)+(6060, 3450, 3450)	(6300, 3450)+(6060, 3450, 3450)
$ \frac{\text{free}}{\text{free}} \frac{\text{free}} \ \frac{\text{free}} \text{free}} \frac{\text{free}} \ \frac{\text{free}} \ $	Comp.		r.p.m	. ,		
Fan Type Propeller Fan Propeller Fan Motor Output kW (0.75x1)+(0.75x2) (0.75x1)+(0.75x2) Air Flow Rate m³/min 180+239 185+239 Drive Direct Drive Direct Drive Direct Drive Connecting Pipes Liquid Pipe mm 0/19.1 (Brazing Connection) 0/19.1 (Brazing Connection) Product Mass Machine Weight) kg 205+341 249+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector Deicer Capacity Cort % 66-100 5~100 Refrigerant Name kg 7.2+11.7 7.9+11.7 Refrigerant Name kg Fleetronic Expansion Valve Electronic Expansion Valve			Number	kW	(4.5×1)+((4.3+4.5+4.5)×1)	((1.4+4.5)×1)+((4.3+4.5+4.5)×1)
FanMotor OutputkW $(0.75 \times 1) + (0.75 \times 2)$ $(0.75 \times 1) + (0.75 \times 2)$ FanMitor OutputkW $(0.75 \times 1) + (0.75 \times 2)$ $(0.75 \times 1) + (0.75 \times 2)$ Air Flow Ratem³/min180 + 239185 + 239DriveDirect DriveDirect DriveDirect DriveConnecting PipesLiquid Pipemm ϕ 19.1 (Brazing Connection) ϕ 19.1 (Brazing Connection)Product MassMachine Weight)kg205 + 341249 + 341Safety DevicesKg205 + 341249 + 341Safety DevicesViernet Relay, Inverter Overload Protector, Over Current Relay, Inverter Overload ProtectorHigh Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector, Over 	Starting Method			Soft Start	Soft Start	
Fan Air Flow Rate m³/min 180+239 185+239 Drive Direct Drive Direct Drive Direct Drive Connecting Pipes Liquid Pipe mm 0419.1 (Brazing Connection) 0419.1 (Brazing Connection) Product Mass (Machine Weight) kg 205+341 249+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector, Overload Protector, Overload Protector High Pressure Switch, Fan Driver Overload Protector, Overload Protector, Overload Protector Defrost Method % 6~100 5~100 Refrigerant Name % R-410A R-410A Refrigerant Name kg 7.2+11.7 7.9+11.7 Control Electronic Expansion Valve Electronic Expansion Valve Electronic Expansion Valve					Propeller Fan	Propeller Fan
$\frac{\text{Air Flow Rate}}{\text{Drive}} & \frac{\text{m}^{3}\text{/min}}{\text{Drive}} & \frac{180+239}{\text{Drive}} & \frac{185+239}{\text{Drive}} \\ \hline \\ \frac{\text{Drive}}{\text{Drive}} & \frac{185+239}{\text{Drive}} & \frac{185+239}{\text{Drive}} & \frac{185+239}{\text{Drive}} \\ \hline \\ \frac{\text{Connecting}}{\text{Connecting}} & \frac{1}{\text{Drive}} & \frac{1}{\text{m}} & \frac{1}{\text{Orive}} & \frac{1}{\text{Drive}} & \frac{1}{\text{Drive}} & \frac{1}{\text{Drive}} & \frac{1}{\text{Drive}} & \frac{1}{\text{Orive}} & $	-	Motor Output		kW	(0.75×1)+(0.75×2)	(0.75×1)+(0.75×2)
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	⊦an	Air Flow Rate		m³/min	180+239	185+239
Opinion Gas Pipe mm \$\phi34.9\$ (Brazing Connection) \$\phi34.9\$ (Brazing Connection) Product Mass (Machine Weight) kg 205+341 249+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector Defrost Method % 6~100 Deicer Capacity Control % 6~100 5~100 Refrigerant Name Refrigerant Name Refrigerant Name Refrigerant Name Refrigerant Name kg 7.2+11.7 7.9+11.7 Control Electronic Expansion Valve Electronic Expansion Valve Electronic Expansion Valve		Drive			Direct Drive	Direct Drive
Pipes Gas Pipe mm 0434.9 (Brazing Connection) 0434.9 (Brazing Connection) Product Mass (Machine Weight) kg 205+341 249+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector, Overload Protector High Pressure Switch, Fan Driver Overload Protector, Overload Protector Defrost Method 1 Deicer Deicer Capacity Control % 6 6 0 5 100 Refrigerant Name Kg Re410A Re410A Re410A Re410A Refrigerant Name kg 7.2+11.7 7.9+11.7 7.9+11.7	Connecting	Liquid Pipe		mm	φ19.1 (Brazing Connection)	<pre></pre>
Safety Devices High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector Defrost Method Deicer Deicer Capacity Control % 6~100 Refrigerant Name % 6~100 Charge kg 7.2+11.7 Control Electronic Expansion Valve Electronic Expansion Valve		ig i i		mm	φ34.9 (Brazing Connection)	φ34.9 (Brazing Connection)
Safety Devices Current Relay, Inverter Overload Protector Current Relay, Inverter Overload Protector Defrost Method Deicer Deicer Capacity Control % 6~100 5~100 Refrigerant Name Kg 7.2+11.7 7.9+11.7 Control Kg Electronic Expansion Valve Electronic Expansion Valve	Product Mass	(Machine Weigh	t)	kg	205+341	249+341
Capacity Control % 6~100 5~100 Refrigerant Name % R-410A R-410A Charge kg 7.2+11.7 7.9+11.7 Control Electronic Expansion Valve Electronic Expansion Valve						High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Refrigerant Name R-410A R-410A Charge kg 7.2+11.7 7.9+11.7 Control Electronic Expansion Valve Electronic Expansion Valve	Defrost Metho	d			Deicer	Deicer
Refrigerant Charge kg 7.2+11.7 7.9+11.7 Control Electronic Expansion Valve Electronic Expansion Valve	Capacity Cont	pacity Control %			6~100	5~100
Control Electronic Expansion Valve Electronic Expansion Valve				•	R-410A	R-410A
	Refrigerant	Charge		kg	7.2+11.7	7.9+11.7
Refrigerator Oil Refer to the nameplate of compressor Refer to the nameplate of compressor	· ·			•	Electronic Expansion Valve	Electronic Expansion Valve
	Refrigerator C	il			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Accessories Installation Manual, Operation Manual, Connection Pipes, Clamps Installation Manual,	Standard Acce	essories				Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.	Drawing No.					

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
 ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name	(Combination U	nit)		RXYQ30PAYL(E)	RXYQ32PAYL(E)
Model Name	(Independent U	nit)	YL(E)	RXYQ12PAYL(E)+RXYQ18PAYL(E)	RXYQ16PAYL(E)+RXYQ16PAYL(E)
Model Name	(Combination U	nit)		RXYQ30PTL(E)	RXYQ32PTL(E)
Model Name	(Independent U	nit)	TL(E)	RXYQ12PTL(E)+RXYQ18PTL(E)	RXYQ16PTL(E)+RXYQ16PTL(E)
			kcal / h	71,400	77,800
★1 Cooling Ca	apacity (19.5°CW	/B)	Btu / h	283,000	309,000
kW				83.0	90.5
★2 Cooling C	Capacity (19.0°C	WB)	kW	82.5	90.0
-			kcal / h	80,800	86,000
★3 Heating C	Capacity		Btu / h	321,000	341,000
0			kW	94.0	100
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H×W×D)		mm	(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)
Heat Exchang	ier			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston		YL(E)	(13.34+12.52)+(12.84+12.52+12.52)	(12.84+12.52+12.52)+(12.84+12.52+12.52)
	Displacement	m³/h	TL(E)	(13.34+12.52)+(12.84+12.52+12.52)	(12.84+12.52+12.52)+(12.84+12.52+12.52)
0	Number of Revolutions		YL(E)	(6300, 3450)+(6060, 3450, 3450)	(6060, 3450, 3450)+(6060, 3450, 3450)
Comp.		r.p.m	TL(E)	(6300, 3450)+(6060, 3450, 3450)	(6060, 3450, 3450)+(6060, 3450, 3450)
	Motor Output×Number of Units		kW	((2.5+4.5)×1)+((4.3+4.5+4.5)×1)	((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)
	Starting Method			Soft Start	Soft Start
	Туре			Propeller Fan	Propeller Fan
_	Motor Output		kW	(0.35×2)+(0.75×2)	(0.35×2)+(0.35×2)
Fan	Air Flow Rate		m³/min	233+239	233+233
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe		mm	<pre></pre>	<pre></pre>
Pipes	Gas Pipe mm		mm	¢34.9 (Brazing Connection)	<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
			kg	285+341	329+329
Safety Devices				High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	d			Deicer	Deicer
Capacity Cont	apacity Control %			5~100	5~100
Refrigerant Name			R-410A	R-410A	
Refrigerant	Charge		kg	9.5+11.7	11.5+11.5
Control			Electronic Expansion Valve	Electronic Expansion Valve	
Refrigerator C				Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce				Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.					

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

Model Name	Combination U	nit)		RXYQ34PAYL(E)	RXYQ36PAYL(E)			
Model Name	Independent U	nit)	YL(E)	RXYQ16PAYL(E)+RXYQ18PAYL(E)	RXYQ18PAYL(E)+RXYQ18PAYL(E)			
Model Name	Combination U	nit)		RXYQ34PTL(E)	RXYQ36PTL(E)			
Model Name	Independent U	nit)	TL(E)	RXYQ16PTL(E)+RXYQ18PTL(E)	RXYQ18PTL(E)+RXYQ18PTL(E)			
			kcal / h	81,400	85,100			
★1 Cooling Ca	apacity (19.5°CW	/B)	Btu / h	323,000	338,000			
•			kW	94.6	99.0			
★2 Cooling C	apacity (19.0°C	WB)	kW	94.0	98.0			
		,	kcal / h	92,000	97,200			
★3 Heating C	apacity		Btu / h	365,000	386,000			
0			kW	107	113			
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)			
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)			
Dimensions: (I	H×W×D)		mm	(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)			
Heat Exchang	er			Cross Fin Coil	Cross Fin Coil			
5	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type			
	Piston		YL(E)	(12.84+12.52+12.52)+(12.84+12.52+12.52)	(12.84+12.52+12.52)+(12.84+12.52+12.52)			
	Displacement	m³/h	TL(E)	(12.84+12.52+12.52)+(12.84+12.52+12.52)	(12.84+12.52+12.52)+(12.84+12.52+12.52)			
0	Number of Revolutions		YL(E)	(6060, 3450, 3450)+(6060, 3450, 3450)	(6060, 3450, 3450)+(6060, 3450, 3450)			
Comp.		r.p.m	TL(E)	(6060, 3450, 3450)+(6060, 3450, 3450)	(6060, 3450, 3450)+(6060, 3450, 3450)			
	Motor Output×Number of Units		kW	((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)			
	Starting Methor	d		Soft Start	Soft Start			
	Туре			Propeller Fan	Propeller Fan			
-	Motor Output		kW	(0.35×2)+(0.75×2)	(0.75×2)+(0.75×2)			
Fan	Air Flow Rate		m³/min	233+239	239+239			
	Drive			Direct Drive	Direct Drive			
Connecting	Liquid Pipe m		mm	φ19.1 (Brazing Connection)				
Pipes	officeting to t		mm	φ34.9 (Brazing Connection)	φ41.3 (Brazing Connection)			
Product Mass (Machine Weight) kg				329+341	341+341			
Safety Devices				High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector			
Defrost Metho	d			Deicer	Deicer			
Capacity Cont	apacity Control %			rol %		%	5~100	4~100
	Refrigerant Name		-	R-410A	R-410A			
Refrigerant	Charge		kg	11.5+11.7	11.7+11.7			
Control			•	Electronic Expansion Valve	Electronic Expansion Valve			
Refrigerator Oil				Refer to the nameplate of compressor	Refer to the nameplate of compressor			
Standard Acce	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps			
Drawing No.								

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
 ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name	(Combination U	nit)		RXYQ38PAYL(E)	RXYQ40PAYL(E)
Model Name	(Independent U	nit)	YL(E)	RXYQ8PAYL(E)+RXYQ12PAYL(E)+RXYQ18PAYL(E)	RXYQ8PAYL(E)+RXYQ16PAYL(E)+RXYQ16PAYL(E)
Model Name	(Combination U	nit)		RXYQ38PTL(E)	RXYQ40PTL(E)
Model Name	(Independent U	nit)	TL(E)	RXYQ8PTL(E)+RXYQ12PTL(E)+RXYQ18PTL(E)	RXYQ8PTL(E)+RXYQ16PTL(E)+RXYQ16PTL(E)
			kcal / h	91,200	97,200
★1 Cooling C	apacity (19.5°CW	/B)	Btu / h	362,000	386,000
kW				106	113
★2 Cooling (Capacity (19.0°C	CWB)	kW	105	112
			kcal / h	102,000	108,000
★3 Heating (Capacity		Btu / h	406,000	427,000
0			kW	119	125
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H×W×D)		mm	(1680×930×765)+(1680×1240×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchang	jer			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston		YL(E)	(16.90)+(13.34+12.52)+(12.84+12.52+12.52)	(16.90)+(12.84+12.52+12.52)+(12.84+12.52+12.52)
	Displacement	m³/h	TL(E)	(16.90)+(13.34+12.52)+(12.84+12.52+12.52)	(16.90)+(12.84+12.52+12.52)+(12.84+12.52+12.52)
0	Number of		YL(E)	(7980)+(6300, 3450)+(6060, 3450, 3450)	(7980)+(6060, 3450, 3450)+(6060, 3450, 3450)
Comp.	Revolutions	r.p.m	TL(E)	(7980)+(6300, 3450)+(6060, 3450, 3450)	(7980)+(6060, 3450, 3450)+(6060, 3450, 3450)
	Motor Output×Number of Units		kW	(4.5×1)+((2.5+4.5)×1)+((4.3+4.5+4.5)×1)	(4.5×1)+((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)
	Starting Methor	d		Soft Start	Soft Start
	Туре			Propeller Fan	Propeller Fan
_	Motor Output		kW	(0.75×1)+(0.35×2)+(0.75×2)	(0.75×1)+(0.35×2)+(0.35×2)
Fan	Air Flow Rate		m³/min	180+233+239	180+233+233
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe m		mm	φ19.1 (Brazing Connection)	
Pipes Gas Pipe mm			mm	<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	φ41.3 (Brazing Connection)
Product Mass	(Machine Weigh	t)	kg	205+285+341	205+329+329
Safety Device	S			High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	bd			Deicer	Deicer
Capacity Control %			%	4~100	4~100
Refrigerant Name		•	R-410A	R-410A	
Refrigerant	Charge		kg	7.2+9.5+11.7	7.2+11.5+11.5
Control				Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator C	Dil			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acc	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.					

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
A ledeastarray : 20°CDB / autdoor temp. : 27°CDB / Caution length : 7.5m | autdoor temp. : 35°CDB / Equivalent piping length : 7.5m | autdoor temp. : 35°CDB / Equivalent piping length : 7.5m | autdoor temp. : 35°CDB / Equivalent piping length : 7.5m | autdoor temp. : 35°CDB / Equivalent piping length : 7.5m | autdoor temp. : 35°CDB / Equivalent piping length : 7.5m | autoback autoback

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Model Name (Independent Ur	. !*)	YL(E)		RXYQ44PAYL(E)
		110)	(_)	RXYQ8PAYL(E)+RXYQ16PAYL(E)+RXYQ18PAYL(E)	RXYQ8PAYL(E)+RXYQ18PAYL(E)+RXYQ18PAYL(E)
Madel News (Combination U	nit)		RXYQ42PTL(E)	RXYQ44PTL(E)
wodel name (Independent Ur	nit)	TL(E)	RXYQ8PTL(E)+RXYQ16PTL(E)+RXYQ18PTL(E)	RXYQ8PTL(E)+RXYQ18PTL(E)+RXYQ18PTL(E)
			kcal / h	101,000	104,000
			Btu / h	399,000	413,000
			kW	117	121
★2 Cooling C	apacity (19.0°C	WB)	kW	116	120
			kcal / h	114,000	119,000
★3 Heating C	apacity		Btu / h	450,000	471,000
-			kW	132	138
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	H×W×D)		mm	(1680×930×765)+(1680×1240×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchange	er			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston		YL(E)	(16.90)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	(16.90)+(12.84+12.52+12.52)+(12.84+12.52+12.52)
	Displacement	m³/h	TL(E)	(16.90)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	(16.90)+(12.84+12.52+12.52)+(12.84+12.52+12.52)
Comp.	Number of		YL(E)	(7980)+(6060, 3450, 3450)+(6060, 3450, 3450)	(7980)+(6060, 3450, 3450)+(6060, 3450, 3450)
Comp.	Revolutions	r.p.m	TL(E)	(7980)+(6060, 3450, 3450)+(6060, 3450, 3450)	(7980)+(6060, 3450, 3450)+(6060, 3450, 3450)
	Motor Output×N of Units	r Output×Number nits		(4.5×1)+((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	(4.5×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method	t		Soft Start	Soft Start
	Туре			Propeller Fan	Propeller Fan
-	Motor Output		kW	(0.75×1)+(0.35×2)+(0.75×2)	(0.75×1)+(0.75×2)+(0.75×2)
Fan	Air Flow Rate		m³/min	180+233+239	180+239+239
	Drive			Direct Drive	Direct Drive
Connectina	Liquid Pipe n		mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)
Pipes			mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)
Product Mass (Machine Weight) kg			kg	205+329+341	205+341+341
Safety Devices				High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Method	d			Deicer	Deicer
Capacity Contr	acity Control %			4~100	4~100
	Refrigerant Name			R-410A	R-410A
Refrigerant	Charge		kg	7.2+11.5+11.7	7.2+11.7+11.7
Control				Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil				Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	ssories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.					

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
 ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

Indoor te 0m.

Model Name (Combination U	nit)	NI (E)	RXYQ46PAYL(E)	RXYQ48PAYL(E)
Model Name (Independent Ur	nit)	YL(E)	RXYQ10PAYL(E)+RXYQ18PAYL(E)+RXYQ18PAYL(E)	RXYQ12PAYL(E)+RXYQ18PAYL(E)+RXYQ18PAYL(E)
Model Name (Combination U	nit)		RXYQ46PTL(E)	RXYQ48PTL(E)
Model Name (Independent Ur	nit)	TL(E)	RXYQ10PTL(E)+RXYQ18PTL(E)+RXYQ18PTL(E)	RXYQ12PTL(E)+RXYQ18PTL(E)+RXYQ18PTL(E)
	-		kcal / h	109,000	114,000
★1 Cooling Ca	pacity (19.5°CW	/B)	Btu / h	433,000	454,000
			kW	127	133
★2 Cooling C	apacity (19.0°C	WB)	kW	126	132
			kcal / h	125,000	130,000
★3 Heating C	apacity		Btu / h	495,000	515,000
			kW	145	151
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (I	H×W×D)		mm	(1680×930×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchang	ər			Cross Fin Coil	Cross Fin Coil
-	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston		YL(E)	(13.34+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	(13.34+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)
	Displacement	m³/h	TL(E)	(13.34+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	(13.34+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)
Comp.	Number of Revolutions		YL(E)	(6300, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	(6300, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)
comp.		r.p.m	TL(E)	(6300, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	(6300, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)
	Motor Output×Number of Units		kW	((1.4+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	((2.5+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)
	Starting Method	b		Soft Start	Soft Start
	Туре			Propeller Fan	Propeller Fan
F	Motor Output		kW	(0.75×1)+(0.75×2)+(0.75×2)	(0.35×2)+(0.75×2)+(0.75×2)
Fan	Air Flow Rate		m³/min	185+239+239	233+239+239
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe m		mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)
Pipes Gas Pipe mm			mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)
Product Mass (Machine Weight) kg				249+341+341	285+341+341
Safety Devices				High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	b			Deicer	Deicer
Capacity Control %			%	3~100	3~100
Refrigerant Name			R-410A	R-410A	
Refrigerant	Charge		kg	7.9+11.7+11.7	9.5+11.7+11.7
Control				Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator O	1			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	ssories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.					

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
 ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name (Independent Unit) TL(E) RXY014PAYL(E)+RXY018PAYL(E) RXY016PAYL(E)+RXY018PAYL(E) RXY014PAYL(E)+RXY018PAYL(E) Model Name (Independent Unit) TL(E) RXY014PAYL(E)+RXY018PTL(E) RXY016PTL(E)+RXY018PTL(E) RXY016PTL(E)+RXY018PTL(E) *1 Cooling Capacity (19.0°CWB) kcal / h 120.000 124.000 *2 Cooling Capacity (19.0°CWB) kW 139 144 *2 Cooling Capacity (19.0°CWB) kW 138 143 *3 Heating Capacity kcal / h 139,000 140,000 Bu / h 539,000 556,000 KW 158 163 Casing Color Wthot(E) Light Camel (2.5%6.5/1.5) Light Camel (2.5%6.5/1.5) Dimensions: (H-Wx)D) mm (1680x1240x765)+(1680x1240x765	Model Name (C	ombination U	nit)	NI (=)	RXYQ50PAYL(E)	RXYQ52PAYL(E)
$ \begin{array}{ $					RXYQ14PAYL(E)+RXYQ18PAYL(E)+RXYQ18PAYL(E)	RXYQ16PAYL(E)+RXYQ18PAYL(E)+RXYQ18PAYL(E)
$ \begin{array}{ $	Model Name (C	ombination U	nit)		RXYQ50PTL(E)	RXYQ52PTL(E)
$ + 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Model Name (Ir	ndependent Ur	nit)	TL(E)	RXYQ14PTL(E)+RXYQ18PTL(E)+RXYQ18PTL(E)	RXYQ16PTL(E)+RXYQ18PTL(E)+RXYQ18PTL(E)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-		kcal / h	120,000	124,000
$ \ \ \ \ \ \ \ \ \ \ \ \ \$	★1 Cooling Cap	acity (19.5°CW	′B)	Btu / h	474,000	491,000
kal /k kcal / h 136,000 140,000 **3 Heating Capacity Btu / h 539,000 556,000 Casing Color Witbud(E) Ivory White (SY7.5/1) Ivory White (SY7.5/1) Casing Color Witbud(E) Ivory White (SY7.5/1) Ivory White (SY7.5/1) Dimensions: (H×WxD) m (1680x1240x765)+(1680x1240x765) (1680x1240x765)+(16				kW	139	144
*3 Heating Capacity $ Bu / h $ 539,000 556,000 kW 158 163 Casing Color $ Whod(E) $ Nory White (5Y7.5/1) Nory White (5Y7.5/1) Dimensions: (HxWxD) m (1680x1240x765)+(1284+12.52+12.52)+(12.84+1	★2 Cooling Ca	pacity (19.0°C	WB)	kW	138	143
$ \begin{array}{ c c c c c c } \hline kW & 158 & 163 \\ \hline kW & 158 & 163 \\ \hline kW & 158 & 163 \\ \hline kW & 100 White (5Y7.5/1) & 100 White (5Y7.5/2) & 100 White (5Y7.5/2) & 100 White (5Y7.5/2) & 100 White (5Y7.5/2) & 100 $				kcal / h	136,000	140,000
$ \begin{array}{ c c c c c } \hline \mbox{White}(b) & Whit$	★3 Heating Ca	pacity		Btu / h	539,000	556,000
Casing Color With (E) Light Camel (2.5Y6.5/1.5) Light Camel (2.5Y6.5/1.5) Dimensions: (H×W×D) mm (1680×1240×765)+(1680×1240×765) (1680×1240×765)+(1284+12.52+12.52)+(12.84+12.52+12.52)+(kW	158	163
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Heat Exchanger Cross Fin Coil Cross Fin Coil Yue Hermetically Sealed Scroll Type Hermetically Sealed Scroll Type Piston Displacement m ³ /h YL(E) (12.84+12.52+12.52)+(12.84	Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dimensions: (H>	«W×D)		mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)
$ \begin{array}{ c c c c c c } \hline Pison \\ \hline Piso$	Heat Exchanger				Cross Fin Coil	Cross Fin Coil
Comp. Displacement m³/h TL(E) (12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52) (12.84+12.52+12.52)+(12.84+1		Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Piston		YL(E)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)
Comp. Revolutions r.p.m TL(E) (6060, 3450, 3450)+(6060, 3450, 3450) (6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450) Motor Output×Number of Units kW ((1.6+4.5+4.5)×1)+((4.3+4.5+4.5)×1) ((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1) Starting Method Soft Start Soft Start Starting Method kW (0.35×2)+(0.75×2) (0.35×2)+(0.75×2)+(0.75×2) Air Flow Rate m³/min 233+239+239 233+239+239 Drive Direct Drive Direct Drive Direct Drive Connecting Pipes Liquid Pipe mm 0419.1 (Brazing Connection) 041.3 (Brazing Connection) Product Mass (Machine Weight) kg 329+341+341 329+341+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector High Pressure Switch, Fan Driver Overload Protector			m³/h	TL(E)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)
Revolutions r.p.m TL(E) (6060, 3450, 3450)+(6060, 3450, 3450) (6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450) Motor OutputxNumber of Units kW ((1.6+4.5+4.5)×1)+((4.3+4.5+4.5)×1) ((2.7+4.5+4.5)×1)+((4.3+4	Comp			YL(E)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			r.p.m	TL(E)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)
Type Propeller Fan Propeller Fan Motor Output kW (0.35x2)+(0.75x2)+(0.75x2) (0.35x2)+(0.75x2)+(0.75x2)+(0.75x2) Air Flow Rate m³/min 233+239+239 233+239+239 Drive Direct Drive Direct Drive Direct Drive Connecting Pipes Liquid Pipe mm 019.1 (Brazing Connection) 019.1 (Brazing Connection) Product Mass (Machine Weight) kg 329+341+341 329+341+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector High Pressure Switch, Fan Driver Overload Protector Current Relay, Inverter Overload Protector				kW	((1.6+4.5+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)
Fan Motor Output kW (0.35x2)+(0.75x2)+(0.75x2) (0.35x2)+(0.75x2)+(0.75x2) Air Flow Rate m³/min 233+239+239 233+239+239 Drive Direct Drive Direct Drive Connecting Pipes Liquid Pipe mm 019.1 (Brazing Connection) 019.1 (Brazing Connection) Product Mass (Machine Weight) kg 329+341+341 329+341+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector High Pressure Switch, Fan Driver Overload Protector	;	Starting Method	t		Soft Start	Soft Start
Fan Air Flow Rate m³/min 233+239+239 Drive Direct Drive Direct Drive Connecting Pipes Liquid Pipe mm 019.1 (Brazing Connection) Product Mass (Machine Weight) kg 329+341+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector High Pressure Switch, Fan Driver Overload Protector	-	•			Propeller Fan	Propeller Fan
Air Flow Rate m³/min 233+239+239 233+239+239 Drive Drive Direct Drive Direct Drive Connecting Pipes Liquid Pipe mm 019.1 (Brazing Connection) 019.1 (Brazing Connection) Product Mass Marchine Weight) kg 329+341+341 329+341+341 Safety Devices Safety Devices Kigh Pressure Switch, Fan Driver Overload Protector Kigh Pressure Switch, Fan Driver Overload Protector		Motor Output		kW	(0.35×2)+(0.75×2)+(0.75×2)	(0.35×2)+(0.75×2)+(0.75×2)
Connecting Pipes Liquid Pipe mm \$\phi19.1\$ (Brazing Connection) \$\phi19.1\$ (Brazing Connection) Product Mass Machine Weight) kg \$\phi29.341+341\$ \$\phi41.3\$ (Brazing Connection) Product Mass Machine Weight) kg \$\pri29.329+341+341\$ \$\pri29.329+341+341\$ Safety Devices Safety Devices Kigh Pressure Switch, Fan Driver Overload Protector Wigh Pressure Switch, Fan Driver Overload Protector Verify The Relay, Inverter Overload Protector	Fan	Air Flow Rate		m³/min	233+239+239	233+239+239
Opiniesting Pipes Image: Connection of the c	1	Drive			Direct Drive	Direct Drive
Product Mass (Machine Weight) kg 329+341+341 329+341+341 Safety Devices High Pressure Switch, Fan Driver Overload Protector High Pressure Switch, Fan Driver Overload Protector	Connecting I	Liquid Pipe mr		mm	<pre> \$\$\phi19.1 (Brazing Connection) </pre>	φ19.1 (Brazing Connection)
Safety Devices High Pressure Switch, Fan Driver Overload Protector, Over High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector High Pressure Switch, Fan Driver Overload Protector	Pipes (mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)
Salety Devices Current Relay, Inverter Overload Protector Current Relay, Inverter Overload Protector	Product Mass (N	Achine Weight	t)	kg	329+341+341	329+341+341
Defend Mathed Defen	Safety Devices					High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Derrost method Dercer Dercer Dercer	Defrost Method				Deicer	Deicer
Capacity Control % 3~100 3~100	Capacity Contro	pacity Control %			3~100	3~100
Refrigerant Name R-410A R-410A	1	Refrigerant Name			R-410A	R-410A
Refrigerant Charge kg 11.3+11.7+11.7 11.5+11.7+11.7	Refrigerant	Charge		kg	11.3+11.7+11.7	11.5+11.7+11.7
Control Electronic Expansion Valve Electronic Expansion Valve					Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil Refer to the nameplate of compressor Refer to the nameplate of compressor	Refrigerator Oil				Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Accessories Installation Manual, Operation Manual, Connection Pipes, Clamps Installation Manual, Operation Manual, Connection P	Standard Acces	sories				Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.	Drawing No.					

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Model Name (Combination Unit) YL(E)				RXYQ54PAYL(E)		
Model Name (Independent Unit)		YL(E)	RXYQ18PAYL(E)+RXYQ18PAYL(E)+RXYQ18PAYL(E)			
Model Name (Combination Unit)			RXYQ54PTL(E)			
Model Name	(Independent U	nit)	TL(E)	RXYQ18PTL(E)+RXYQ18PTL(E)+RXYQ18PTL(E)		
			kcal / h	127,000		
★1 Cooling C	apacity (19.5°CW	/B)	Btu / h	505,000		
			kW	148		
★2 Cooling C	Capacity (19.0°C	WB)	kW	147		
			kcal / h	146,000		
★3 Heating 0	Capacity		Btu / h	580,000		
			kW	170		
			Without(E)	Ivory White (5Y7.5/1)		
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)		
Dimensions: (H×W×D)		mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)		
Heat Exchang	jer			Cross Fin Coil		
	Туре			Hermetically Sealed Scroll Type		
	Piston	m³/h	YL(E)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)		
	Displacement	111-711	TL(E)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)		
Comp.	Number of		YL(E)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)		
oomp.	Revolutions	r.p.m	TL(E)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)		
Motor Output×N of Units		Number	kW	((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)+((4.3+4.5+4.5)×1)		
	Starting Metho	d		Soft Start		
	Туре			Propeller Fan		
Fan	Motor Output	Motor Output kW		(0.75×2)+(0.75×2)+(0.75×2)		
Fan	Air Flow Rate	Air Flow Rate		ir Flow Rate m³/min		239+239+239
Drive		ve		Direct Drive		
Connecting	Liquid Pipe		mm	<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>		
Pipes			mm	<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>		
Product Mass (Machine Weight) kg			kg	341+341+341		
Safety Devices				High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector		
Defrost Method				Deicer		
Capacity Control %		%	3~100			
Refrigerant Name			R-410A			
Refrigerant	Charge		kg	11.7+11.7+11.7		
Control		trol		Electronic Expansion Valve		
Refrigerator C	Dil			Refer to the nameplate of compressor		
Standard Acc	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps		
Drawing No.						

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

Heat Pump 60Hz High COP Series (Energy Saving Series) <RXYQ-P(A)H>

Model Name	Combination U	nit)		RXYQ16PAHYL(E)	RXYQ18PAHYL(E)
Model Name	Independent Ur	nit)	YL(E)	RXYQ8PAYL(E)+RXYQ8PAYL(E)	RXYQ8PAYL(E)+RXYQ10PAYL(E)
Model Name	Combination U	nit)	T L (C)	RXYQ16PHTL(E)	RXYQ18PHTL(E)
Model Name	Independent Ur	nit)	TL(E)	RXYQ8PTL(E)+RXYQ8PTL(E)	RXYQ8PTL(E)+RXYQ10PTL(E)
			kcal / h	38,800	43,600
★1 Cooling Ca	apacity (19.5°CW	/B)	Btu / h	154,000	173,000
			kW	45.1	50.7
★2 Cooling Ca	apacity (19.0°CW	/B)	kW	44.8	50.4
			kcal / h	43,000	48,600
★3 Heating Ca	apacity		Btu / h	171,000	193,000
			kW	50.0	56.5
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	H×W×D)		mm	(1680×930×765)+(1680×930×765)	(1680×930×765)+(1680×930×765)
Heat Exchange	er			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston		YL(E)	(16.90)+(16.90)	(16.90)+(13.34+12.52)
	Displacement	m³/h	TL(E)	(16.90)+(16.90)	(16.90)+(13.34+12.52)
Comp.	Number of Revolutions		YL(E)	(7980)+(7980)	(7980)+(6300, 3450)
Comp.		r.p.m	TL(E)	(7980)+(7980)	(7980)+(6300, 3450)
	Motor Output×Number of Units		kW	(4.5×1)+(4.5×1)	(4.5×1)+((1.4+4.5)×1)
Starting Method		b		Soft start	Soft start
	Туре			Propeller Fan	Propeller Fan
F	Motor Output		kW	(0.75×1)+(0.75×1)	(0.75×1)+(0.75×1)
Fan	Air Flow Rate		m³/min	180+180	180+185
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe mm		mm		φ15.9 (Brazing Connection)
Pipes			mm		φ28.6 (Brazing Connection)
Product Mass	(Machine weight)	kg	205+205	205+249
Safety Devices				High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	d			Deicer	Deicer
Capacity Control %			%	10~100	8~100
	Refrigerant Name			R-410A	R-410A
Refrigerant	Charge		kg	7.2+7.2	7.2+7.9
Control				Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator O	il			Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.					

Notes:

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kWx860 Btu/h=kWx3412 cfm=m³/minx35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m. 4 The units with anti-corrosion treatment will be available as standard. Please specify the suffix "E" as RXYQ16PAHYLE.

IQIOPANILE.

OPAYL(E)
)PTL(E)
DPTL(E)
(930×765)
. <u> </u>
otector, Ove
sor
sor ction Pipes,

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

0m.

Model Name	Combination U	nit)		RXYQ28PAHYL(E)	RXYQ30PAHYL(E)
Model Name	Independent Ur	nit)	YL(E)	RXYQ8PAYL(E)+RXYQ8PAYL(E)+RXYQ12PAYL(E)	RXYQ8PAYL(E)+RXYQ10PAYL(E)+RXYQ12PAYL(E)
Model Name	Combination U	nit)		RXYQ28PHTL(E)	RXYQ30PHTL(E)
Model Name	Independent Ur	nit)	TL(E)	RXYQ8PTL(E)+RXYQ8PTL(E)+RXYQ12PTL(E)	RXYQ8PTL(E)+RXYQ10PTL(E)+RXYQ12PTL(E)
			kcal / h	67,800	72,600
			Btu / h	269,000	288,000
-			kW	78.8	84.4
★2 Cooling Ca	apacity (19.0°CW	′B)	kW	78.3	83.9
			kcal / h	75,300	80,800
★3 Heating Ca	apacity		Btu / h	299,000	321,000
			kW	87.5	94.0
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	H×W×D)		mm	(1680×930×765)+(1680×930×765)+(1680×1240×765)	(1680×930×765)+(1680×930×765)+(1680×1240×765)
Heat Exchange	er			Cross Fin Coil	Cross Fin Coil
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
	Piston		YL(E)	(16.90)+(16.90)+(13.34+12.52)	(16.90)+(13.34+12.52)+(13.34+12.52)
	Displacement	m³/h	TL(E)	(16.90)+(16.90)+(13.34+12.52)	(16.90)+(13.34+12.52)+(13.34+12.52)
Comp.	Number of Revolutions		YL(E)	(7980)+(7980)+(6300, 3450)	(7980)+(6300, 3450)+(6300, 3450)
comp.		r.p.m	TL(E)	(7980)+(7980)+(6300, 3450)	(7980)+(6300, 3450)+(6300, 3450)
	Motor Output×Number of Units		kW	(4.5×1)+(4.5×1)+((2.5+4.5)×1)	(4.5×1)+((1.4+4.5)×1)+((2.5+4.5)×1)
Starting Method		t		Soft start	Soft start
Туре				Propeller Fan	Propeller Fan
F	Motor Output		kW	(0.75×1)+(0.75×1)+(0.35×2)	(0.75×1)+(0.75×1)+(0.35×2)
Fan	Air Flow Rate		m³/min	180+180+233	180+185+233
	Drive			Direct Drive	Direct Drive
Connecting	Liquid Pipe		mm	φ19.1 (Brazing Connection)	
Pipes			mm	φ34.9 (Brazing Connection)	φ34.9 (Brazing Connection)
Product Mass (Machine Weight) kg			kg	205+205+285	205+249+285
Safety Devices				High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	d			Deicer	Deicer
Capacity Cont	pacity Control %			6~100	5~100
	Refrigerant Name			R-410A	R-410A
Refrigerant	Charge		kg	7.2+7.2+9.5	7.2+7.9+9.5
Control			•	Electronic Expansion Valve	Electronic Expansion Valve
Refrigerator Oil				Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.					

 $\bigstar 1 \ \ \, Indoor \ temp.: 27^{\circ}CDB, \ 19.5^{\circ}CWB \ / \ outdoor \ temp.: 35^{\circ}CDB \ / \ Equivalent \ piping \ length: 7.5m, \ level$ difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- $\bigstar 2 \quad \text{Indoor temp.}: 27^\circ\text{CDB}, 19.0^\circ\text{CWB} \, / \, \text{outdoor temp.}: 35^\circ\text{CDB} \, / \, \text{Equivalent piping length}: 7.5 \text{m, level}$ difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

Model Name (Combination U	nit)		RXYQ32PAHYL(E)	RXYQ34PAHYL(E)
Model Name (Independent Ur	nit)	YL(E)	RXYQ8PAYL(E)+RXYQ12PAYL(E)+RXYQ12PAYL(E)	RXYQ10PAYL(E)+RXYQ12PAYL(E)+RXYQ12PAYL(E)
Model Name (Combination U	nit)		RXYQ32PHTL(E)	RXYQ34PHTL(E)
Model Name (Independent Ur	nit)	TL(E)	RXYQ8PTL(E)+RXYQ12PTL(E)+RXYQ12PTL(E)	RXYQ10PTL(E)+RXYQ12PTL(E)+RXYQ12PTL(E)
			kcal / h	77,300	82,200
★1 Cooling Ca	pacity (19.5°CW	′B)	Btu / h	307,000	326,000
Ū.			kW	89.9	95.6
★2 Cooling Ca	pacity (19.0°CW	′B)	kW	89.4	95.0
-			kcal / h	86,000	92,000
★3 Heating Ca	pacity		Btu / h	341,000	365,000
			kW	100	107
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)
Dimensions: (H	H×W×D)		mm	(1680×930×765)+(1680×1240×765)+(1680×1240×765)	(1680×930×765)+(1680×1240×765)+(1680×1240×765)
Heat Exchange	ər			Cross Fin Coil	Cross Fin Coil
Туре				Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type
Piston			YL(E)	(16.90)+(13.34+12.52)+(13.34+12.52)	(13.34+12.52)+(13.34+12.52)+(13.34+12.52)
	Displacement	m³/h	TL(E)	(16.90)+(13.34+12.52)+(13.34+12.52)	(13.34+12.52)+(13.34+12.52)+(13.34+12.52)
Comp.	Number of Revolutions		YL(E)	(7980)+(6300, 3450)+(6300, 3450)	(6300, 3450)+(6300, 3450)+(6300, 3450)
Comp.		r.p.m	TL(E)	(7980)+(6300, 3450)+(6300, 3450)	(6300, 3450)+(6300, 3450)+(6300, 3450)
	Motor Output×Number of Units		kW	(4.5×1)+((2.5+4.5)×1)+((2.5+4.5)×1)	((1.4+4.5)×1)+((2.5+4.5)×1)+((2.5+4.5)×1)
Starting Method			Soft start	Soft start	
	Туре			Propeller Fan	Propeller Fan
F	Motor Output	or Output		(0.75×1)+(0.35×2)+(0.35×2)	(0.75×1)+(0.35×2)+(0.35×2)
Fan	Air Flow Rate		m³/min	180+233+233	185+233+233
	Drive			Direct Drive	Direct Drive
Connectina	Liquid Pipe mr		mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)
Pipes Gas Pipe mm			mm	φ34.9 (Brazing Connection)	φ34.9 (Brazing Connection)
Product Mass	(Machine Weight	t)	kg	205+285+285	249+285+285
Safety Devices				High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector
Defrost Metho	b			Deicer	Deicer
Capacity Control %			%	5~100	5~100
	Refrigerant Name			R-410A	R-410A
Refrigerant	Charge		kg	7.2+9.5+9.5	7.9+9.5+9.5
Control		•	Electronic Expansion Valve	Electronic Expansion Valve	
Refrigerator Oil				Refer to the nameplate of compressor	Refer to the nameplate of compressor
Standard Acce	ssories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps
Drawing No.					

 $\bigstar 1 \ \ \, Indoor \ temp.: 27^{\circ}CDB, \ 19.5^{\circ}CWB \ / \ outdoor \ temp.: 35^{\circ}CDB \ / \ Equivalent \ piping \ length: 7.5m, \ level$ difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- $\bigstar 2 \quad \text{Indoor temp.}: 27^\circ\text{CDB}, 19.0^\circ\text{CWB} \, / \, \text{outdoor temp.}: 35^\circ\text{CDB} \, / \, \text{Equivalent piping length}: 7.5 \text{m, level}$ difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

Model Name (Combination Unit)		YL(E) RXYQ36PAHYL(E)		RXYQ38PAHYL(E)		
Model Name	Independent Ur	nit)	YL(E)	RXYQ12PAYL(E)+RXYQ12PAYL(E)+RXYQ12PAYL(E)	RXYQ12PAYL(E)+RXYQ12PAYL(E)+RXYQ14PAYL(E)	
Model Name	Combination U	nit)		RXYQ36PHTL(E)	RXYQ38PHTL(E)	
Model Name (Independent Unit)		TL(E)	RXYQ12PTL(E)+RXYQ12PTL(E)+RXYQ12PTL(E)	RXYQ12PTL(E)+RXYQ12PTL(E)+RXYQ14PTL(E)		
			kcal / h	87,700	92,900	
★1 Cooling Ca	pacity (19.5°CW	′B)	Btu / h	348,000	368,000	
-			kW	102	108	
		kW	101	107		
			kcal / h	97,200	103,000	
★3 Heating Ca	apacity		Btu / h	386,000	409,000	
			kW	113	120	
			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)	
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)	
Dimensions: (H	H×W×D)		mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	
Heat Exchange	er			Cross Fin Coil	Cross Fin Coil	
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type	
	Piston	m³/h	YL(E)	(13.34+12.52)+(13.34+12.52)+(13.34+12.52)	(13.34+12.52)+(13.34+12.52)+(12.84+12.52+12.52)	
	Displacement		TL(E)	(13.34+12.52)+(13.34+12.52)+(13.34+12.52)	(13.34+12.52)+(13.34+12.52)+(12.84+12.52+12.52)	
Comp.	Number of Revolutions		YL(E)	(6300, 3450)+(6300, 3450)+(6300, 3450)	(6300, 3450)+(6300, 3450)+(6060, 3450, 3450)	
Comp.		r.p.m	TL(E)	(6300, 3450)+(6300, 3450)+(6300, 3450)	(6300, 3450)+(6300, 3450)+(6060, 3450, 3450)	
	Motor Output×Number of Units		kW	((2.5+4.5)×1)+((2.5+4.5)×1)+((2.5+4.5)×1)	((2.5+4.5)×1)+((2.5+4.5)×1)+((1.6+4.5+4.5)×1)	
	Starting Method			Soft start	Soft start	
	Туре			Propeller Fan	Propeller Fan	
F	Motor Output		kW	(0.35×2)+(0.35×2)+(0.35×2)	(0.35×2)+(0.35×2)+(0.35×2)	
Fan	Air Flow Rate		m³/min	233+233+233	233+233+233	
	Drive			Direct Drive	Direct Drive	
Connecting	Liquid Pipe		mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)	
Pipes	Gas Pipe		mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)	
Product Mass	(Machine Weight	t)	kg	285+285+285	285+285+329	
Safety Devices	6		•	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	
Defrost Metho	d			Deicer	Deicer	
Capacity Cont	rol		%	5~100	4~100	
	Refrigerant Nar	ne		R-410A	R-410A	
Refrigerant	Charge		kg	9.5+9.5+9.5	9.5+9.5+11.3	
	Control		•	Electronic Expansion Valve	Electronic Expansion Valve	
Refrigerator O	il			Refer to the nameplate of compressor	Refer to the nameplate of compressor	
Standard Acce	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps	
Drawing No.						

 $\bigstar 1 \ \ \, Indoor \ temp.: 27^{\circ}CDB, \ 19.5^{\circ}CWB \ / \ outdoor \ temp.: 35^{\circ}CDB \ / \ Equivalent \ piping \ length: 7.5m, \ level$ difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- $\bigstar 2 \quad \text{Indoor temp.}: 27^\circ\text{CDB}, 19.0^\circ\text{CWB} \, / \, \text{outdoor temp.}: 35^\circ\text{CDB} \, / \, \text{Equivalent piping length}: 7.5 \text{m, level}$ difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

Model Name (Combination U	nit)		RXYQ40PAHYL(E)	RXYQ42PAHYL(E)	
Model Name (Independent Ur	nit)	YL(E)	RXYQ12PAYL(E)+RXYQ12PAYL(E)+RXYQ16PAYL(E)	RXYQ12PAYL(E)+RXYQ12PAYL(E)+RXYQ18PAYL(E)	
Model Name (Combination U	nit)		RXYQ40PHTL(E)	RXYQ42PHTL(E)	
Model Name (Independent Unit) TL(E)		IL(E)	RXYQ12PTL(E)+RXYQ12PTL(E)+RXYQ16PTL(E)	RXYQ12PTL(E)+RXYQ12PTL(E)+RXYQ18PTL(E)		
			kcal / h	97,200	101,000	
★1 Cooling Ca	pacity (19.5°CW	/B)	Btu / h	386,000	399,000	
			kW	113	117	
★2 Cooling Ca	pacity (19.0°CW	/B)	kW	112	116	
			kcal / h	108,000	114,000	
★3 Heating Ca	pacity		Btu / h	427,000	450,000	
			kW	125	132	
<u> </u>			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)	
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)	
Dimensions: (H	H×W×D)		mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	
Heat Exchange	ər			Cross Fin Coil	Cross Fin Coil	
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type	
	Piston Displacement	m³/h	YL(E)	(13.34+12.52)+(13.34+12.52)+(12.84+12.52+12.52)	(13.34+12.52)+(13.34+12.52)+(12.84+12.52+12.52)	
			TL(E)	(13.34+12.52)+(13.34+12.52)+(12.84+12.52+12.52)	(13.34+12.52)+(13.34+12.52)+(12.84+12.52+12.52)	
Comp.	Number of Revolutions		YL(E)	(6300, 3450)+(6300, 3450)+(6060, 3450, 3450)	(6300, 3450)+(6300, 3450)+(6060, 3450, 3450)	
comp.		r.p.m	TL(E)	(6300, 3450)+(6300, 3450)+(6060, 3450, 3450)	(6300, 3450)+(6300, 3450)+(6060, 3450, 3450)	
	Motor Output×Number of Units		kW	((2.5+4.5)×1)+((2.5+4.5)×1)+((2.7+4.5+4.5)×1)	((2.5+4.5)×1)+((2.5+4.5)×1)+((4.3+4.5+4.5)×1)	
	Starting Method			Soft start	Soft start	
	Туре			Propeller Fan	Propeller Fan	
Fan	Motor Output		kW	(0.35×2)+(0.35×2)+(0.35×2)	(0.35×2)+(0.35×2)+(0.75×2)	
Fan	Air Flow Rate		m³/min	233+233+233	233+233+239	
	Drive		•	Direct Drive	Direct Drive	
Connecting	Liquid Pipe		mm	φ19.1 (Brazing Connection)	φ19.1 (Brazing Connection)	
Pipes	Gas Pipe		mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)	
Product Mass	(Machine Weight	t)	kg	285+285+329	285+285+341	
Safety Devices	3		•	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	
Defrost Metho	b			Deicer	Deicer	
Capacity Cont	ol		%	4~100	4~100	
	Refrigerant Nar	me	•	R-410A	R-410A	
Refrigerant	Charge		kg	9.5+9.5+11.5	9.5+9.5+11.7	
	Control		•	Electronic Expansion Valve	Electronic Expansion Valve	
Refrigerator O	l			Refer to the nameplate of compressor	Refer to the nameplate of compressor	
Standard Acce	ssories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps	
Drawing No.						

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- $\bigstar 2 \quad \text{Indoor temp.}: 27^\circ\text{CDB}, 19.0^\circ\text{CWB} \, / \, \text{outdoor temp.}: 35^\circ\text{CDB} \, / \, \text{Equivalent piping length}: 7.5 \text{m, level}$ difference : 0m.
- ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m. 4 The units with anti-corrosion treatment will be available as standard. Please specify the suffix "E" as

RXYQ16PAHYLE.

Model Name	Model Name (Combination Unit)		YL(E) RXYQ44PAHYL(E) YL(E) RXY012PAYI (E)+PXY016PAYI (E)+PXY016PAYI (E)		RXYQ46PAHYL(E)	
Model Name (Independent Unit)		nit)	YL(E)	RXYQ12PAYL(E)+RXYQ16PAYL(E)+RXYQ16PAYL(E)	RXYQ12PAYL(E)+RXYQ16PAYL(E)+RXYQ18PAYL(E)	
Model Name (Combination Unit)		nit)		RXYQ44PHTL(E)	RXYQ46PHTL(E)	
Model Name	Independent Ur	nit)	TL(E)	RXYQ12PTL(E)+RXYQ16PTL(E)+RXYQ16PTL(E)	RXYQ12PTL(E)+RXYQ16PTL(E)+RXYQ18PTL(E)	
			kcal / h	108,000	111,000	
★1 Cooling Ca	apacity (19.5°CW	′B)	Btu / h	427,000	440,000	
			kW	125	129	
		kW	124	128		
			kcal / h	119,000	124,000	
★3 Heating Ca	apacity		Btu / h	471,000	491,000	
			kW	138	144	
<u> </u>			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)	
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)	
Dimensions: (H	H×W×D)		mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	
Heat Exchange	er			Cross Fin Coil	Cross Fin Coil	
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type	
	Piston	t m³/h	YL(E)	(13.34+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	(13.34+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	
	Displacement		TL(E)	(13.34+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	(13.34+12.52)+(12.84+12.52+12.52)+(12.84+12.52+12.52)	
Comp.	Number of Revolutions		YL(E)	(6300, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	(6300, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	
comp.		r.p.m	TL(E)	(6300, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	(6300, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	
	Motor Output×Number of Units		kW	((2.5+4.5)×1)+((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)	((2.5+4.5)×1)+((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	
	Starting Method	t		Soft start	Soft start	
	Туре			Propeller Fan	Propeller Fan	
F	Motor Output		kW	(0.35×2)+(0.35×2)+(0.35×2)	(0.35×2)+(0.35×2)+(0.75×2)	
Fan	Air Flow Rate		m³/min	233+233+233	233+233+239	
	Drive			Direct Drive	Direct Drive	
Connecting	Liquid Pipe		mm	<pre> \$\$\phi19.1 (Brazing Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	φ19.1 (Brazing Connection)	
Pipes	Gas Pipe		mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)	
Product Mass	(Machine Weight	t)	kg	285+329+329	285+329+341	
Safety Devices	6			High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	
Defrost Metho	d			Deicer	Deicer	
Capacity Cont	rol		%	4~100	3~100	
	Refrigerant Nar	ne		R-410A	R-410A	
Refrigerant	Charge		kg	9.5+11.5+11.5	9.5+11.5+11.7	
	Control		•	Electronic Expansion Valve	Electronic Expansion Valve	
Refrigerator O	il			Refer to the nameplate of compressor	Refer to the nameplate of compressor	
Standard Acce	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps	
Drawing No.						

 $\bigstar 1 \ \ \, Indoor \ temp.: 27^{\circ}CDB, \ 19.5^{\circ}CWB \ / \ outdoor \ temp.: 35^{\circ}CDB \ / \ Equivalent \ piping \ length: 7.5m, \ level$ difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- $\bigstar 2 \quad \text{Indoor temp.}: 27^\circ\text{CDB}, 19.0^\circ\text{CWB} \, / \, \text{outdoor temp.}: 35^\circ\text{CDB} \, / \, \text{Equivalent piping length}: 7.5 \text{m, level}$ difference : 0m. ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference :

Model Name	(Combination U	nit)		RXYQ48PAHYL(E)	RXYQ50PAHYL(E)	
Model Name	(Independent U	nit)	YL(E)	RXYQ16PAYL(E)+RXYQ16PAYL(E)+RXYQ16PAYL(E)	RXYQ16PAYL(E)+RXYQ16PAYL(E)+RXYQ18PAYL(E)	
Model Name	(Combination U	nit)		RXYQ48PHTL(E)	RXYQ50PHTL(E)	
Model Name (Independent Unit)		TL(E)	RXYQ16PTL(E)+RXYQ16PTL(E)+RXYQ16PTL(E)	RXYQ16PTL(E)+RXYQ16PTL(E)+RXYQ18PTL(E)		
			kcal / h	117,000	120,000	
★1 Cooling C	apacity (19.5°CW	/B)	Btu / h	464,000	478,000	
e 1 y ()		kW	136	140		
★2 Cooling C	apacity (19.0°CW	/B)	kW	135	139	
			kcal / h	129,000	134,000	
★3 Heating C	apacity		Btu / h	512,000	532,000	
			kW	150	156	
Oneine Onles			Without(E)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)	
Casing Color			With(E)	Light Camel (2.5Y6.5/1.5)	Light Camel (2.5Y6.5/1.5)	
Dimensions: (H×W×D)		mm	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	(1680×1240×765)+(1680×1240×765)+(1680×1240×765)	
Heat Exchang	ler		•	Cross Fin Coil	Cross Fin Coil	
	Туре			Hermetically Sealed Scroll Type	Hermetically Sealed Scroll Type	
	Piston		YL(E)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52 +12.52)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52 +12.52)	
	Displacement	m³/h	TL(E)	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52)+(12.5	(12.84+12.52+12.52)+(12.84+12.52+12.52)+(12.84+12.52 +12.52)	
Comp.	Number of Revolutions		YL(E)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	
		r.p.m	TL(E)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	(6060, 3450, 3450)+(6060, 3450, 3450)+(6060, 3450, 3450)	
	Motor Output×Number of Units		kW	((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)	((2.7+4.5+4.5)×1)+((2.7+4.5+4.5)×1)+((4.3+4.5+4.5)×1)	
	Starting Metho	Starting Method		Soft start	Soft start	
	Туре			Propeller Fan	Propeller Fan	
-	Motor Output		kW	(0.35×2)+(0.35×2)+(0.35×2)	(0.35×2)+(0.35×2)+(0.75×2)	
Fan	Air Flow Rate		m³/min	233+233+233	233+233+239	
	Drive			Direct Drive	Direct Drive	
Connecting	Liquid Pipe		mm	<pre> φ19.1 (Brazing Connection) </pre>	φ19.1 (Brazing Connection)	
Pipes	Gas Pipe		mm	φ41.3 (Brazing Connection)	φ41.3 (Brazing Connection)	
Product Mass	(Machine Weigh	t)	kg	329+329+329	329+329+341	
Safety Device	s		•	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	High Pressure Switch, Fan Driver Overload Protector, Over Current Relay, Inverter Overload Protector	
Defrost Metho	d			Deicer	Deicer	
Capacity Cont	trol		%	3~100	3~100	
-	Refrigerant Na	me		R-410A	R-410A	
Refrigerant	Charge		kg	11.5+11.5+11.5	11.5+11.5+11.7	
	Control			Electronic Expansion Valve	Electronic Expansion Valve	
Refrigerator C	Dil			Refer to the nameplate of compressor	Refer to the nameplate of compressor	
Standard Acc	essories			Installation Manual, Operation Manual, Connection Pipes, Clamps	Installation Manual, Operation Manual, Connection Pipes, Clamps	
Drawing No.						

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5m, level difference : 0m.
 ★2 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB. €°CWB / Equivalent piping length : 7.5m, level difference : 0m.

★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5m, level difference : 0m.

1.2 Indoor Units

Ceiling Mounted Cassette (Round Flow) Type

★2 Cooling Ca	apacity (19.5°CWB) apacity (19.0°CWB)	kcal/h Btu/h kW	2,500 9,900	3,200	4,000	5,000
★2 Cooling Ca ★3 Heating Ca		kW	9,900	10.000		
★3 Heating Ca	apacity (19.0°CWB)			12,600	16,000	19,800
★3 Heating Ca	apacity (19.0°CWB)		2.9	3.7	4.7	5.8
Ŭ		kW	2.8	3.6	4.5	5.6
Ŭ		kcal/h	2,800	3,400	4,300	5,400
Casing	*3 Heating Capacity Kcai/n 2,800 3,400 Btu/h 10,900 13,600 kW 3.2 4.0		10,900	13,600	17,100	21,500
Casing			5.0	6.3		
			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions: (H	H×W×D)	mm	246×840×840	246×840×840	246×840×840	246×840×840
Coil (Cross Rows×Stages×Fin Pitch		mm	2×6×1.2	2×6×1.2	2×6×1.2	2×6×1.2
Fin Coil)	Face Area	m²	0.267	0.267	0.267	0.267
	Model		QTS48C15M	QTS48C15M	QTS48C15M	QTS48C15M
	Туре		Turbo Fan	Turbo Fan	Turbo Fan	Turbo Fan
Fan	Motor Output × Number of Units	W	56×1	56×1	56×1	56×1
	Air Flow Date (UU/U/U)	www.social social soc	15/13/11	16/13.5/11		
	AIT FIOW Rate (HH/H/L)	cfm	459/406/353	459/406/353	530/459/388	565/477/388
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature C	emperature Control		Microprocessor Thermostat for Cooling and Heating			
Sound Absorbing Thermal Insulation Material		Polyurethane Form	Polyurethane Form	Polyurethane Form	Polyurethane Form	
	Liquid Pipes	mm	φ6.4 (Flare Connection)			φ6.4 (Flare Connection)
Piping	Gas Pipes mm		<pre> \$\$\phi\$12.7 (Flare Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	\$\$\overline\$12.7 (Flare Connection)	\$\$\overline\$12.7 (Flare Connection)	§12.7 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)
Mass (Weight)		kg	19.5	19.5	19.5	19.5
★5 Sound Lev	el (HH/H/L) (220-240V)	dBA	30/28.5/27	30/28.5/27	31/29/27	32/29.5/27
Safety Devices	6	-	Fuse	Fuse	Fuse	Fuse
Refrigerant Co	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable C	Outdoor Unit		R-410A VRV P(A) Series			
	Model		BYCP125K-W1	BYCP125K-W1	BYCP125K-W1	BYCP125K-W1
	Panel Color		Fresh White	Fresh White	Fresh White	Fresh White
Decoration Panels	Dimensions: (H×W×D)	mm	50×950×950	50×950×950	50×950×950	50×950×950
(Option)	Air Filter		Resin Net (with Mold Resistant)			
	Weight	kg	5.5	5.5	5.5	5.5
Standard Accessories			Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.
Drawing No.					060255	motanation duide.

Note:

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

difference : 0 m.
★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5 m, level difference : 0 m.

4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

★5 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

Ceiling Mounted Cassette (Round Flow) Type

Model			FXFQ63PVE	FXFQ80PVE	FXFQ100PVE	FXFQ125PVE
		kcal/h	6,300	8,000	10,000	12,500
★1 Cooling Capacity (19.5°CWB)		Btu/h	24,900	31,700	39,600	49,500
		kW	7.3	9.3	11.6	14.5
★2 Cooling C	apacity (19.0°CWB)	kW	7.1	9.0	11.2	14.0
		kcal/h	6,900	8,600	10,800	13,800
		Btu/h	27,300	34,100	42,700	54,600
	kW		8.0	10.0	12.5	16.0
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	246×840×840	246×840×840	288×840×840	288×840×840
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×10×1.2	2×10×1.2	2×12×1.2	2×12×1.2
Fin Coil)	Face Area	m²	0.446	0.446	0.535	0.535
	Model		QTS48C15M	QTS48C15M	QTS48C15M	QTS48C15M
	Туре		Turbo Fan	Turbo Fan	Turbo Fan	Turbo Fan
Fan	Motor Output × Number of Units	w	56×1	56×1	120×1	120×1
	Air Eleve Data (UU // I/I)	m³/min	19/16.5/13.5	21/18/15	32/26/20	33/28/22.5
	Air Flow Rate (HH/H/L)	cfm	671/583/477	742/636/530	1,130/918/706	1,165/989/794
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	
Sound Absor	bing Thermal Insulation Mat	terial	Polyurethane Form	Polyurethane Form	Polyurethane Form	Polyurethane Form
	Liquid Pipes	Liquid Pipes mm			φ9.5 (Flare Connection)	φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	\$\$\phi15.9 (Flare Connection)	§15.9 (Flare Connection)	\$\$\phi15.9 (Flare Connection)	\$\$\phi15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32) Internal Dia. 25)
Mass (Weigh	t)	kg	22	22	25	25
★5 Sound Le	vel (HH/H/L) (220-240V)	dBA	34/31/28	36/33.5/31	43/37.5/32	44/39/34
Safety Device	es		Fuse	Fuse	Fuse	Fuse
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	Outdoor Unit		R-410A VRV P(A) Series	R-410A VRV P(A) Series	R-410A VRV P(A) Series	R-410A VRV P(A) Series
	Model		BYCP125K-W1	BYCP125K-W1	BYCP125K-W1	BYCP125K-W1
	Panel Color		Fresh White	Fresh White	Fresh White	Fresh White
Decoration Panels	Dimensions: (H×W×D)	mm	50×950×950	50×950×950	50×950×950	50×950×950
(Option)	Air Filter		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Weight	kg	5.5	5.5	5.5	5.5
Standard Accessories		Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	
Drawing No.				C · 3D	060255	1

Note:

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5 m, level difference: 0 m.

4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

*5 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During

actual operation, these values are normally somewhat higher as a result of ambient conditions.

Ceiling Mounted Cassette Type (Double Flow)

Model			FXCQ20MVE	FXCQ25MVE	FXCQ32MVE	FXCQ40MVE
		kcal/h	2,000	2,500	3,200	4,000
★1 Cooling Capacity (19.5°CWB)		Btu/h	7,800	9,900	12,600	16,000
		kW	2.3	2.9	3.7	4.7
★2 Cooling C	Capacity (19.0°CWB)	kW	2.2	2.8	3.6	4.5
		kcal/h	2,200	2,800	3,400	4,300
★3 Heating Capacity	Btu/h	8,500	10,900	13,600	17,100	
		kW	2.5	3.2	3.2 4.0	
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	305×775×600	305×775×600	305×775×600	305×990×600
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×10×1.5	2×10×1.5	2×10×1.5	2×10×1.5
Fin Coil)	Face Area	m²	2×0.100	2×0.100	2×0.100	2×0.145
	Model		D17K2AA1	D17K2AB1	D17K2AB1	2D17K1AA1
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number W 10×1	15×1	15×1	20×1		
	Air Flow Rate (H/L)	m³/min	7/5	9/6.5	9/6.5	12/9
	All Flow hale (H/L)	cfm	247/177	318/230	318/230	424/318
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature	Temperature Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absor	bing Thermal Insulation Ma	terial	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam
	Liquid Pipes mm		φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	
Piping	Gas Pipes	mm	\$\$\overline\$12.7 (Flare Connection)	\$\$\overline\$12.7 (Flare Connection)	§12.7 (Flare Connection)	\$\$\overline{12.7}\$ (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)
Machine Wei	ght (Mass)	kg	26	26	26	31
★5 Sound Le	vel (H/L) (220V)	dBA	32/27	34/28	34/28	34/29
Safety Device	es		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	outdoor unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series
	Model		BYBC32G-W1	BYBC32G-W1	BYBC32G-W1	BYBC50G-W1
	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
Decoration Panels	Dimensions: (H×W×D)	mm	53×1,030×680	53×1,030×680	53×1,030×680	53×1,245×680
(Option)	Air Filter		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Weight	kg	8	8	8	8.5
Standard Accessories		Operation Manual, Installation Manual, Paper Pattern for Installation, Washer for Hanging Brackets, Clamp Metal, Drain Hose, Insulation for Fitting, Washer Fixing Plates, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Washer for Hanging Brackets, Clamp Metal, Drain Hose, Insulation for Fitting, Washer Fixing Plates, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Washer for Hanging Brackets, Clamp Metal, Drain Hose, Insulation for Fitting, Washer Fixing Plates, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Washer for Hanging Brackets, Clamp Metal, Drain Hose, Insulation for Fitting, Washer Fixing Plates, Sealing Pads, Clamps, Screws, Washers.	
Drawing No.				3D03	9413	

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
 ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

- difference: 0m.
 *3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference:
 One (Uset sume sate)
- 0m. (Heat pump only)4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
- ★5 Anechoic chamber conversion value, measured under JISB8616 conditions. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

Ceiling Mounted Cassette Type (Double Flow)

Model			FXCQ50MVE	FXCQ63MVE	FXCQ80MVE	FXCQ125MVE
		kcal/h	5,000	6,300	8,000	12,500
★1 Cooling Capacity (19.5°CWB)		Btu/h	19,800	24,900	31,700	49,500
kW ★2 Cooling Capacity (19.0°CWB) kW		kW	5.8	7.3	9.3	14.5
★2 Cooling C	Capacity (19.0°CWB)	kW	5.6	7.1	9.0	14.0
		kcal/h	5,400	6,900	8,600	13,800
★3 Heating Capacity		Btu/h	21,500	27,300	34,100	54,600
		kW 6.3 8.0 10.0		16.0		
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	305×990×600	305×1,175×600	305×1,665×600	305×1,665×600
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×10×1.5	2×10×1.5	2×10×1.5	2×10×1.5
Fin Coil)	Face Area	m²	2×0.145	2×0.184	2×0.287	2×0.287
	Model		2D17K1AA1	2D17K2AA1VE	3D17K2AA1	3D17K2AB1
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number W 20×1 30×1	50×1	85×1			
		m³/min	12/9	16.5/13	26/21	33/25
	Air Flow Rate (H/L)	cfm	424/318	582/459	918/741	1,165/883
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature Control		Microprocessor Thermostat for Cooling and Heating				
Sound Absor	bing Thermal Insulation Ma	terial	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	§12.7 (Flare Connection)	\$\$\phi15.9 (Flare Connection)	\$\$\phi15.9 (Flare Connection)	\$\$\phi15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)
Machine Wei	ght (Mass)	kg	32	35	47	48
★5 Sound Le	vel (H/L)	dBA	34/29	37/32	39/34	44/38
Safety Device	es	•	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	outdoor unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series
	Model		BYBC50G-W1	BYBC63G-W1	BYBC125G-W1	BYBC125G-W1
	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
Decoration Panels	Dimensions: (H×W×D)	mm	53×1,245×680	53×1,430×680	53×1,920×680	53×1,920×680
(Option)	Air Filter		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Weight	kg	8.5	9.5	12	12
Standard Accessories		Operation Manual, Installation Manual, Paper Pattern for Installation, Washer for Hanging Brackets, Clamp Metal, Drain Hose, Insulation for Fitting, Washer Fixing Plates, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Washer for Hanging Brackets, Clamp Metal, Drain Hose, Insulation for Fitting, Washer Fixing Plates, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Washer for Hanging Brackets, Clamp Metal, Drain Hose, Insulation for Fitting, Washer Fixing Plates, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Washer for Hanging Brackets, Clamp Metal, Drain Hose, Insulation for Fitting, Washer Fixing Plates, Sealing Pads, Clamps, Screws, Washers.	
Drawing No.				3D03	39413	

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level

- difference: 0m.
 ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m. ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference:
- 0m. (Heat pump only)
- 4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat. $\star 5$ Anechoic chamber conversion value, measured under JISB8616 conditions. During actual operation, these
 - values are normally somewhat higher as a result of ambient conditions.

Ceiling Mounted Cassette Corner Type

Model			FXKQ25MAVE	FXKQ32MAVE	FXKQ40MAVE	FXKQ63MAVE
		kcal/h	2,500	3,200	4,000	6,300
★1 Cooling Capacity (19.5°CWB)		Btu/h	9,900	12,600	16,000	24,900
		kW	2.9	3.7	4.7	7.3
★2 Cooling C	Capacity (19.0°CWB)	kW	2.8	3.6	4.5	7.1
		kcal/h	2,800	3,400	4,300	6,900
		Btu/h	10,900	13,600	17,100	27,300
		kW	3.2	4.0	5.0	8.0
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	215×1,110×710	215×1,110×710	215×1,110×710	215×1,310×710
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×11×1.75	2×11×1.75	2×11×1.75	3×11×1.75
Fin Coil)	Face Area	m²	0.180	0.180	0.180	0.226
	Model		3D12H1AN1V1	3D12H1AN1V1	3D12H1AP1V1	4D12H1AJ1V1
	Model Type		Sirocco Fan	Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	15×1	15×1	20×1	45×1
	Air Flaw Data (U/U)	m³/min	11/9	9 11/9 13/10 318 388/318 459/353 Drive Direct Drive Direct Drive r Thermostat Microprocessor Thermostat Microprocessor Thermostat	13/10	18/15
	Air Flow Rate (H/L)	cfm	388/318	388/318	459/353	635/530
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature	Temperature Control		Microprocessor Thermostat for Cooling and Heating		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absor	bing Thermal Insulation Ma	terial	Polyethylene Foam	Polyethylene Foam	Polyethylene Foam	Polyethylene Foam
	Liquid Pipes	mm	φ6.4 (Flare Connection)	6.4 (Flare Connection)	φ6.4 (Flare Connection)	\$\$\overline{9.5}\$ (Flare Connection)
Piping	Gas Pipes	mm	§12.7 (Flare Connection)	<pre> \$\$\\$</pre>	§12.7 (Flare Connection)	\$\$\\$415.9 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)
Machine Wei	ght (Mass)	kg	31	31	31	34
★5 Sound Le	evel (H/L) (220V)	dBA	38/33	38/33	40/34	42/37
Safety Devic	es		Fuse, Thermal Fuse for Fan Motor	Fuse, Thermal Fuse for Fan Motor	Fuse, Thermal Fuse for Fan Motor	Fuse, Thermal Fuse for Fan Motor
Refrigerant C	Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	Outdoor Units		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series
	Model		BYK45FJW1	BYK45FJW1	BYK45FJW1	BYK71FJW1
	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
Decoration Panels	Dimensions: (H×W×D)	mm	70×1,240×800	70×1,240×800	70×1,240×800	70×1,440×800
(Option)	Air Filter		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Weight	kg	8.5	8.5	8.5	9.5
Standard Accessories		Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Positioning Jig for Installation, Insulation for Hanger Bracket, Air Outlet Blocking Pad.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Positioning Jig for Installation, Insulation for Hanger Bracket, Air Outlet Blocking Pad.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Positioning Jig for Installation, Insulation for Hanger Bracket, Air Outlet Blocking Pad.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Positioning Jig for Installation, Insulation for Hanger Bracket, Air Outlet Blocking Pad.	
Drawing No.			-	3D03	8813A	-

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

Conversion Formulae
kcal/h=kW×860
Btu/h=kW×3412 cfm=m ³ /min×35.3

- ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)
- 4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
- ★5 Anechoic chamber conversion value, measured at a point 1m in front of the unit and 1m downward. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

Slim Ceiling Mounted Duct Type (VE: with Drain Pump, VET: without Drain Pump)

Model			FXDQ20PBVE (T)	FXDQ25PBVE (T)	FXDQ32PBVE (T)
		kcal/h	2,000	2,500	3,200
★1 Cooling Ca	apacity (19.5°CWB)	Btu/h	7,800	9,900	12,600
		kW	2.3	2.9	3.7
★2 Cooling Ca	apacity (19.0°CWB)	kW	2.2	2.8	3.6
		kcal/h	2,200	2,800	3,400
★3 Heating C	apacity	Btu/h	8,500	10,900	13,600
		kW	2.5	3.2	4.0
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions: (H×W×D)	mm	200×700×620	200×700×620	200×700×620
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×12×1.5	2×12×1.5	3×12×1.5
Fin Coil)	Face Area	m²	0.126	0.126	0.126
	Model		—	—	—
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	62×1	62×1	62×1
Faii	Air Flow Rate (HH/H/L)	m³/min	8.0/7.2/6.4	8.0/7.2/6.4	8.0/7.2/6.4
	★5 External Static Pressure	Pa	30-10	30-10	30-10
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature (Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	oing Thermal Insulation Mate	erial	Foamed Polyethylene	Foamed Polyethylene	Foamed Polyethylene
Air Filter			Removal / Washable / Mildew Proof	Removal / Washable / Mildew Proof	Removal / Washable / Mildew Proof
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)
Piping	Gas Pipes	mm	<pre> \$\$\overline\$12.7 (Flare Connection) \$</pre>	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)
Connections	Drain Pipe	mm	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)
Machine Weig	pht (Mass)	kg	23	23	23
★6 Sound Pre	essure Level (HH/H/L)	dBA	33/31/29	33/31/29	33/31/29
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Standard Accessories			Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★7)	Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★7)	Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★7)
Drawing No.				3D060921A	

Note:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

- ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m.
- 4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
- ★5 External static pressure is changeable to set by the remote controller. This pressure means "High static pressure Standard static pressure". (Factory setting is 10 Pa.)

★6 The operation sound levels are the conversion values in anechoic chamber. In practice, the sound tend to be larger than the specified values due to ambient noise or reflections.

When the place of suction is changed to the bottom suction, the sound level will increase by approx. 5dBA. *7 FXDQ20 / 25 / 32PBVE only.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Slim Ceiling Mounted Duct Type (VE: with Drain Pump, VET: without Drain Pump)

Model			FXDQ40NBVE(T)	FXDQ50NBVE(T)	FXDQ63NBVE(T)
		kcal/h	4,000	5,000	6,300
★1 Cooling Capacity (19.5°CWB)		Btu/h	16,000	19,800	24,900
		kW	4.7	5.8	7.3
★2 Cooling Ca	apacity (19.0°CWB)	kW	4.5	5.6	7.1
		kcal/h	4,300	5,400	6,900
★3 Heating C	apacity	Btu/h	17,100	21,500	27,300
		kW	5.0	6.3	8.0
Casing Color			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions: (H×W×D)	mm	200×900×620	200×900×620	200×1100×620
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×12×1.5	3×12×1.5	3×12×1.5
Fin Coil)	Face Area	m²	0.176	0.176	0.227
	Model		—	—	—
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	62×1	130×1	130×1
Fall	Air Flow Rate (HH/H/L)	m³/min	10.5/9.5/8.5	12.5/11.0/10.0	16.5/14.5/13.0
	★5 External Static Pressure	Pa	44-15	44-15	44-15
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature (Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	oing Thermal Insulation Mate	erial	Foamed Polyethylene	Foamed Polyethylene	Foamed Polyethylene
Air Filter			Removal / Washable / Mildew Proof	Removal / Washable / Mildew Proof	Removal / Washable / Mildew Proof
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	<pre> φ12.7 (Flare Connection) </pre>	<pre> φ12.7 (Flare Connection) </pre>	φ15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)
Machine Weig	pht (Mass)	kg	27	28	31
★6 Sound Pre	essure Level (HH/H/L)	dBA	34/32/30	35/33/31	36/34/32
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Standard Accessories			Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★7)	Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★7)	Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★7)
Drawing No.				3D060921A	

Note:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

- ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m.
- 4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
- ★5 External static pressure is changeable to set by the remote controller. This pressure means "High static pressure Standard static pressure". (Factory setting is 15 Pa.)

★6 The operation sound levels are the conversion values in anechoic chamber. In practice, the sound tend to be larger than the specified values due to ambient noise or reflections.

When the place of suction is changed to the bottom suction, the sound level will increase by approx. 5dBA. *7 FXDQ40 / 50 / 63NBVE only.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Ceiling Mounted Built-in Type

Model		FXSQ20MVE	FXSQ25MVE	FXSQ32MVE	
★1 Cooling Capacity (19.5°CWB) kcal/h Btu/h kW		2,000	2,500	3,200	
		Btu/h	7,800	9,900	12,600
		2.3	2.9	3.7	
★2 Cooling Capacity (19.0°CWB) kW		2.2	2.8	3.6	
★3 Heating Capacity kW		2,200	2,800	3,400	
		8,500	10,900	13,600	
		kW	2.5	3.2	4.0
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions: (H×W×D) mm		300×550×800	300×550×800	300×550×800	
Coil (Cross Fin Coil)	Rows×Stages×Fin Pitch	mm	3×14×1.75	3×14×1.75	3×14×1.75
	Face Area	m²	0.088	0.088	0.088
Fan	Model		D18H3A	D18H3A	D18H3A
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
	Motor Output × Number of Units	w	50×1	50×1	50×1
	Air Flow Rate (H/L)	m³/min	9/6.5	9/6.5	9.5/7
	★4 External static pressure	Pa	88-39-20	88-39-20	64-39-15
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature Control			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorbing Thermal Insulation Material			Glass Fiber	Glass Fiber	Glass Fiber
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
Piping Connections	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)
	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)
	Drain Pipe	mm	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)
Machine Weight (Mass) kg		30	30	30	
★6 Sound Level (H/L) (220V) dBA		37/32	37/32	38/32	
Safety Devices			Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable outdoor unit			R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series
Decoration Panel (Option)	Model		BYBS32DJW1	BYBS32DJW1	BYBS32DJW1
	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
	Dimensions: (H×W×D)	mm	55×650×500	55×650×500	55×650×500
	Weight	kg	3	3	3
Standard Accessories			Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.
Drawing No.			3D039431		

Notes:

- ★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)
- ★4 External static pressure is changeable to change over the connectors inside electrical box, this pressure means "High static pressure-Standard -Low static pressure".
- 5 Capacities are net, including a deduction for cooling (an additional for heating) for indoor fan motor heat. ★6 Anechoic chamber conversion value, measured at a point 1.5m downward from the unit center. These
- values are normally somewhat higher during actual operation as a result of ambient conditions.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Ceiling Mounted Built-in Type

Model		FXSQ40MVE	FXSQ50MVE	FXSQ63MVE	
		kcal/h	4,000	5,000	6,300
★1 Cooling Capacity (19.5°CWB)		Btu/h	16,000	19,800	24,900
		kW	4.7	5.8	7.3
★2 Cooling C	Capacity (19.0°CWB)	kW	4.5	5.6	7.1
		kcal/h	4,300	5,400	6,900
★3 Heating C	Capacity	Btu/h	17,100	21,500	27,300
		kW	5.0	6.3	8.0
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	300×700×800	300×700×800	300×1,000×800
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.75	3×14×1.75	3×14×1.75
Fin Coil)	Face Area	m²	0.132	0.132	0.221
	Model		D18H2A	D18H2A	2D18H2A
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	65×1	85×1	125×1
ran	Air Flow Rate (H/L)	m³/min	11.5/9	15/11	21/15.5
	★4 External static pressure	Ра	88-49-20	88-59-29	88-49-20
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absor	bing Thermal Insulation Mate	rial	Glass Fiber	Glass Fiber	Glass Fiber
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)
Machine Wei	ght (Mass)	kg	30	31	41
★6 Sound Le	evel (H/L)	dBA	38/32	41/36	42/35
Safety Device	es		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor
Refrigerant C	Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	outdoor unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series
	Model		BYBS45DJW1	BYBS45DJW1	BYBS71DJW1
Decoration	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
Panel (Option)	Dimensions: (H×W×D)	mm	55×800×500	55×800×500	55×1,100×500
	Weight	kg	3.5	3.5	4.5
Standard Accessories		Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.	
Drawing No.				3D039431	

Notes:

- ★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- *2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)
- ★4 External static pressure is changeable to change over the connectors inside electrical box, this pressure means "High static pressure-Standard -Low static pressure".
- 5 Capacities are net, including a deduction for cooling (an additional for heating) for indoor fan motor heat. ★6 Anechoic chamber conversion value, measured at a point 1.5m downward from the unit center. These
- values are normally somewhat higher during actual operation as a result of ambient conditions.

Ceiling Mounted Built-in Type

Model			FXSQ80MVE	FXSQ100MVE	FXSQ125MVE
		kcal/h	8,000	10,000	12,500
★1 Cooling Capacity (19.5°CWB)		Btu/h	31,700	39,600	49,500
		kW	9.3	11.6	14.5
★2 Cooling	Capacity (19.0°CWB)	kW	9.0	11.2	14.0
		kcal/h	8,600	10,800	13,800
★3 Heating	Capacity	Btu/h	34,100	42,700	54,600
		kW	10.0	12.5	16.0
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	300×1,400×800	300×1,400×800	300×1,400×800
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.75	3×14×1.75	3×14×1.75
Fin Coil)	Face Area	m²	0.338	0.338	0.338
	Model		3D18H2A	3D18H2A	3D18H2A
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
F ==	Motor Output × Number of Units	w	225×1	225×1	225×1
Fan	Air Flow Rate (H/L)	m³/min	27/21.5	28/22	38/28
	★4 External static pressure	Pa	113-82	107-75	78-39
	Drive	•	Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Abso	rbing Thermal Insulation Mat	erial	Glass Fiber	Glass Fiber	Glass Fiber
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)
Machine We	ight (Mass)	kg	51	51	52
★6 Sound L	evel (H/L)	dBA	43/37	43/37	46/41
Safety Devic	es		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor
Refrigerant (Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	outdoor unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series
	Model		BYBS125DJW1	BYBS125DJW1	BYBS125DJW1
Decoration Panel (Option)	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
	Dimensions: (H×W×D)	mm	55×1,500×500	55×1,500×500	55×1,500×500
	Weight	kg	6.5	6.5	6.5
Standard Accessories		Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers.	
Drawing No.				3D039431	

Notes:

- ★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- *2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)
- ★4 External static pressure is changeable to change over the connectors inside electrical box, this pressure means "High static pressure-Standard".
- 5 Capacities are net, including a deduction for cooling (an additional for heating) for indoor fan motor heat. ★6 Anechoic chamber conversion value, measured at a point 1.5m downward from the unit center. These
 - values are normally somewhat higher during actual operation as a result of ambient conditions.

Conversion Formulae

kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Ceiling Mounted Duct Type

Model			FXMQ200MAVE	FXMQ250MAVE	
★1 Cooling Capacity (19.5°CWB)		kcal/h	19,800	24,800	
		Btu/h	78,500	98,300	
		kW	23.0	28.8	
★2 Cooling C	2 Cooling Capacity (19.0°CWB)		22.4	28.0	
		kcal/h	21,500	27,100	
★3 Heating C	Capacity	Btu/h	85,300	107,500	
		kW	25.0	31.5	
Casing			Galvanized Steel Plate	Galvanized Steel Plate	
Dimensions:	(H×W×D)	mm	470×1,380×1,100	470×1,380×1,100	
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×26×2.0	3×26×2.0	
Fin Coil)	Face Area	m²	0.68	0.68	
	Model		D13/4G2DA1×2	D13/4G2DA1×2	
	Туре		Sirocco Fan	Sirocco Fan	
	Motor Output × Number of Units	w	380×2	380×2	
Fan	Air Flow Rate (H/L)	m³/min	58/50	72/62	
		cfm	2,047/1,765	2,542/2,189	
	External Static Pressure 50Hz/60Hz	Pa	221/270-132 *4	270/191-147 *4	
	Drive		Direct Drive	Direct Drive	
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	
Sound Absor	bing Thermal Insulation Ma	terial	Glass Fiber	Glass Fiber	
Air Filter			*5	*5	
	Liquid Pipes	mm	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	
Piping Connections	Gas Pipes	mm	<pre> φ19.1(Brazing Connection) </pre>	φ22.2 (Brazing Connection)	
	Drain Pipe	mm	PS1B	PS1B	
Machine Wei	ght (Mass)	kg	137	137	
*7 Sound Lev	vel (H/L) (220V)	dBA	48/45	48/45	
Safety Devices			Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	
Connectable	Outdoor Unit		R-410A P(A) Series	R-410A P(A) Series	
Standard Acc	essories		Operation Manual. Installation Manual. Sealing Pads. Connection Pipes. Screws. Clamps.	Operation Manual. Installation Manual. Sealing Pads. Connection Pipes. Screws. Clamps.	
Drawing No.			C : 3D	038814A	

Note:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5 m, level difference: 0 m.
 ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5 m, level

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

difference : 0 m.
 ★3 Indoor temp. : 20°CDB / outdoor temp. : 7°CDB, 6°CWB / Equivalent piping length : 7.5 m, level difference 0 m.

★4 External static pressure is changeable to change over the connectors inside electrical box, this pressure means "High static pressure-Standard".

★5 Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.

6 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat. ★7 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit center. These

values are normally somewhat higher during actual operation as a result of ambient conditions.

Ceiling Mounted Duct Type

Model				FXMQ40PVE	FXMQ50PVE	FXMQ63PVE	FXMQ80PVE
			kcal/h	4,000	5,000	6,300	8,000
★1 Cooling C	apacity (19.5°C	CWB)	Btu/h	16,000	19,800	5,000 6,300 19,800 24,900 5.8 7.3 5.6 7.1 5,400 6,900 21,500 27,300 6.3 8.0 nized Steel Plate Galvanized Steel Plate 0x1,000x700 300x1,000x700 3x16x1.75 3x16x1.75 0.249 0.249 - - 50x1 350x1 350x1 350x1 350x1 350x1 350x1 350x1 350x1 350x1 350x1 350x1 350x1 9.5/17.5/16 35/582/530 688/618/565 d 100 (200-50 *4) Standard 100 (200-50 *4) Direct Drive Direct Drive cessor Thermostat for Cooling and Heating *5 *5 *6 *5 *7 36 36 36 41/39/37 42/40/38 ¥1/39/37 42/40/38 ¥1/39/37 <t< td=""><td>31,700</td></t<>	31,700
		kW	4.7	5.8	7.3	9.3	
★2 Cooling C	apacity (19.0°C	CWB)	kW	4.5	5.6	7.1	9.0
			kcal/h	4,300	5,400	6,900	8,600
★3 Heating C	apacity		Btu/h	17,100	21,500	27,300	34,100
			kW	5.0	6.3	8.0	10.0
Casing	Galvanized Steel Plate Galvanized Stee		Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate		
Dimensions:	(H×W×D)		mm	300×700×700	300×1,000×700	300×1,000×700	300×1,000×700
Coil (Cross	Rows×Stages	×Fin Pitch	mm	3×16×1.75	3×16×1.75	3×16×1.75	3×16×1.75
Fin Coil)	Face Area		m²	0.148	0.249	0.249	0.249
	Model			—	—	—	—
	Туре			Sirocco Fan	Sirocco Fan	Sirocco Fan	Sirocco Fan
	Motor Output of Units	× Number	W	140×1	350×1	350×1	350×1
Fan	Air Flow Rate	(111/11/1)	m³/min	16/13/11	18/16.5/15	19.5/17.5/16	25/22.5/20
	All FIUW hate	(======================================	cfm	565/459/388	635/582/530	688/618/565	883/794/706
	External Static Pa Pressure Pa		Ра	Standard 100 (160-30 *4)	Standard 100 (200-50 *4)	Standard 100 (200-50 *4)	Standard 100 (200-50 *4)
	Drive			Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature	Control			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Air Filter				*5	*5	*5	*5
	Liquid Pipes		mm			φ9.5 (Flare Connection)	
Piping	Gas Pipes		mm	<pre> \$\$\phi\$12.7 (Flare Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	<pre> \$\$\phi\$12.7 (Flare Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	\$\$\overline\$15.9 (Flare Connection)	§15.9 (Flare Connection)
Connections	Drain Pipe		mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	(External Dia. 32)	VP25 (External Dia. 32 (Internal Dia. 25)
Mass (Weight	t)		kg	28	36	36	36
.7.0		IBA	220V	39/37/35	41/39/37	42/40/38	43/41/39
*7 Sound Lev	ei (HH/H/L)	IBA	240V	39/37/35	41/39/37	42/40/38	43/41/39
Safety Device	es			Fuse. Fan Driver Overload Protector.	Fuse. Fan Driver Overload Protector.	Fan Driver Overload	Fuse. Fan Driver Overload Protector.
Refrigerant C	ontrol			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable Outdoor Unit			R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	
Standard Acc	Standard Accessories			Operation Manual. Installation Manual. Drain Hose, Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Installation Manual. Drain	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.
Drawing No.					C : 3D0	60388A	

Note:

- ★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
- ★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5 m, level difference: 0 m.

 \star 4 External static pressure is changeable in 13 or 14 stages within the () range by remote controller.

- ★5 Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.
- 6 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
 *7 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Ceiling Mounted Duct Type

Model				FXMQ100PVE	FXMQ125PVE	
			kcal/h	10,000	12,500	
★1 Cooling Capacity (19.5°CWB) Bt		Btu/h	39,600	49,500		
	0 1 7 1		kW	11.6	14.5	
		kW	11.2	14.0		
			kcal/h	10,800	13,800	
★3 Heating C	apacity		Btu/h	42,700	54,600	
			kW	12.5	16.0	
Casing				Galvanized Steel Plate	Galvanized Steel Plate	
Dimensions:	(H×W×D)		mm	300×1,400×700	300×1,400×700	
Coil (Cross	Rows×Stage	es×Fin Pitch	mm	3×16×1.75	3×16×1.75	
Fin Coil)	Face Area		m²	0.383	0.383	
	Model			_	—	
	Туре			Sirocco Fan	Sirocco Fan	
	Motor Outpu of Units	ut × Number	w	350×1	350×1	
Fan	Air Flow Rate (HH/H/L)		m³/min	32/27/23	39/33/28	
			cfm	1,130/953/812	1,377/1,165/988	
	External Static Pressure		Pa	Standard 100 (200-50 *4)	Standard 100 (200-50 *4)	
	Drive			Direct Drive	Direct Drive	
Temperature	Control			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	
Air Filter				*5	*5	
	Liquid Pipes	3	mm	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	
Piping	Gas Pipes		mm	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)	
Connections	Drain Pipe		mm	VP25 (External Dia. 32) Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	
Mass (Weigh	t)		kg	46	46	
7.0			220V	43/41/39	44/42/40	
*7 Sound Lev	ei (HH/H/L)	dBA	240V	43/41/39	44/42/40	
Safety Device	es		•	Fuse. Fan Driver Overload Protector.	Fuse. Fan Driver Overload Protector.	
Refrigerant C	ontrol			Electronic Expansion Valve	Electronic Expansion Valve	
Connectable	Outdoor Unit			R-410A P(A) Series	R-410A P(A) Series	
Standard Accessories			Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting, Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.		
Drawing No.				C : 3D060388A		

Note:

- *1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
- *2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length : 7.5 m, level difference : 0 m.
- External static pressure is changeable in 13 or 14 stages within the () range by remote controller.
 Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.
- 6 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
 *7 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During
- actual operation, these values are normally somewhat higher as a result of ambient conditions.

Ceiling Suspended Type

Model			FXHQ32MAVE	FXHQ63MAVE	FXHQ100MAVE
		kcal/h	3,200	6,300	10,000
★1 Cooling Capacity (19.5°CWB)		Btu/h	12,600	24,900	39,600
		kW	3.7	7.3	11.6
★2 Cooling C	apacity (19.0°CWB)	kW	3.6	7.1	11.2
		kcal/h	3,400	6,900	10,800
★3 Heating C	apacity	Btu/h	13,600	27,300	42,700
		kW	4.0	8.0	12.5
Casing Color			White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
Dimensions: (H×W×D)	mm	195×960×680	195×1,160×680	195×1,400×680
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×12×1.75	3×12×1.75	3×12×1.75
Fin Coil)	Face Area	m²	0.182	0.233	0.293
	Model		3D12K1AA1	4D12K1AA1	3D12K2AA1
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	62×1	62×1	130×1
	Air Flow Rate (H/L)	m³/min	12/10	17.5/14	25/19.5
		cfm	424/353	618/494	883/688
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absort	oing Thermal Insulation Mat	erial	Glass Wool	Glass Wool	Glass Wool
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)
Machine Weig	ght (Mass)	kg	24	28	33
★5 Sound Lev	vel (H/L)	dBA	36/31	39/34	45/37
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	
Refrigerant Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable outdoor unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	
Standard Accessories		Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Clamps, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Clamps, Washers.	Operation Manual, Installation Manual, Paper Pattern for Installation, Drain Hose, Clamp Metal, Insulation for Fitting, Clamps, Washers.	
Drawing No.				3D038815A	

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

difference: 0m. ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m

- difference: 0m.
 ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)
- 4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
- ★5 Anechoic chamber conversion value, measured under JISB8616 conditions. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

Wall Mounted Type

Model			FXAQ20MAVE	FXAQ25MAVE	FXAQ32MAVE
		kcal/h	2,000	2,500	3,200
★1 Cooling Capacity (19.5°CWB)		Btu/h	7,800	9,900	12,600
		kW	2.3	2.9	3.7
★2 Cooling C	apacity (19.0°CWB)	kW	2.2	2.8	3.6
		kcal/h	2,200	2,800	3,400
★3 Heating C	apacity	Btu/h	8,500	10,900	13,600
		kW	2.5	3.2	4.0
Casing Color			White (3.0Y8.5/10.5)	White (3.0Y8.5/10.5)	White (3.0Y8.5/10.5)
Dimensions: (H×W×D)	mm	290×795×230	290×795×230	290×795×230
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×14×1.4	2×14×1.4	2×14×1.4
Fin Coil)	Face Area	m²	0.161	0.161	0.161
	Model		QCL9661M	QCL9661M	QCL9661M
	Туре		Cross Flow Fan	Cross Flow Fan	Cross Flow Fan
Fan	Motor Output × Number of Units	w	40×1	40×1	40×1
	Air Flow Rate (H/L)	m³/min	7.5/4.5	8/5	9/5.5
		cfm	265/159	282/177	318/194
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	ping Thermal Insulation Mat	erial	Foamed Polystyrene / Foamed Polyethylene	Foamed Polystyrene / Foamed Polyethylene	Foamed Polystyrene / Foamed Polyethylene
Air Filter			Resin Net (Washable)	Resin Net (Washable)	Resin Net (Washable)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)
Piping	Gas Pipes	mm	<pre> \$\$\phi12.7 (Flare Connection) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)
Connections	Drain Pipe	mm	VP13 (External Dia. 18 Internal Dia. 13)	VP13 (External Dia. 18 Internal Dia. 13)	VP13 (External Dia. 18 Internal Dia. 13)
Machine Weig	ght (Mass)	kg	11	11	11
★5 Sound Lev	vel (H/L)	dBA	35/29	36/29	37/29
Safety Devices		Fuse	Fuse	Fuse	
Refrigerant Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable outdoor unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	
Standard Accessories		Operation Manual, Installation Manual, Installation Panel, Paper Pattern for Installation, Insulation Tape, Clamps, screws.	Operation Manual, Installation Manual, Installation Panel, Paper Pattern for Installation, Insulation Tape, Clamps, screws.	Operation Manual, Installation Manual, Installation Panel, Paper Pattern for Installation, Insulation Tape, Clamps, screws.	
Drawing No.				3D039370B	

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length:7.5m, level difference: 0m.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)
- 4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat. ★5 Anechoic chamber conversion value, measured under JISB8616 conditions. During actual operation,

S Anechoic chamber conversion value, measured under JISB80 to conditions. During actual ope these values are normally somewhat higher as a result of ambient conditions.

Wall Mounted Type

Model			FXAQ40MAVE	FXAQ50MAVE	FXAQ63MAVE
		kcal/h	4,000	5,000	6,300
★1 Cooling Capacity (19.5°CWB)		Btu/h	16,000	19,800	24,900
		kW	4.7	5.8	7.3
★2 Cooling C	apacity (19.0°CWB)	kW	4.5	5.6	7.1
		kcal/h	4,300	5,400	6,900
★3 Heating C	apacity	Btu/h	17,100	21,500	27,300
		kW	5.0	6.3	8.0
Casing Color			White (3.0Y8.5/10.5)	White (3.0Y8.5/10.5)	White (3.0Y8.5/10.5)
Dimensions: (H×W×D)	mm	290×1,050×230	290×1,050×230	290×1,050×230
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×14×1.4	2×14×1.4	2×14×1.4
Fin Coil)	Face Area	m²	0.213	0.213	0.213
	Model		QCL9686M	QCL9686M	QCL9686M
	Туре		Cross Flow Fan	Cross Flow Fan	Cross Flow Fan
Fan	Motor Output × Number of Units	w	43×1	43×1	43×1
	Air Flow Rate (H/L)	m³/min	12/9	15/12	19/14
		cfm	424/318	530/424	671/494
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	bing Thermal Insulation Mat	erial	Foamed Polystyrene / Foamed Polyethylene	Foamed Polystyrene / Foamed Polyethylene	Foamed Polystyrene / Foamed Polyethylene
Air Filter			Resin Net (Washable)	Resin Net (Washable)	Resin Net (Washable)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	<pre> φ12.7 (Flare Connection) </pre>	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP13 (External Dia. 18 Internal Dia. 13)	VP13 (External Dia. 18 Internal Dia. 13)	VP13 (External Dia. 18 Internal Dia. 13)
Machine Weig	pht (Mass)	kg	14	14	14
★5 Sound Lev	vel (H/L)	dBA	39/34	42/36	46/39
Safety Devices		Fuse	Fuse	Fuse	
Refrigerant Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable outdoor unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	
Standard Accessories		Operation Manual, Installation Manual, Installation Panel, Paper Pattern for Installation, Insulation Tape, Clamps, screws.	Operation Manual, Installation Manual, Installation Panel, Paper Pattern for Installation, Insulation Tape, Clamps, screws.	Operation Manual, Installation Manual, Installation Panel, Paper Pattern for Installation, Insulation Tape, Clamps, screws.	
Drawing No.				3D039370B	

Notes:

★1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp; 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp; 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference:

0m. (Heat pump only) 4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

*5 Anechoic chamber conversion value, measured under JISB8616 conditions. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

Floor Standing Type

Model			FXLQ20MAVE	FXLQ25MAVE	FXLQ32MAVE
		kcal/h	2,000	2,500	3,200
★1 Cooling Capacity (19.5°CWB)		Btu/h	7,800	9,900	12,600
		kW	2.3	2.9	3.7
★2 Cooling C	r2 Cooling Capacity (19.0°CWB) kV		2.2	2.8	3.6
		kcal/h	2,200	2,800	3,400
★3 Heating C	Capacity	Btu/h	8,500	10,900	13,600
		kW	2.5	3.2	4.0
Casing Color			Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Dimensions:	(H×W×D)	mm	600×1,000×222	600×1,000×222	600×1,140×222
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.5	3×14×1.5	3×14×1.5
Fin Coil)	Face Area	m²	0.159	0.159	0.200
	Model		D14B20	D14B20	2D14B13
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	15×1	15×1	25×1
	Air Flow Rate (H/L)	m³/min	7/6	7/6	8/6
		cfm	247/212	247/212	282/212
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absor	bing Thermal Insulation Ma	terial	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)
Piping Connections	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)
	Drain Pipe	mm	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)
Machine Wei	ght (Mass)	kg	25	25	30
★5 Sound Le	vel (H/L)	dBA	35/32	35/32	35/32
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	
Refrigerant Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable Outdoor Unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	
Standard Accessories		Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	
Drawing No.				3D038816A	

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)

4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

★5 Anechoic chamber conversion value, measured at a point 1.5 m in front of the unit at a height of 1.5 m. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

Floor Standing Type

Model			FXLQ40MAVE	FXLQ50MAVE	FXLQ63MAVE
		kcal/h	4,000	5,000	6,300
★1 Cooling Capacity (19.5°CWB)		Btu/h	16,000	19,800	24,900
		kW	4.7	5.8	7.3
★2 Cooling C	apacity (19.0°CWB)	kW	4.5	5.6	7.1
		kcal/h	4,300	5,400	6,900
★3 Heating C	apacity	Btu/h	17,100	21,500	27,300
		kW	5.0	6.3	8.0
Casing Color			Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Dimensions: (H×W×D)	mm	600×1,140×222	600×1,420×222	600×1,420×222
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.5	3×14×1.5	3×14×1.5
Fin Coil)	Face Area	m²	0.200	0.282	0.282
	Model		2D14B13	2D14B20	2D14B20
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	25×1	35×1	35×1
	Air Flow Rate (H/L)	m³/min	11/8.5	14/11	16/12
		cfm	388/300	494/388	565/424
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	oing Thermal Insulation Mate	erial	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)
Piping Connections	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)
	Drain Pipe	mm	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)
Machine Weig	ght (Mass)	kg	30	36	36
★5 Sound Lev	vel (H/L)	dBA	38/33	39/34	40/35
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	
Refrigerant Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable Outdoor Unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	
Standard Accessories		Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	
Drawing No.				3D038816A	

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)

4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

★5 Anechoic chamber conversion value, measured at a point 1.5 m in front of the unit at a height of 1.5 m. During actual operation, these values are normally somewhat higher as a result of ambient conditions. Conversion Formulae

Concealed Floor Standing Type

Model			FXNQ20MAVE	FXNQ25MAVE	FXNQ32MAVE
		kcal/h	2,000	2,500	3,200
★1 Cooling Capacity (19.5°CWB)		Btu/h	7,800	9,900	12,600
		kW	2.3	2.9	3.7
★2 Cooling C	r2 Cooling Capacity (19.0°CWB) k		2.2	2.8	3.6
		kcal/h	2,200	2,800	3,400
★3 Heating C	apacity	Btu/h	8,500	10,900	13,600
		kW	2.5	3.2	4.0
Casing Color			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions: (H×W×D)	mm	610×930×220	610×930×220	610×1,070×220
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.5	3×14×1.5	3×14×1.5
Fin Coil)	Face Area	m²	0.159	0.159	0.200
	Model		D14B20	D14B20	2D14B13
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	15×1	15×1	25×1
	Air Flow Rate (H/L)	m³/min	7/6	7/6	8/6
		cfm	247/212	247/212	282/212
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	oing Thermal Insulation Mat	erial	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)
Piping Connections	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)
	Drain Pipe	mm	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)
Machine Weig	ght (Mass)	kg	19	19	23
★5 Sound Lev	vel (H/L)	dBA	35/32	35/32	35/32
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable Outdoor Unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	
Standard Accessories		Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	
Drawing No.				3D038817A	

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)

4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

★5 Anechoic chamber conversion value, measured at a point 1.5 m in front of the unit at a height of 1.5 m. During actual operation, these values are normally somewhat higher as a result of ambient conditions. Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Concealed Floor Standing Type

Model			FXNQ40MAVE	FXNQ50MAVE	FXNQ63MAVE
		kcal/h	4,000	5,000	6,300
★1 Cooling Capacity (19.5°CWB)		Btu/h	16,000	19,800	24,900
		kW	4.7	5.8	7.3
★2 Cooling C	r2 Cooling Capacity (19.0°CWB)		4.5	5.6	7.1
		kcal/h	4,300	5,400	6,900
★3 Heating C	apacity	Btu/h	17,100	21,500	27,300
		kW	5.0	6.3	8.0
Casing Color			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions: (H×W×D)	mm	610×1,070×220	610×1,350×220	610×1,350×220
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.5	3×14×1.5	3×14×1.5
Fin Coil)	Face Area	m²	0.200	0.282	0.282
	Model		2D14B13	2D14B20	2D14B20
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	25×1	35×1	35×1
	Air Flow Rate (H/L)	m³/min	11/8.5	14/11	16/12
		cfm	388/300	494/388	565/424
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	oing Thermal Insulation Mat	erial	Glass Fiber / Urethane Foam	Glass Fiber / Urethane Foam	Glass Fiber / Urethane Foam
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)
Piping Connections	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)
	Drain Pipe	mm	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)
Machine Weig	ght (Mass)	kg	23	27	27
★5 Sound Lev	vel (H/L)	dBA	38/33	39/34	40/35
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable Outdoor Unit		R-410A P(A) Series	R-410A P(A) Series	R-410A P(A) Series	
Standard Accessories		Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	Operation Manual, Installation Manual, Insulation for Fitting, Drain Hose, Clamps, Screws, Washers, Level Adjustment Screw.	
Drawing No.				3D038817A	

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)

4 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

★5 Anechoic chamber conversion value, measured at a point 1.5 m in front of the unit at a height of 1.5 m. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

Ceiling Suspended Cassette Type

M - 4 - 1		Indoor Unit		FXUQ71MAV1	FXUQ100MAV1	FXUQ125MAV1	
Model		Connection	Unit	BEVQ71MAVE	BEVQ100MAVE	BEVQ125MAVE	
			kcal/h	7,100	10,000	12,500	
★1 Cooling C	apacity (19.5°	CWB)	Btu/h	28,300	39,600	49,500	
	kW		kW	8.3	11.6	14.5	
★2 Cooling C	apacity (19.0°	CWB)	kW	8.0	11.2	14.0	
			kcal/h	7,700	10,800	12,000	
★3 Heating C	apacity		Btu/h	30,700	42,700	47,800	
			kW	9.0	12.5	14.0	
Casing Color				White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	
Dimensions: (H×W×D)		mm	165×895×895	230×895×895	230×895×895	
Coil (Cross	Rows×Stag	es×Fin Pitch	mm	3×6×1.5	3×8×1.5	3×8×1.5	
Fin Coil)	Face Area		m²	0.265	0.353	0.353	
	Model			QTS48A10M	QTS50B15M	QTS50B15M	
	Туре			Turbo Fan	Turbo Fan	Turbo Fan	
Fan	Motor Output × Number of Units		w	45×1	90×1	90×1	
		Air Flow Rate (H/L)		19/14	29/21	32/23	
	AIT FIOW Ra			671/494	1,024/741	1,130/812	
	Drive			Direct Drive	Direct Drive	Direct Drive	
Temperature	Control			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	
Sound Absorb	ing Thermal	Insulation Mate	erial	Heat Resistant Foamed Polyethylene, Regular Foamed Polyethylene	Heat Resistant Foamed Polyethylene, Regular Foamed Polyethylene	Heat Resistant Foamed Polyethylene, Regular Foamed Polyethylene	
	Liquid Pipe	S	mm	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	
Piping Connections	Gas Pipes		mm	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)	
	Drain Pipe		mm	I.Dq20×O.Dq26	I.Dq20×O.Dq26	I.Dø20×O.Dø26	
Machine Weig	ht (Mass)		kg	25	31	31	
★5 Sound Level (H/L) dBA			dBA	40/35	43/38	44/39	
Safety Devices				Thermal Protector for Fan Motor	Thermal Protector for Fan Motor	Thermal Protector for Fan Motor	
Standard Accessories				Operation Manual, Installation Manual, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Holding Plate.	Operation Manual, Installation Manual, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Holding Plate.	Operation Manual, Installation Manual, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Holding Plate.	
Drawing No.				C:4D045395A			

Notes:

★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
 ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

- difference: 0m.
 ★3 Indoor temp.: 20°CDB / outdoor temp.: 7°CDB, 6°CWB / Equivalent piping length: 7.5m, level difference: 0m. (Heat pump only)
- 4 Capacities are net, including a deduction for cooling (an additional for heating) for indoor fan motor heat.
 ★5 Anechoic chamber conversion value, measured at a point 1.5m downward from the unit center. These

BEV Units

Model				BEVQ71MAVE	BEVQ100MAVE	BEVQ125MAVE
Power Supply				1 Phase 50Hz 220~240V 1 Phase 50Hz 220~240V		1 Phase 50Hz 220~240V
Casing				Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)		mm	100×350×225	100×350×225	100×350×225
Sound Absort	oing Thermal	Insulation Mate	erial	erial Flame and Heat Resistant Foamed Flame and Heat Resistant Foamed Polyethylene Polyethylene Polyethylene		
	Indoor	Liquid Pipes	uid Pipes 9.5mm (Flare Connection)		9.5mm (Flare Connection)	9.5mm (Flare Connection)
Piping	Unit	Gas Pipes		15.9mm (Flare Connection)	15.9mm (Flare Connection)	15.9mm (Flare Connection)
Connection	Outdoor	Liquid Pipes		9.5mm (Flare Connection)	9.5mm (Flare Connection)	9.5mm (Flare Connection)
	Unit	Suction Gas Pipes		15.9mm (Flare Connection)	15.9mm (Flare Connection)	15.9mm (Flare Connection)
Machine Weight (Mass) kg			kg	3.0	3.0	3.5
Standard Accessories				Installation manual, Gas piping connections, Insulation for fitting, Sealing material, Clamps	Installation manual, Gas piping connections, Insulation for fitting, Sealing material, Clamps	Installation manual, Gas piping connections, Insulation for fitting, Sealing material, Clamps
Drawing No.				4D045387A 4D045387A		4D045388A

values are normally somewhat higher during actual operation as a result of ambient conditions.

Outdoor Air Processing Unit

Model			FXMQ125MFV1	FXMQ200MFV1	FXMQ250MFV1	
		kcal/h	12,000	19,300	24,100	
★1 Cooling Capacity Btu/h			47,800	76,400	95,500	
		kW	14.0	22.4	28.0	
		kcal/h	7,700	12,000	15,000	
★1 Heating C	apacity	Btu/h	30,400	47,400	59,400	
		kW	8.9	13.9	17.4	
Casing		•	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	
Dimensions: (H×W×D)	mm	470×744×1,100	470×1,380×1,100	470×1,380×1,100	
Coil (Cross Fin Coil)	Rows×Stages×Fin Pitch	mm	3×26×2.0	3×26×2.0	3×26×2.0	
Fin Coll)	Face Area	m²	0.28	0.65	0.65	
	Model	•	D13/4G2DA1	D13/4G2DA1	D13/4G2DA1	
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	
	Motor Output × Number of Units	W	380×1	380×1	380×1	
Fan	Air Eleve Data (11/1)	m³/min	18	28	35	
	Air Flow Rate (H/L)	cfm	635	988	1,236	
	External Static Pressure ★4	Pa	185	225	205	
	Drive		Direct Drive	Direct Drive	Direct Drive	
Temperature (Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	
Sound Absorb	oing Thermal Insulation M	laterial	Glass Fiber	Glass Fiber	Glass Fiber	
Air Filter			★2	★2	★2	
	Liquid Pipes		9.5mm (Flare Connection)	9.5mm (Flare Connection)	9.5mm (Flare Connection)	
Piping Connections	Gas Pipes		15.9mm (Flare Connection)	19.1mm (Brazing Connection)	22.2mm (Brazing Connection)	
	Drain Pipe	(mm)	PS1B (female thread)	PS1B (female thread)	PS1B (female thread)	
Machine Weig	ght (Mass)	kg	86	123	123	
Sound Level ((220V) ★ 3, ★ 4	dBA	42	47	47	
Safety Devices			Fuse Thermal Protector for Fan Motor	Fuse Thermal Protector for Fan Motor	Fuse Thermal Protector for Fan Motor	
Refrigerant Co	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Standard Accessories			Operation Manual, Installation Manual, Sealing Pads, Screws, Clamps.	Operation Manual, Installation Manual, Sealing Pads, Connection Pipes, Screws, Clamps.	Operation Manual, Installation Manual, Sealing Pads, Connection Pipes, Screws, Clamps.	
Connectable (Outdoor Units ★5,★6		RXYQ8~54PAY1	RXYQ8~54PAY1	RXYQ10~54PAY1	
Drawing No.			C:3D046147A	C:3D046147A	C:3D046147A	

Notes:

 \bigstar 1. Specifications are based on the following conditions:

 Cooling: Outdoor temp. of 33°CDB, 28°CWB (68% RH). and discharge temp. of 18°CDB
 Heating: Outdoor temp. of 0°CDB, -2.9°CWB (50% RH). and discharge temp. of 25°CDB · Equivalent reference piping length: 7.5m (0m Horizontal)

At 220V *2. Air intake filter is not supplied, so be sure to install the optional long-life filter or high-efficiency filter. Please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.

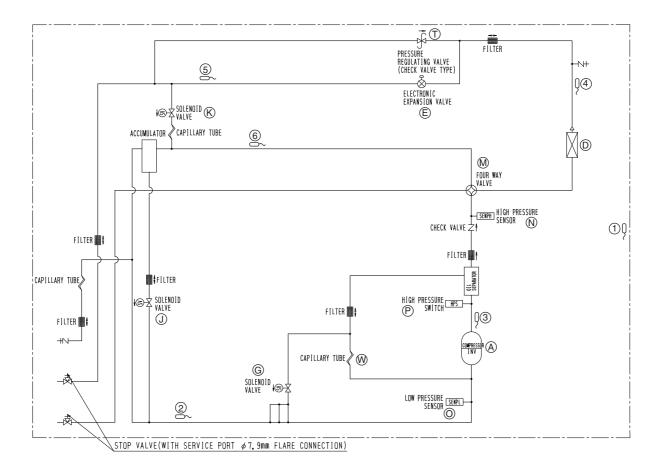
 $\bigstar 3.$ Anechoic chamber conversion value, measured at a point 1.5m downward from the unit center. These values (measured at 220V) are normally somewhat higher during actual operation as a result of ambient conditions.

★4. Valves measured at 220 V.

★5. Within the range that the total capacity of indoor units is 50 to 100%, it is possible to connect to the outdoor unit.

 \star 6. It is not possible to connect to the 5 HP outdoor unit. Not available for Heat Recovery type and VRV II-S series.

· This equipment cannot be incorporated into the refrigerant piping system or remote group control of the VRV II system.

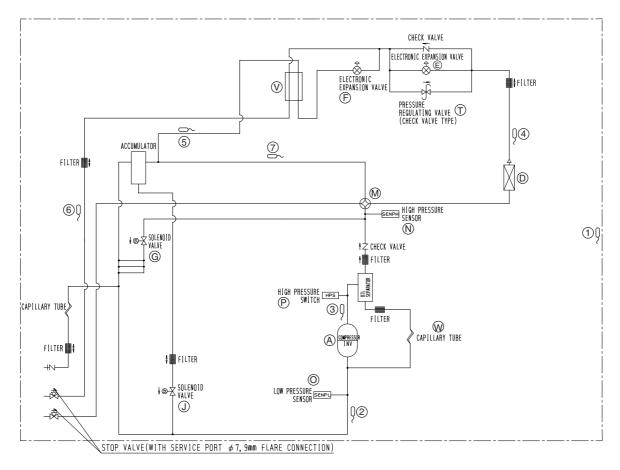

Part 3 Refrigerant Circuit

1.	Refr	gerant Circuit	78
		RXYQ5P(A)	
	1.2	RXYQ8P(A)	80
	1.3	RXYQ10P(A), 12P(A)	82
	1.4	RXYQ14P(A), 16P(A), 18P(A)	84
	1.5	Outdoor Air Processing Unit FXMQ125MFV1~250MFV1	86
2.	Fund	tional Parts Layout	87
	2.1	RXYQ5P(A)	87
	2.2	RXYQ8P(A)	88
	2.3	RXYQ10P(A)	89
	2.4	RXYQ12P(A)	90
	2.5	RXYQ14P(A), 16P(A), 18P(A)	91
3.	Refr	gerant Flow for Each Operation Mode	92

1. Refrigerant Circuit 1.1 RXYQ5P(A)

No. in refrigerant system diagram	Symbol	Name	Major Function
A	M1C	Inverter compressor (INV)	Inverter compressor is operated on frequencies between 52Hz and 188Hz by using the inverter. The number of operating steps is as follows when Inverter compressor is operated. RXYQ5P(A) : 18 steps
D	M1F	Inverter fan	Since the system is of air heat exchanging type, the fan is operated at 9-step rotation speed by using the inverter.
E	Y1E	Electronic expansion valve (Main: EV1)	While in heating operation, PI control is applied to keep the outlet superheated degree of air heat exchanger constant.
G	Y1S	Solenoid valve (Hot gas: SVP)	Used to prevent the low pressure from transient falling.
J	Y2S	Solenoid valve (Oil return: SVO)	Used to return oil from the accumulator to the compressor.
К	Y4S	Solenoid valve (Injection) SVT	Used to cool the compressor by injecting refrigerant when the compressor discharge temperature is high.
М	Y3S	4-way valve	Used to switch the operation mode between cooling and heating.
N	S1NPH	High pressure sensor	Used to detect high pressure.
0	S1NPL	Low pressure sensor	Used to detect low pressure.
Р	S1PH	HP pressure switch (For INV compressor)	In order to prevent the increase of high pressure when a malfunction occurs, this switch is activated at high pressure of 4.0 MPa or more to stop the compressor operation.
т	_	Pressure regulating valve 1	This valve opens at a pressure of 4.0 MPa for prevention of pressure increase, thus resulting in no damage of functional parts due to the increase of pressure in transportation or storage.
W	_	Capillary tube	Used to return the refrigerating oil separated through the oil separator to the compressor.
1	R1T	Thermistor (Outdoor air: Ta)	Used to detect outdoor temperature, correct discharge pipe temperature, and others.
2	R2T	Thermistor (Suction pipe: Ts)	Used to detect suction pipe temperature.
3	R3T	Thermistor (INV discharge pipe: Tdi)	Used to detect discharge pipe temperature, make the temperature protection control of compressor, and others.
4	R4T	Thermistor (Heat exchanger deicer: Tb)	Used to detect liquid pipe temperature of air heat exchanger, determine defrosting operation, and others.
5	R6T	Thermistor (Liquid pipe TI)	Used to detect liquid pipe temperature.
6	R7T	Thermistor (Accumulator inlet Ts1)	Used to detect gas pipe temperature at the accumulator inlet. Keep the suction superheated degree constant in heating operation, and others.

RXYQ5P(A)

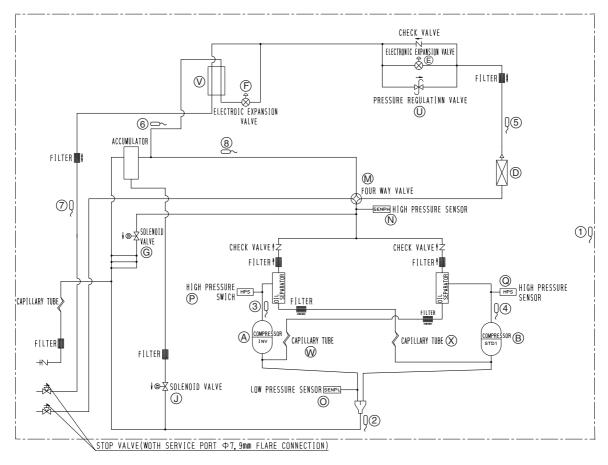


3D055764D

1.2 RXYQ8P(A)

Symbol	Name	Major Function
M1C	Inverter compressor (INV)	Inverter compressor is operated on frequencies between 52Hz and 266Hz by using the inverter, while Standard compressor is operated with commercial power supply only. The number of operating steps is as follows when Inverter compressor is operated in combination with Standard compressor. RXYQ8P(A) : 24 steps
M1F	Inverter fan	Since the system is of air heat exchanging type, the fan is operated at 9-step rotation speed by using the inverter.
Y1E	Electronic expansion valve (Main: EV1)	While in heating operation, PI control is applied to keep the outlet superheated degree of air heat exchanger constant.
Y2E	Electronic expansion valve (Subcool: EV2)	PI control is applied to keep the outlet superheated degree of subcooling heat exchanger constant.
Y1S	Solenoid valve (Hot gas: SVP)	Used to prevent the low pressure from transient falling.
Y2S	Solenoid valve (Oil return: SVO)	Used to return oil from the accumulator to the compressor.
Y3S	4-way valve	Used to switch the operation mode between cooling and heating.
S1NPH	High pressure sensor	Used to detect high pressure.
S1NPL	Low pressure sensor	Used to detect low pressure.
S1PH	HP pressure switch (For INV compressor)	In order to prevent the increase of high pressure when a malfunction occurs, this switch is activated at high pressure of 4.0 MPa or more to stop the compressor operation.
Ι	Pressure regulating valve (Liquid pipe)	This valve opens at a pressure of 4.0 MPa for prevention of pressure increase, thus resulting in no damage of functional parts due to the increase of pressure in transportation or storage.
—	Subcooling heat exchanger	Used to subcool liquid refrigerant from the electronic expansion valve (cooling) or indoor units (heating).
—	Capillary tube	Used to return the refrigerating oil separated through the oil separator to the INV compressor.
R1T	Thermistor (Outdoor air: Ta)	Used to detect outdoor temperature, correct discharge pipe temperature, and others.
R2T	Thermistor (Suction pipe: Ts)	Used to detect suction pipe temperature.
R3T	Thermistor (INV discharge pipe: Tdi)	Used to detect discharge pipe temperature, make the temperature protection control of compressor, and others.
R4T	Thermistor (Heat exchanger deicer: Tb)	Used to detect liquid pipe temperature of air heat exchanger, determine defrosting operation, and others.
R5T	Thermistor (Subcooling heat exchanger gas pipe: Tsh)	Used to detect gas pipe temperature on the evaporation side of subcooling heat exchanger, keep the superheated degree at the outlet of subcooling heat exchanger constant, and others.
R6T	Thermistor (Receiver outlet liquid pipe: TI)	Used to detect receiver outlet liquid pipe temperature.
R7T	Thermistor (Accumulator inlet)	Used to detect gas pipe temperature at the accumulator inlet. Keep the suction superheated degree constant in heating operation, and others.
	M1C M1F Y1E Y2E Y1S Y2S S1NPH S1NPL S1PH S1PH C R1T R2T R3T R4T R3T R4T R5T R6T	M1CInverter compressor (INV)M1FInverter fanY1EElectronic expansion valve (Main: EV1)Y2EElectronic expansion valve (Subcool: EV2)Y1SSolenoid valve (Hot gas: SVP)Y2SSolenoid valve (Oil return: SVO)Y3S4-way valveS1NPHHigh pressure sensorS1NPLLow pressure sensorS1PHHP pressure switch (For INV compressor)OmSubcooling heat exchangerCapillary tubeR1TThermistor (Outdoor air: Ta)R2TThermistor (INV discharge pipe: Tdi)R4TThermistor (Subcooling heat exchanger gas pipe: Tsh)R6TThermistor (Receiver outlet liquid pipe: Tl)

RXYQ8P(A)

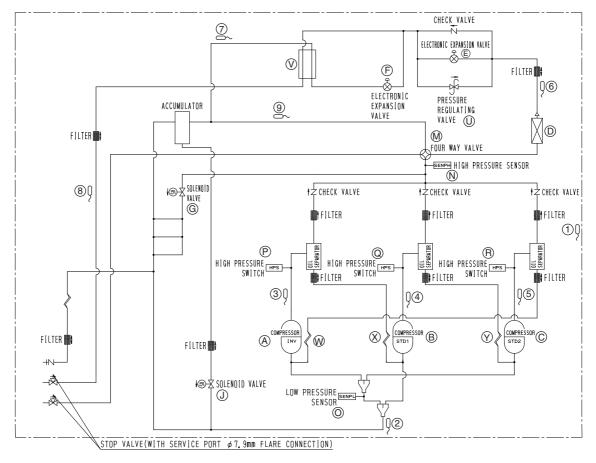


3D055765D

1.3 RXYQ10P(A), 12P(A)

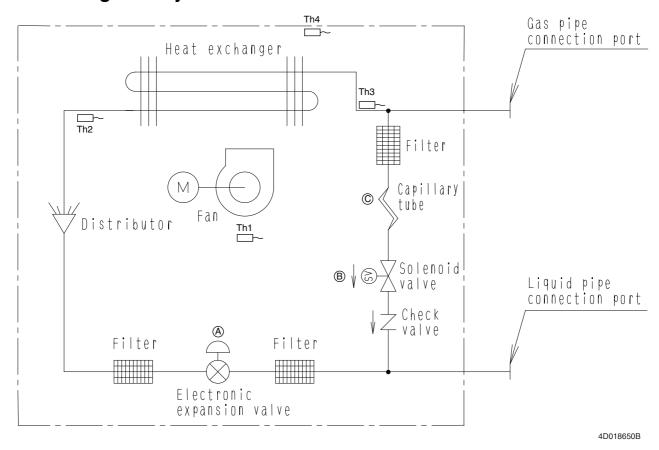
No. in refrigerant system diagram	Symbol	Name	Major Function	
А	M1C	Inverter compressor (INV)	Inverter compressor is operated on frequencies between 52Hz and 210Hz by using	
В	M2C	Standard compressor 1 (STD1)	the inverter, while Standard compressor is operated with commercial power supply only. The number of operating steps is as follows when Inverter compressor is operated in combination with Standard compressor. RXYQ10, 12P(A) : 37 steps	
D	M1F	Inverter fan	Since the system is of air heat exchanging type, the fan is operated at 9-step rotation speed by using the inverter.	
E	Y1E	Electronic expansion valve (Main: EV1)	While in heating operation, PI control is applied to keep the outlet superheated degree of air heat exchanger constant.	
F	Y2E	Electronic expansion valve (Subcool: EV3)	PI control is applied to keep the outlet superheated degree of subcooling heat exchanger constant.	
G	Y1S	Solenoid valve (Hot gas: SVP)	Used to prevent the low pressure from transient falling.	
J	Y2S	Solenoid valve (Oil return: SVO)	Used to return oil from the accumulator to the compressor.	
М	Y3S	4-way valve	Used to switch the operation mode between cooling and heating.	
N	S1NPH	High pressure sensor	Used to detect high pressure.	
0	S1NPL	Low pressure sensor	Used to detect low pressure.	
Р	S1PH	HP pressure switch (For INV compressor)	In order to prevent the increase of high pressure when a malfunction occurs, this	
Q	S2PH	HP pressure switch (For STD compressor 1)	switch is activated at high pressure of 4.0 MPa or more to stop the compressor operation.	
U	_	Pressure regulating valve (Liquid pipe)	This valve opens at a pressure of 4.0 MPa for prevention of pressure increase, thus resulting in no damage of functional parts due to the increase of pressure in transportation or storage.	
V	_	Subcooling heat exchanger	Used to subcool liquid refrigerant from the electronic expansion valve (cooling) or indoor units (heating).	
W		Capillary tube	Used to return the refrigerating oil separated through the oil separator to the INV compressor.	
Х	_	Capillary tube	Used to return the refrigerating oil separated through the oil separator to the STD1 compressor.	
1	R1T	Thermistor (Outdoor air: Ta)	Used to detect outdoor temperature, correct discharge pipe temperature, and others.	
2	R2T	Thermistor (Suction pipe: Ts)	Used to detect suction pipe temperature.	
3	R31T	Thermistor (INV discharge pipe: Tdi)	Used to detect discharge pipe temperature, make the temperature protection control of	
4	R32T	Thermistor (STD1 discharge pipe: Tds1)	compressor, and others.	
5	R4T	Thermistor (Heat exchanger deicer: Tb)	Used to detect liquid pipe temperature of air heat exchanger, determine defrosting operation, and others.	
6	R5T	Thermistor (Subcooling heat exchanger gas pipe: Tsh)	Used to detect gas pipe temperature on the evaporation side of subcooling heat exchanger, keep the superheated degree at the outlet of subcooling heat exchanger constant, and others.	
7	R6T	Thermistor (Liquid pipe: TI)	Used to detect liquid pipe temperature.	
8	R7T	Thermistor (Accumulator inlet)	Used to detect gas pipe temperature at the accumulator inlet. Keep the suction superheated degree constant in heating operation, and others.	

RXYQ10P(A), 12P(A)



3D055766E

1.4 RXYQ14P(A), 16P(A), 18P(A)


No. in refrigerant system diagram	Symbol	Name	Major Function	
А	M1C	Inverter compressor (INV)	Inverter compressor is operated on frequencies between 52Hz and 266Hz by using	
В	M2C	Standard compressor 1 (STD1)	the inverter, while Standard compressor is operated with commercial power supply only. The number of operating steps is as follows when Inverter compressor is operated in combination with Standard compressor.	
С	МЗС	Standard compressor 1 (STD2)	operated in combination with Standard compressor. RXYQ14P(A) or 16P(A) : 51 steps, RXYQ18P(A) : 55 steps	
D	M1F	Inverter fan	Since the system is of air heat exchanging type, the fan is operated at 8-step rotation speed by using the inverter.	
E	Y1E	Electronic expansion valve (Main: EV1)	While in heating operation, PI control is applied to keep the outlet superheated degree of air heat exchanger constant.	
F	Y2E	Electronic expansion valve (Subcool: EV3)	PI control is applied to keep the outlet superheated degree of subcooling heat exchanger constant.	
G	Y1S	Solenoid valve (Hot gas: SVP)	Used to prevent the low pressure from transient falling.	
J	Y2S	Solenoid valve (Oil return: SVO)	Used to return oil from the accumulator to the compressor.	
М	Y3S	4-way valve	Used to switch the operation mode between cooling and heating.	
Ν	S1NPH	High pressure sensor	Used to detect high pressure.	
0	S1NPL	Low pressure sensor	Used to detect low pressure.	
Р	S1PH	HP pressure switch (For INV compressor)		
Q	S2PH	HP pressure switch (For STD compressor 1)	In order to prevent the increase of high pressure when a malfunction occurs, this switch is activated at high pressure of 4.0 MPa or more to stop the compressor operation.	
R	S3PH	HP pressure switch (For STD compressor 2)		
U	_	Pressure regulating valve (Liquid pipe)	This valve opens at a pressure of 4.0 MPa for prevention of pressure increase, thus resulting in no damage of functional parts due to the increase of pressure in transportation or storage.	
V	_	Subcooling heat exchanger	Used to subcool liquid refrigerant from the electronic expansion valve (cooling) or indoor units (heating).	
w	_	Capillary tube	Used to return the refrigerating oil separated through the oil separator to the INV compressor.	
Х	_	Capillary tube	Used to return the refrigerating oil separated through the oil separator to the STD1 compressor.	
Y	_	Capillary tube	Used to return the refrigerating oil separated through the oil separator to the STD2 compressor.	
1	R1T	Thermistor (Outdoor air: Ta)	Used to detect outdoor temperature, correct discharge pipe temperature, and others.	
2	R2T	Thermistor (Suction pipe: Ts)	Used to detect suction pipe temperature.	
3	R31T	Thermistor (INV discharge pipe: Tdi)		
4	R32T	Thermistor (STD1 discharge pipe: Tds1)	Used to detect discharge pipe temperature, make the temperature protection control of compressor, and others.	
5	R33T	Thermistor (STD2 discharge pipe: Tds2)		
6	R4T	Thermistor (Heat exchanger deicer: Tb)	Used to detect liquid pipe temperature of air heat exchanger, determine defrosting operation, and others.	
7	R5T	Thermistor (Subcooling heat exchanger gas pipe: Tsh)	Used to detect gas pipe temperature on the evaporation side of subcooling heat exchanger, keep the superheated degree at the outlet of subcooling heat exchanger constant, and others.	
8	R6T	Thermistor (Liquid pipe: TI)	Used to detect liquid pipe temperature.	
9	R7T	Thermistor (Accumulator inlet)	Used to detect gas pipe temperature at the accumulator inlet. Keep the suction superheated degree constant in heating operation, and others.	

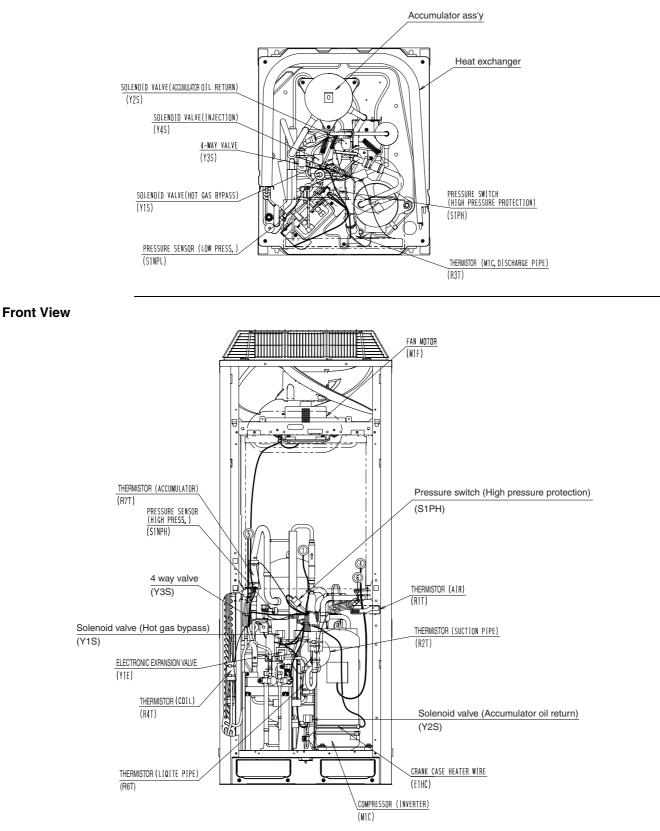
RXYQ14P(A), 16P(A), 18P(A)

3D050785C

1.5 Outdoor Air Processing Unit FXMQ125MFV1~250MFV1 1.5.1 Refrigerant System

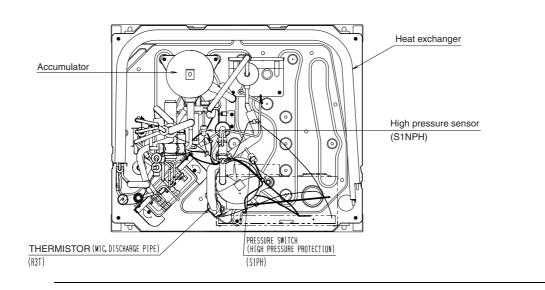
Main Control Equipment

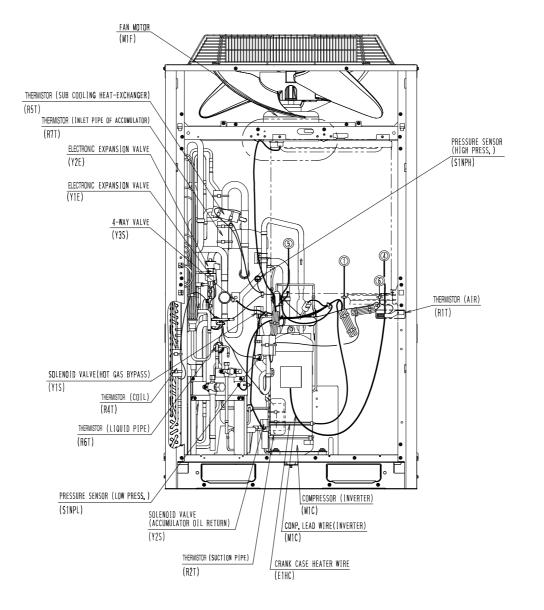
Code	Symbol	Name	Main function
A	Y1E	Motorized valve	Used to control the flow rate of refrigerant, and make the SH control while in cooling or the SC control while in heating.*
В	Y1S	Solenoid valve	Used to bypass hot gas while in heating with thermostat OFF.
С	_	Capillary tube	Used to reduce pressure from high to low in bypassing hot gas.


*SH control: Superheated control of heat exchanger outlet SC control: Subcooling control of heat exchanger outlet

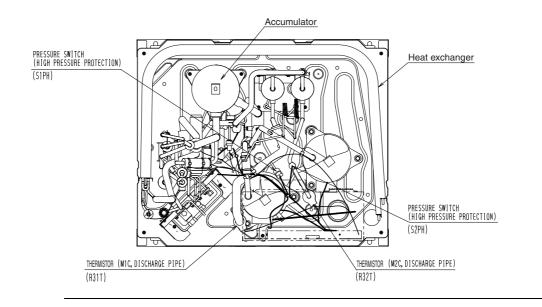
Thermistor

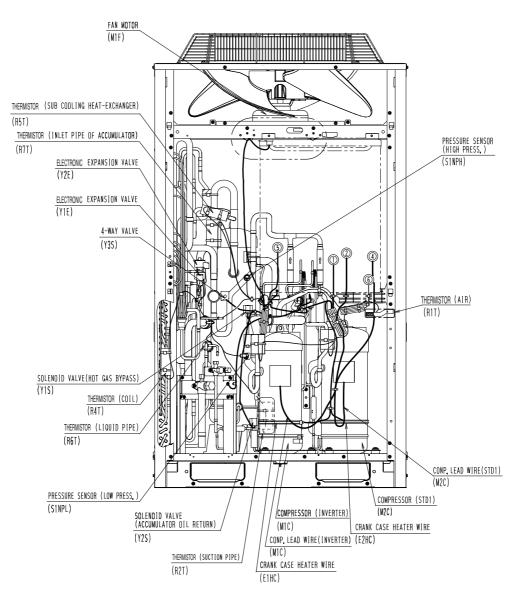
Code	Symbol	Name	Main function
Th1	R1T	Suction air temperature thermistor	Used to turn ON or OFF the thermostat and select cooling or heating operation.
Th2	R2T	Liquid pipe temperature thermistor	Used to control the opening degree of EV (Y1F) under the SC control.
Th3	R3T	Gas pipe temperature thermistor	Used to control the opening degree of EV (Y1E) under the SH control.
Th4	R4T	Discharge air temperature thermistor	Used to control the electric expansion valve opening and thermostat ON/OFF so as to keep the discharge air temperature at the set temperature.


2. Functional Parts Layout2.1 RXYQ5P(A)

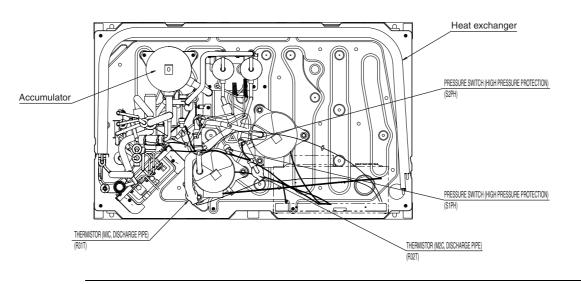

Plan

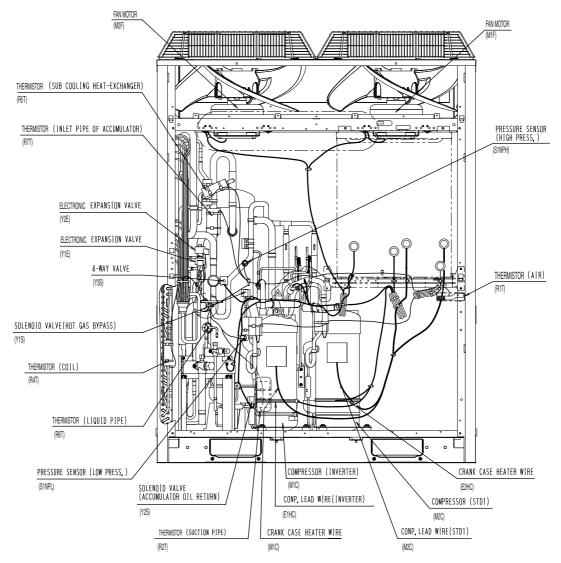
2.2 RXYQ8P(A)


Plan

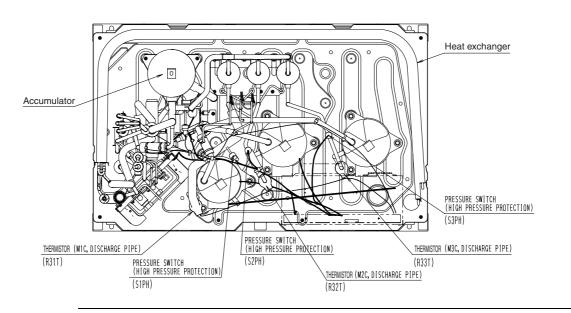


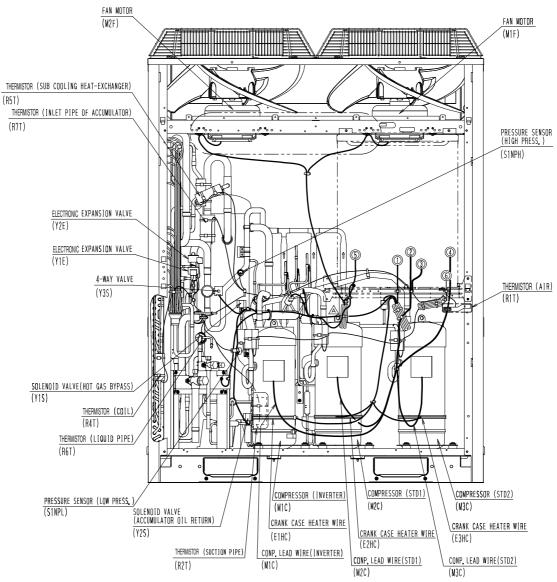
2.3 RXYQ10P(A)

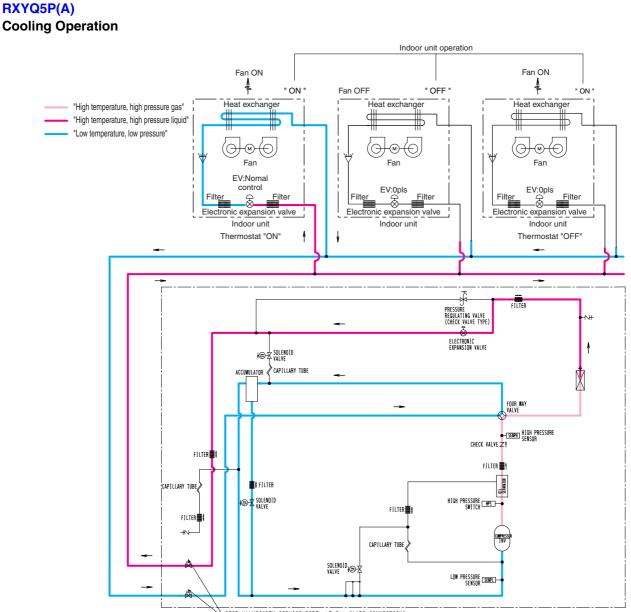

Plan



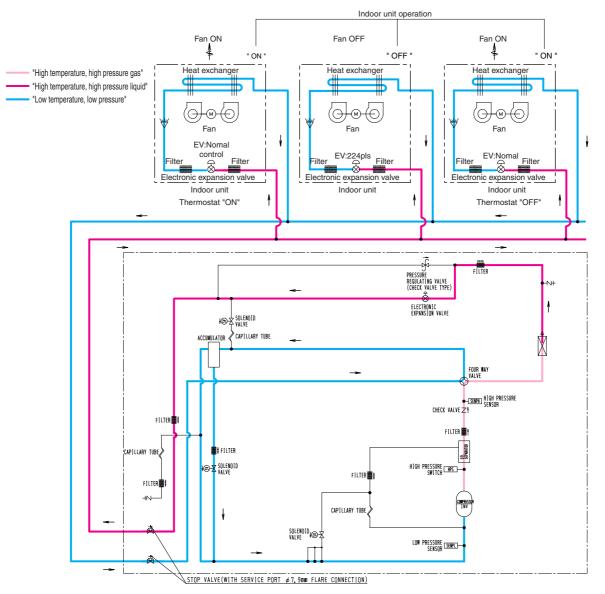
2.4 RXYQ12P(A)


Plan

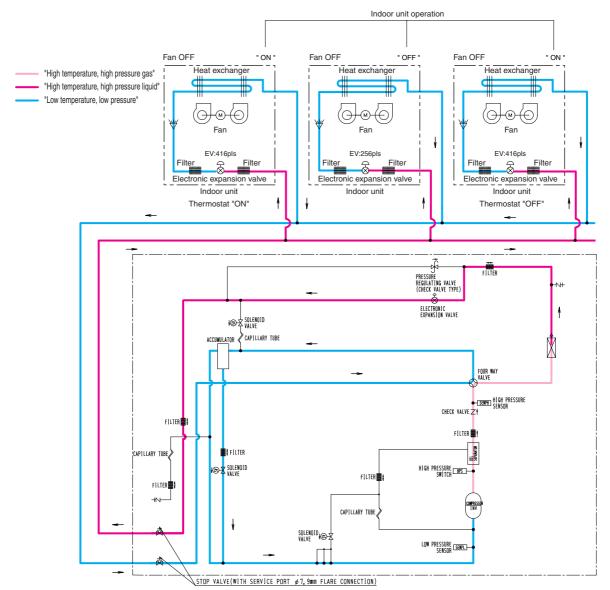



2.5 RXYQ14P(A), 16P(A), 18P(A)

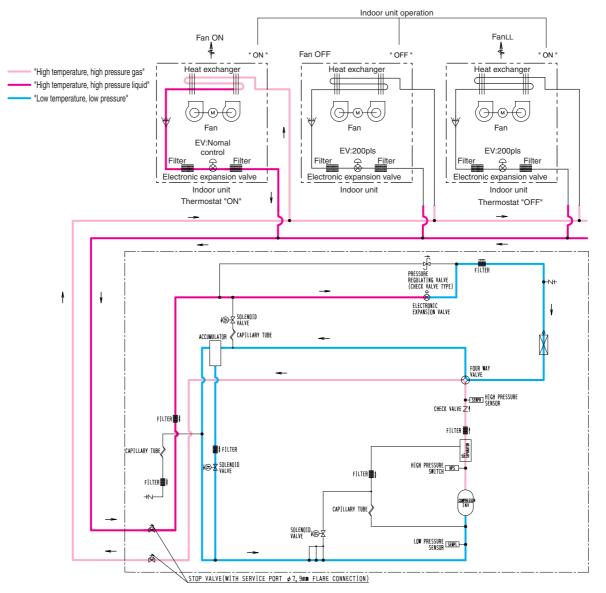
Plan

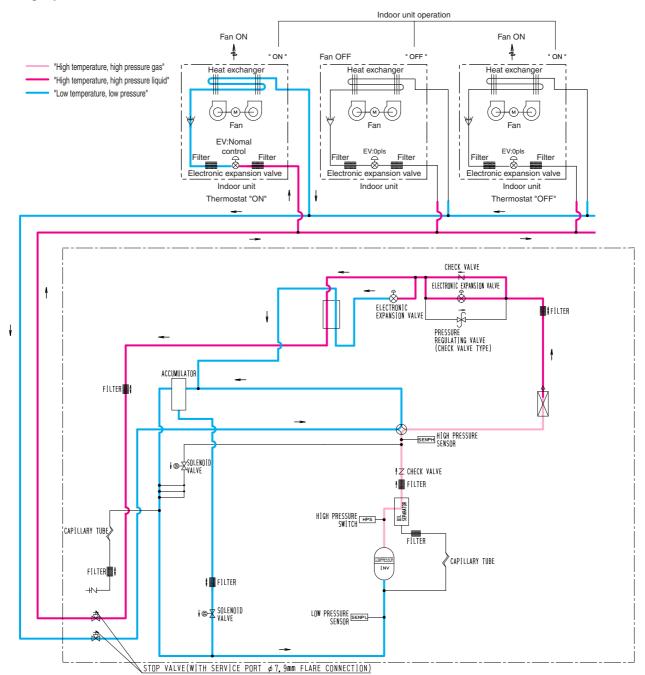


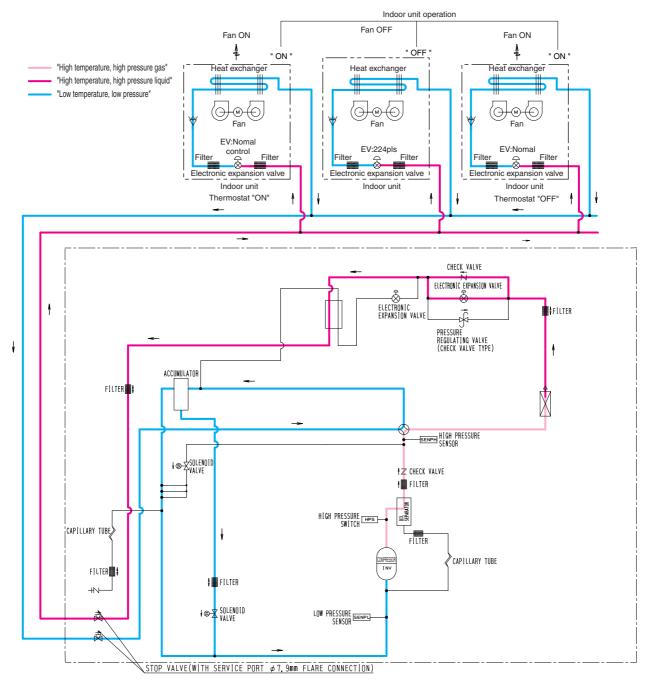
3. Refrigerant Flow for Each Operation Mode

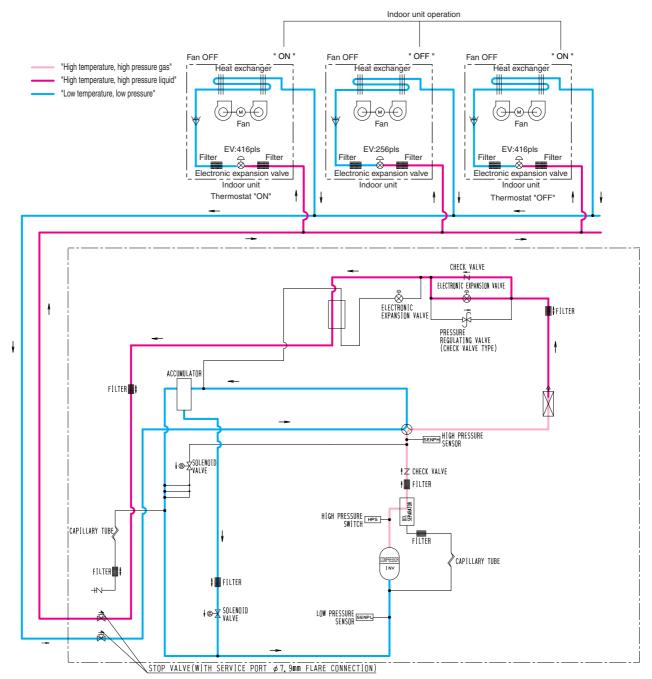


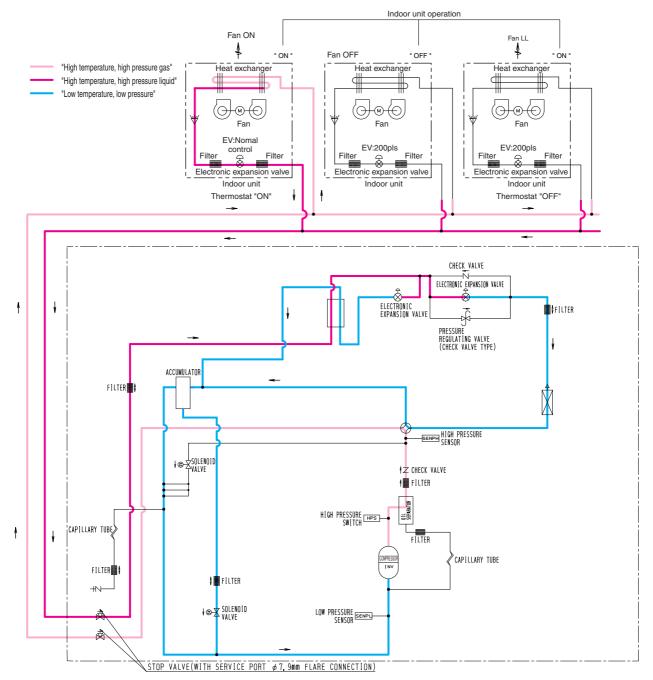
STOP VALVE(WITH SERVICE PORT \$7,9mm FLARE CONNECTION)

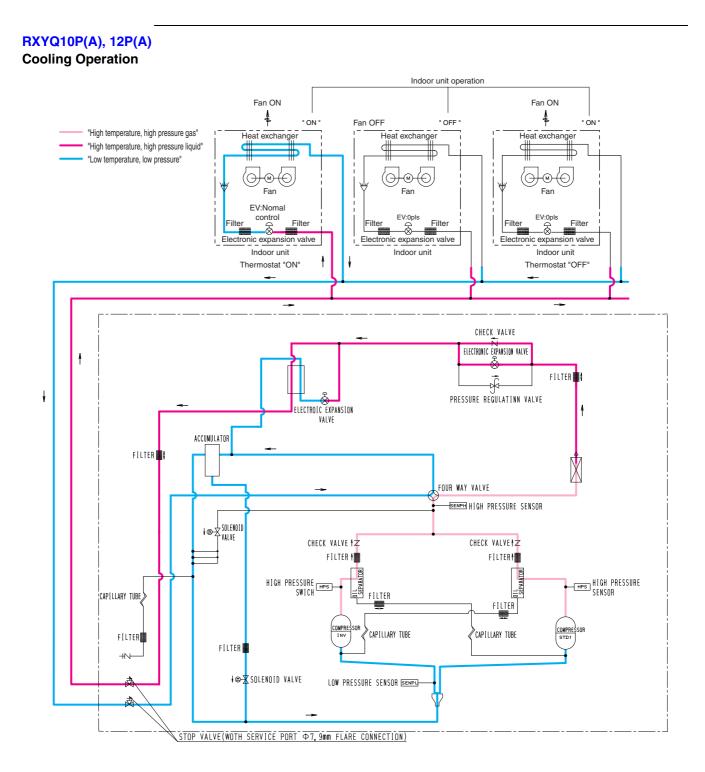

Cooling Oil Return Operation


Heating Oil Return & Defrost Operation

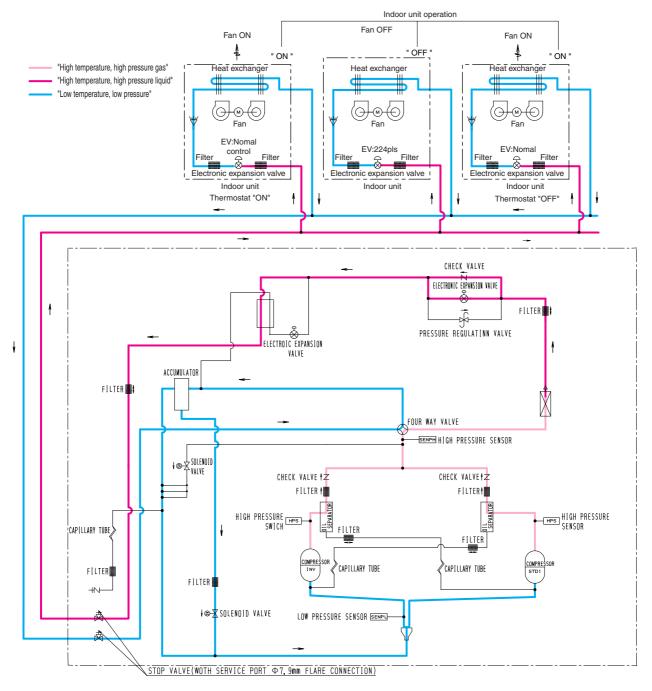

Heating Operation


RXYQ8P(A) Cooling Operation

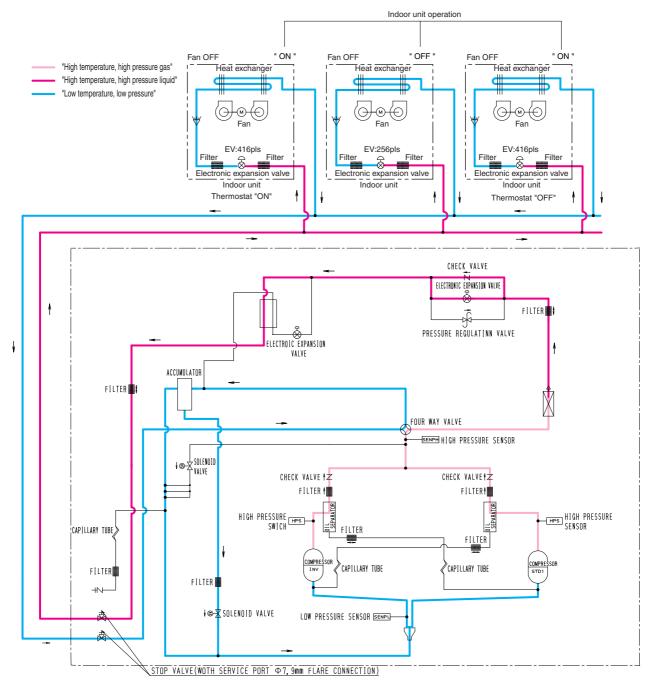

Cooling Oil Return Operation

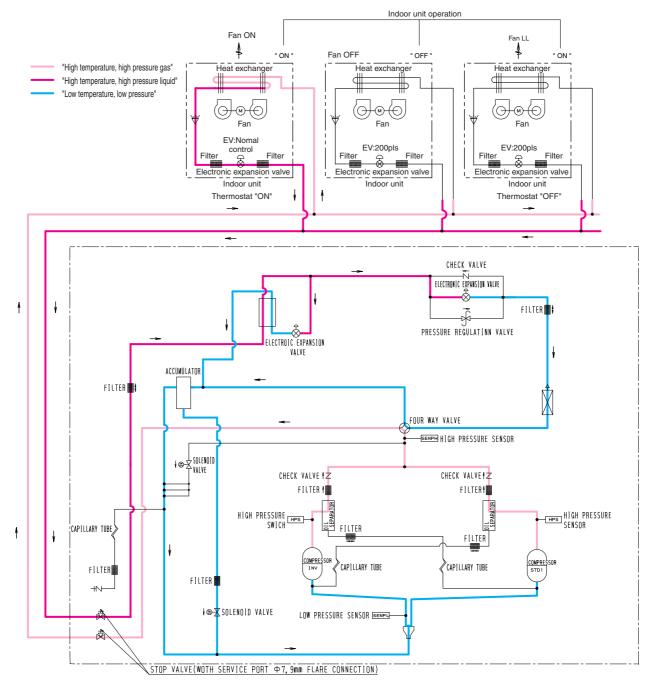


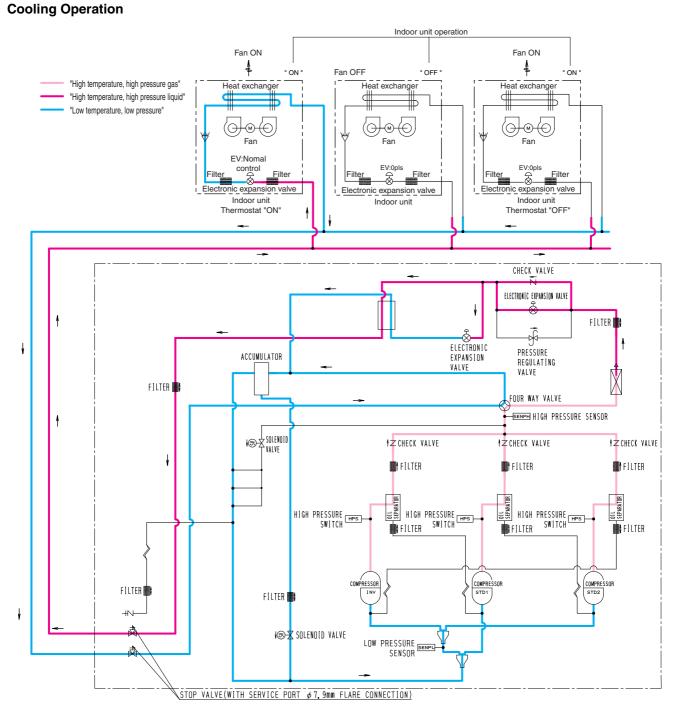
Heating Oil Return & Defrost Operation

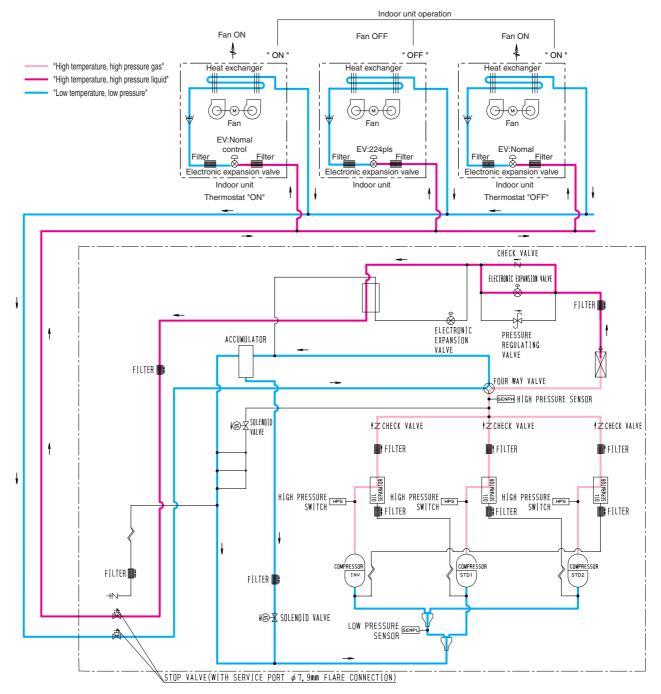


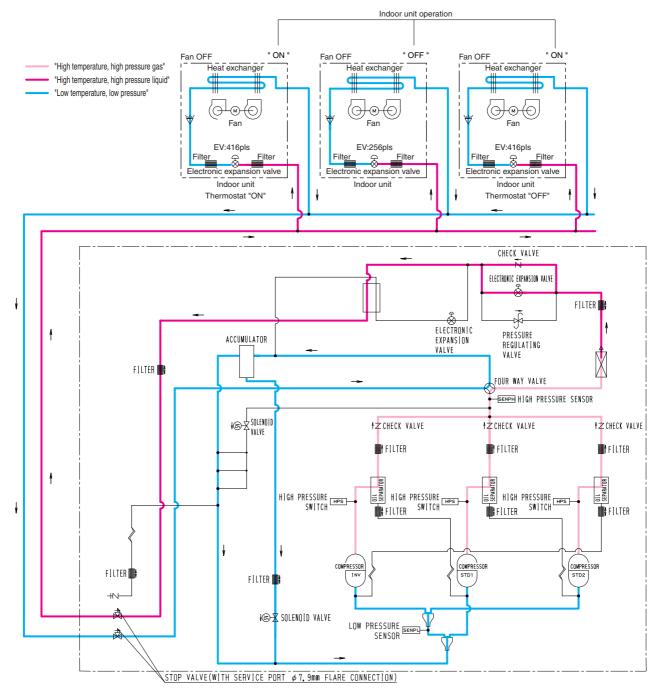
Heating Operation

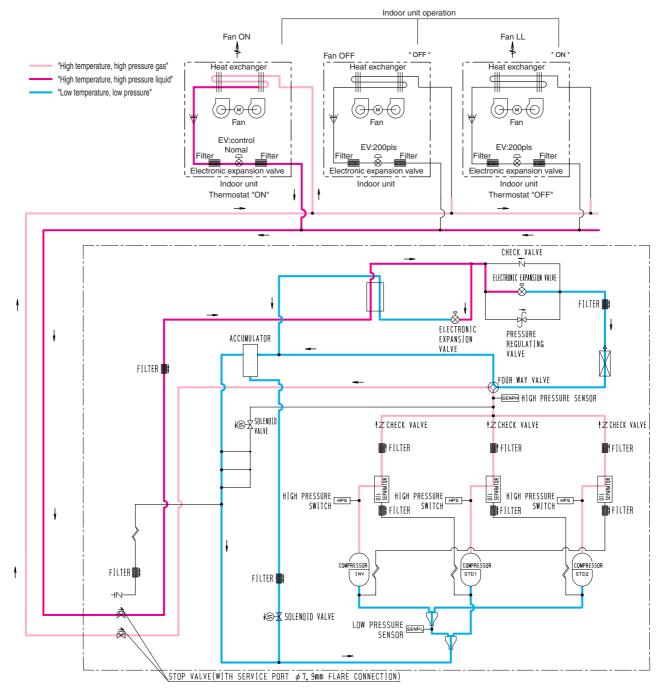



Cooling Oil Return Operation


Heating Oil Return & Defrost Operation


Heating Operation

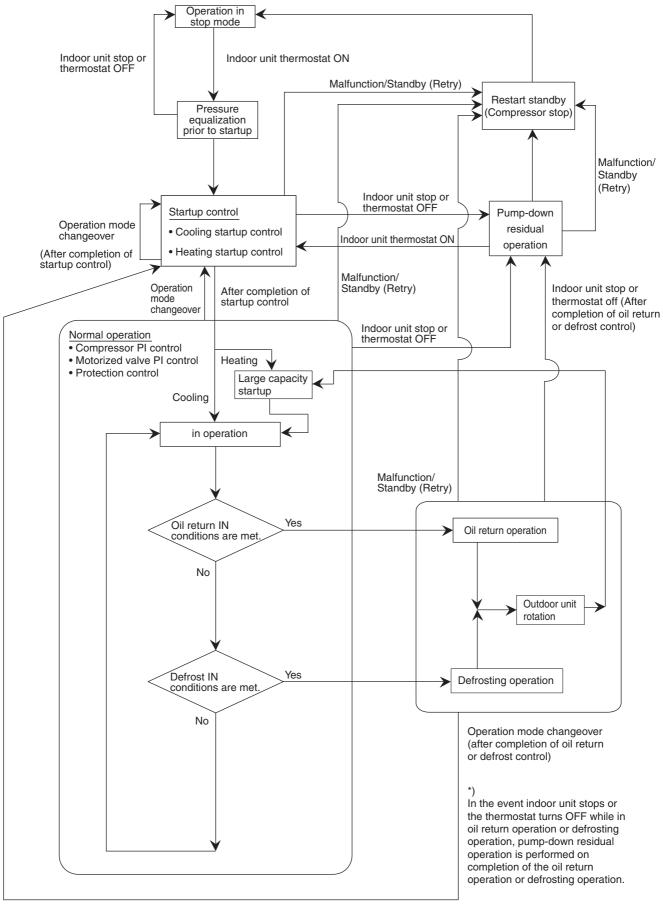

RXYQ14P(A), 16P(A), 18P(A)


Cooling Oil Return Operation

Heating Oil Return & Defrost Operation

Heating Operation

Part 4 Function


1.	1.1	ction general Symbol Operation Mode	110
2.	Basi 2.1 2.2 2.3 2.4	c Control Normal Operation Compressor PI Control Electronic Expansion Valve PI Control Step Control of Outdoor Unit Fans	112 113 141
	2.4	Outdoor Unit Fan Control in Cooling Operation	
3.	3.1 3.2 3.3 3.4 3.5	cial Control Startup Control Large Capacity Start Up Control (Heating) Oil Return Operation Defrosting Operation Pump-down Residual Operation	143 144 145 147 148
	3.6	Standby	
	3.7	Stopping Operation	
4.		ection Control	
	4.1 4.2	High Pressure Protection Control	
	4.3	Discharge Pipe Protection Control	
	4.4	Inverter Protection Control	
	4.5	STD Compressor Overload Protection	
	4.6	Injection Control (only for RXYQ5P(A))	156
5.	Othe	er Control	
	5.1	Outdoor Unit Rotation	
	5.2	Emergency Operation	
	5.3	Demand Operation	
	5.4	Heating Operation Prohibition	
6.		ne of Control (Indoor Unit)	
	6.1	Drain Pump Control	
	6.2 6.3	Louver Control for Preventing Ceiling Dirt Thermostat Sensor in Remote Controller	
	6.4	Thermostat Control While in Normal Operation	
	6.5	Thermostat Control in Dry Operation	
	6.6	Electronic Expansion Valve Control	
	6.7	Hot Start Control (In Heating Operation Only)	
	6.8	Freeze Prevention	
	6.9	Heater Control	
	6.10	List of Swing Flap Operations	173
	6.11	Control of Outdoor Air Processing Unit	
		(Unique Control for Outdoor Air Processing Unit)	174

1. Function general

1.1 Symbol

Symbol	Electric symbol	Description or function
20S1	Y3S	Four way valve (Energize during heating)
DSH	-	Discharge pipe superheated degree
DSHi	-	Discharge pipe superheat of inverter compressor
DSHs	-	Discharge pipe superheat of standard compressor
EV	-	Opening of electronic expansion valve
EV1	Y1E	Electronic expansion valve for main heat exchanger
EV2	Y2E	Electronic expansion valve for sub-coolig heat exchanger
HTDi	-	Value of INV compressor discharge pipe temperature (R31T) compensated with outdoor air temperature
HTDs	_	Value of STD compressor discharge pipe temperature (R32T, R33T) compensated with outdoor air temperature
Pc	S1NPH	Value detected by high pressure sensor
Pe	S1NPL	Value detected by low pressure sensor
SH	-	Evaporator outlet superheat
SHS	-	Target evaporator outlet superheat
SVO	Y2S	Solenoid valve for oil return
SVP	Y1S	Solenoid valve for hot gas bypass
SVT	Y4S	Solenoid valve for injection
Та	R1T (A1P)	Outdoor air temperature
Tb	R4T	Heat exchanger outlet temperature at cooling
Ts2	R2T	Suction pipe temperature detected with the suction pipe thermistor (R2T)
Tsh	R5T (–)	Temperature detected with the subcooling heat exchanger outlet thermistor (R5T)
Тс	-	High pressure equivalent saturation temperature
TcS	-	Target temperature of Tc
Те	-	Low pressure equivalent saturation temperature
TeS	-	Target temperature of Te
Tfin	R1T	Inverter fin temperature
TI	R6T	Liquid pipe temperature detected with the liquid pipe thermistor (R6T)
Тр	-	Calculated value of compressor port temperature
Ts1	R7T	Suction pipe temperature detected with the accumulator inlet thermistor

1.2 Operation Mode

2. Basic Control

2.1 Normal Operation

2.1.1 List of Functions in Normal Operation

Part Name	Symbol	(Electric	Function of Functional Part			
Fait Name	Symbol	Śymbol)	Normal Cooling	Normal Heating		
Compressor		(M1C, M2C)	PI control, High pressure protection, Low pressure protection, Td protection, INV protection,	PI control, High pressure protection, Low pressure protection, Td protection, INV protection,		
Outdoor unit fan		(M1F)	Cooling fan control	Step 7 or 8		
Four way valve	20S1	(Y1R)	OFF	ON		
Main motorized valve	EV1	(Y1E)	480 pls	PI control		
Subcool heat exchanger electronic expansion valve	EV2	(Y2E)	PI control	PI control		
Hot gas bypass valve	SVP	(Y1S)	OFF	Energized when the system is set to low pressure control mode		
Accumulator oil return valve	SV0	(Y2S)	ON	ON		

Indoor unit	actuator	Normal cooling	Normal heating
	Thermostat ON unit	Remote controller setting	Remote controller setting
Fan	Stopping unit	OFF	OFF
	Thermostat OFF unit	Remote controller setting	LL
Electronic	Thermostat ON unit	Normal opening *1	Normal opening *2
expansion	Stopping unit	0 pls	200 pls
valve	Thermostat OFF unit	0 pls	200 pls

*1. PI control : Evaporator outlet superheated degree (SH) constant.

*2. PI control : Condenser outlet subcooled degree (SC) constant.

*1 and 2 : Refer "6.6 Electronic expansion valve control" on page 171.

2.2 Compressor PI Control

Compressor PI Control

Carries out the compressor capacity PI control to maintain Te at constant during cooling operation and Tc at constant during heating operation to ensure stable unit performance.

[Cooling operation]

Controls compressor capacity to adjust Te to achieve target value (TeS).

Te set value (Make this setting while in Setting mode 2.) $% \label{eq:constraint}$

Te setting

L	M (Normal) (factory setting)	Н
3	6	9

[Heating operation]

Controls compressor capacity to adjust Tc to achieve target value (TcS).

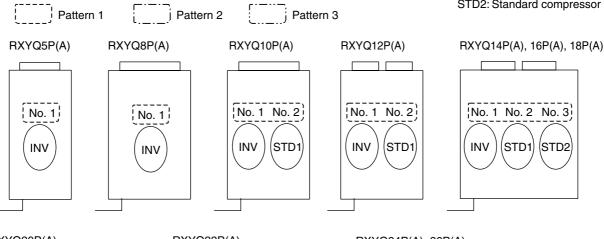
Te set value (Make this setting while in Setting mode 2.)

Tc setting

L	L M (Normal) (factory setting)		
43	46	49	

- Te : Low pressure equivalent saturation temperature (°C)
- TeS : Target Te value (Varies depending on Te setting, operating frequency, etc.)

*On multi-outdoor-unit systems, this control is made according to values of the first-priority unit, which is detected with the pressure sensor.

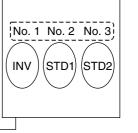

- Tc : High pressure equivalent saturation temperature (°C)
- TcS : Target Tc value (Varies depending on Tc setting, operating frequency, etc.)

*On multi-outdoor-unit systems, this control is made according to values of the first-priority unit, which is detected with the pressure sensor.

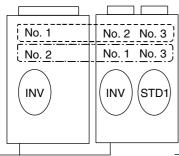
Operating Priority and Rotation of Compressors (For multi standard connection system)

Each compressor operates in the following order of priority. In the case of multi-outdoor-unit system, each compressor operates in any of Pattern 1 through Pattern 3 according to the rotation of outdoor units.

INV: Inverter compressor STD1: Standard compressor 1 STD2: Standard compressor 2



No. 2 No. 4

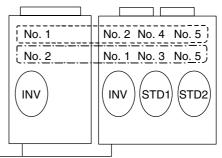

No. 1 No. 3

STD1

INV

RXYQ20P(A)

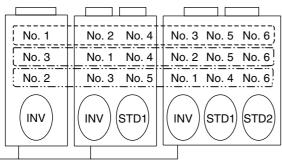
RXYQ22P(A)


No. 1 No. 3

No. 2 No. 4

STD1

INV


RXYQ24P(A), 26P(A)

STD2

RXYQ28P(A), 30P(A) (10HP : 1FAN, 12HP : 2FAN) RXYQ32P(A), 34P(A), 36P(A) No. 1 No. 3 No. 2 No. 4 No. 5 No. 1 No. 3 No. 5 No. 2 No. 4 No. 6 No. 2 No. 4 No. 1 No. 3 No. 5 No. 2 No. 4 No. 6 No. 1 No. 3 No. 5 STD2 INV INV (STD1) INV STD1 STD2 INV STD1 STD1

RXYQ38P(A)

RXYQ40P(A), 42P(A), 44P(A)

No. 1	No. 2 No. 4 No. 6	No. 3 No. 5 No. 7 }
No. 3	No. 1 No. 4 No. 6	No. 2 No. 5 No. 7]
No. 2	No. 3 No. 5 No. 7	No. 1 No. 4 No. 6
	INV STD1 STD2	INV STD1 STD2

RXYQ46P(A), 48P(A) (10HP : 1FAN, 12HP : 2FAN)

	+	+
No. 1 No. 4	No. 2 No. 5 No. 7	No. 3 No. 6 No. 8
{ No. 3 No. 6	No. 1 No. 4 No. 7	No. 2 No. 5 No. 8
No. 2 No. 5	No. 3 No. 6 No. 8	No. 1 No. 4 No. 7
INV STD1	INV STD1 STD2	INV STD1 STD2

RXYQ50P(A), 52P(A), 54P(A)

No. 1 No. 4 No. 7	No. 2 No. 5 No. 8	No. 3 No. 6 No. 9;
No. 3 No. 6 No. 9	No. 1 No. 4 No. 7	No. 2 No. 5 No. 8
No. 2 No. 5 No. 8	No. 3 No. 6 No. 9	<u>No. 1 No. 4 No. 7</u>
INV STD1 STD2	(INV STD1 STD2	INV STD1 STD2

*

- In the case of combination of 3 outdoor units, the above diagram shows master unit, slave unit 1, and slave unit 2 from left to right.
- Compressors may operate in any pattern other than those mentioned above according to the operating status.

266 Hz

ON

ON

Compressor Step Control (Multi outdoor unit connection is available on the standard connection system) Compressor operations vary with the following steps according to information in "2.2 Compressor PI Control". Furthermore, the operating priority of compressors is subject to information in "
Operating Priority and Rotation of Compressors".

50Hz

Stand-alone installation

stanu-aione	instanat	1011								-			
RXYQ5PAY1	RXYQ	8PAY1	RXYQ1	0PAY1,	12PAY1	RXYQ1	4PAY1	, 16PA`	Y1		18PAY1		
STEP INV	STEP	INV	STEP No.	INV	STD1	STEP No.	INV	STD1	STD2	STEP No.	INV	STD1	STD
NO.	<u>No.</u>	52 Hz	1	52 Hz	OFF	1	52 Hz	OFF	OFF	1	52 Hz	OFF	OFF
1 52 Hz	2	52 HZ	2	56 Hz	OFF	2	56 Hz	OFF	OFF	2	56 Hz	OFF	OFF
2 56 Hz 3 62 Hz	3	62 Hz	3	62 Hz	OFF	3	62 Hz	OFF	OFF	3	62 Hz	OFF	OFF
4 68 Hz	4	68 Hz	4	68 Hz	OFF	4	68 Hz	OFF	OFF	4	68 Hz	OFF	OFF
5 74 Hz	5	74 Hz	5	74 Hz	OFF	5	74 Hz	OFF	OFF	5	74 Hz	OFF	OFF
6 80 Hz	6	80 Hz	6	80 Hz	OFF	6	80 Hz	OFF	OFF	6	80 Hz	OFF	OFF
7 88 Hz	7	88 Hz	7	88 Hz	OFF	7	88 Hz	OFF	OFF	7	88 Hz	OFF	OF
8 96 Hz	8	96 Hz	8	96 Hz	OFF	8	96 Hz	OFF	OFF	8	96 Hz	OFF	OF
9 104 Hz	9	104 Hz	9	104 Hz	OFF	9	104 Hz	OFF	OFF	9	104 Hz	OFF	OF
10 110 Hz	10	110 Hz	10	110 Hz	OFF	10	110 Hz	OFF	OFF	10	110 Hz	OFF	OF
11 116 Hz	11	116 Hz	11	116 Hz	OFF	11	116 Hz	OFF	OFF	11	116 Hz	OFF	OF
12 124 Hz	12	124 Hz	12	124 Hz	OFF	12	124 Hz	OFF	OFF	12	124 Hz	OFF OFF	OF
13 132 Hz	13	132 Hz	13	132 Hz	OFF	13	132 Hz	OFF	OFF	<u>13</u> 14	132 Hz 144 Hz	OFF	OF
14 144 Hz	14	144 Hz	14	144 Hz	OFF	14 15	144 Hz 158 Hz	OFF OFF	OFF OFF	14	144 HZ	OFF	OF
15 158 Hz	15	158 Hz	15	158 Hz	OFF	15	158 Hz 166 Hz	OFF	OFF	16	166 Hz	OFF	OF
16 166 Hz	16	166 Hz	16	166 Hz	OFF	16	176 Hz	OFF	OFF	17	176 Hz	OFF	OF
17 176 Hz		176 Hz	17	176 Hz	OFF	18	176 HZ	OFF	OFF	18	188 Hz	OFF	OF
18 188 Hz	18	188 Hz	<u>18</u> 19	188 Hz	OFF OFF	19	202 Hz	OFF	OFF	19	202 Hz	OFF	OF
	19	202 Hz	20	202 Hz 210 Hz	OFF	20	210 Hz	OFF	OFF	20	210 Hz	OFF	0F
	20	210 Hz	20	52 Hz	OFF	21	52 Hz	ON	OFF	21	52 Hz	ON	OF
	21 22	218 Hz 232 Hz	22	62 Hz	ON	22	62 Hz	ÖN	OFF	22	62 Hz	ON	OF
			23	68 Hz	ON	23	68 Hz	ON	OFF	23	68 Hz	ÖN	ÖF
	23 24	248 Hz 266 Hz	24	74 Hz	ON	24	74 Hz	ON	OFF	24	74 Hz	ON	OF
	24	200 HZ	25	80 Hz	ON	25	80 Hz	ÓN	OFF	25	80 Hz	ON	OF
			26	88 Hz	ON ON	26	88 Hz	ON	OFF	26	88 Hz	ON	OF
			27	96 Hz	ON	27	96 Hz	ON	OFF	27	96 Hz	ON	OF
			28	104 Hz	ON	28	104 Hz	ON	OFF	28	104 Hz	ON	OF
			29	116 Hz	ON	29	116 Hz	ON	OFF	29	116 Hz	ON	OF
			30	124 Hz	ON	30	124 Hz	ON	OFF	30	124 Hz	ON	OF
			31	132 Hz	ON	31	132 Hz	ON	OFF	31	132 Hz	ON	OF
			32	144 Hz	ON	32	144 Hz	ON	OFF	32	144 Hz	ON	OF
			33	158 Hz	ON	33	158 Hz	ON	OFF	33	158 Hz	ON	OF
			34	176 Hz	ON	34	176 Hz	ON	OFF	<u>34</u> 35	176 Hz	ON	OF OF
			35	188 Hz	ON	35	188 Hz	ON	OFF	35	188 Hz 202 Hz	ON ON	OF
			36	202 Hz	ON	<u>36</u> 37	202 Hz 210 Hz	ON ON	OFF OFF	36	202 HZ 210 Hz	ON	OF
			37	210 Hz	ON	37	52 Hz	ON	OFF	38	52 Hz	ON	10
						39	62 Hz	ON	ON	39	62 Hz	ON	0
						40	74 Hz	ON	ON	40	74 Hz	ON	0
						40	88 Hz	ON	ON	41	88 Hz	ON	10
						42	96 Hz	ON	ON	42	96 Hz	ON	0
						43	104 Hz	ON	ON	43	104 Hz	ON	10
						44	124 Hz	ON	ON	44	124 Hz	ÖN	10
						45	144 Hz	ON	ON	45	144 Hz	ON	10
						46	158 Hz	ON	ON	46	158 Hz	ON	10
						47	166 Hz	ÖN	ON	47	166 Hz	ON	O
						48	176 Hz	ON	ON	48	176 Hz	ON	0
						49	188 Hz	ON	ON	49	188 Hz	ON	0
						50	202 Hz	ÓN	ÓN	50	202 Hz	ON	0
						51	210 Hz	ON	ON	51	210 Hz	ON	0
										52	218 Hz	ON	10
										53	232 Hz	ON	0
										54	248 Hz	ON	0

Notes:

1. INV : Inverter compressor

STD1 : Standard compressor 1

STD2 : Standard compressor 2

2. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

Two-unit multi system

RXYQ20PAY1 (8+12HP)

(To increase Step No.)							
STEP No.	Master unit INV	Slave unit INV	STD				
1	52 Hz	52 Hz	OFF				
2	56 Hz	56 Hz	OFF				
3	62 Hz	62 Hz	OFF				
4	66 Hz	66 Hz	OFF				
5	74 Hz	74 Hz	OFF				
6	80 Hz	80 Hz	OFF				
7	88 Hz	88 Hz	OFF				
8	96 Hz	96 Hz	OFF				
9	104 Hz	104 Hz	OFF				
10	110 Hz	110 Hz	OFF				
11	116 Hz	116 Hz	OFF				
12	124 Hz	124 Hz	OFF				
13	132 Hz	132 Hz	OFF				
14	144 Hz	144 Hz	OFF				
15	158 Hz	158 Hz	OFF				
17	166 Hz	166 Hz	OFF				
18	176 Hz	176 Hz	OFF				
19	80 Hz	80 Hz	ON				
20	88 Hz	88 Hz	ON				
21	96 Hz	96 Hz	ON				
22	104 Hz	104 Hz	ON				
23	116 Hz	116 Hz	ON				
24	124 Hz	124 Hz	ON				
25	132 Hz	132 Hz	ON				
26	144 Hz	144 Hz	ON				
27	158 Hz	158 Hz	ÓN				
28	176 Hz	176 Hz	ON				
29	188 Hz	188 Hz	ON				
30	202 Hz	202 Hz	ÓN				
31	210 Hz	210 Hz	ON				
32	218 Hz	210 Hz	ON				
33	232 Hz	210 Hz	ÓŇ				
34	248 Hz	210 Hz	ON				
35	266 Hz	210 Hz	ON				

(To decrease Step No.)							
STEP	Master	Slave					
STEP No.	unit	unit	STD				
INU.	INV	INV					
1	52 Hz	OFF	OFF				
2	56 Hz	OFF	OFF				
3	62 Hz	OFF	OFF				
4	68 Hz	OFF	OFF				
5	74 Hz	OFF	OFF				
6	80 Hz	OFF	OFF				
7	88 Hz	OFF	OFF				
8	96 Hz	OFF	OFF				
9	104 Hz	OFF	OFF				
10	52 Hz	52 Hz	OFF				
11	56 Hz	56 Hz	OFF				
12	62 Hz	62 Hz	OFF				
13	66 Hz	66 Hz	OFF				
14	70 Hz	70 Hz	OFF				
15	74 Hz	74 Hz	OFF				
16	80 Hz	80 Hz	OFF				
17	88 Hz	88 Hz	OFF				
18	92 Hz	96 Hz	OFF				
19	96 Hz	96 Hz	OFF				
20	104 Hz	104 Hz	OFF				
21	110 Hz	110 Hz	OFF				
22	116 Hz	116 Hz	OFF				
23	124 Hz	124 Hz	OFF				
24	132 Hz	132 Hz	OFF				
25	52 Hz	52 Hz	ON				
26	62 Hz	62 Hz	ON				
27	68 Hz	68 Hz	ON				
28	74 Hz	74 Hz	ON				
29	80 Hz	80 Hz	ON				
30	88 Hz	88 Hz	ON				
31	96 Hz	96 Hz	ON				
32	104 Hz	104 Hz	ON				
33	116 Hz	116 Hz	ON				
34	124 Hz	124 Hz	ON				
35	132 Hz	132 Hz	ON				
36	144 Hz	144 Hz	ON				
37	158 Hz	158 Hz	ON				
38	176 Hz	176 Hz	ON				
39	188 Hz	188 Hz	ON				
40	202 Hz	202 Hz	ON				
41	210 Hz	210 Hz	ON				
42	218 Hz	210 Hz	ON				
43	232 Hz	210 Hz	ON				
44	248 Hz	210 Hz	ON				
45	266 Hz	210 Hz	ON				

STEP	Master	Slave	075
No.	unit INV	unit INV	STD
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	74 Hz	74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	144 Hz	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	158 Hz	158 Hz	ON 2
32	166 Hz	166 Hz	ON 2
33	176 Hz	176 Hz	ON 2
34	188 Hz	188 Hz	ON 2
35	202 Hz	202 Hz	ON 2
36	210 Hz	210 Hz	ON 2

RXYQ22PAY1 (10+12HP)

	(To decrea	se Step N	0.)
ł	STEP No.	Master unit INV	Slave unit INV	STD
	1	52 Hz	OFF	OFF
	2	56 Hz	OFF	OFF
	3	62 Hz	OFF	OFF
	4	68 Hz	OFF	OFF
	5	74 Hz	OFF	OFF
	6	80 Hz	OFF	OFF
	7	88 Hz	OFF	OFF
	8	96 Hz	OFF	OFF
	9	104 Hz	OFF	OFF
	10	52 Hz	52 Hz	OFF
	11	56 Hz	56 Hz	OFF
	12	62 Hz	62 Hz	OFF
	13	66 Hz	66 Hz	OFF
	14	70 Hz	70 Hz	OFF
	15	74 Hz	74 Hz	OFF
	16	80 Hz	80 Hz	OFF
	17	88 Hz	88 Hz	OFF
	18	92 Hz	92 Hz	OFF
	19	96 Hz	96 Hz	OFF
	20	104 Hz	104 Hz	OFF
	21	110 Hz	110 Hz	OFF
	22	116 Hz	116 Hz	OFF
	23	124 Hz	124 Hz	OFF
	24	132 Hz	132 Hz	OFF
	25	52 Hz	52 Hz	ON 1
	26	62 Hz	62 Hz	ON 1
	27	68 Hz	68 Hz	ON 1
	28	74 Hz	74 Hz	ON 1
	29	80 Hz	80 Hz	ON 1
	30	88 Hz	88 Hz	ON 1
	31	96 Hz	96 Hz	ON 1
	32	104 Hz	104 Hz 52 Hz	ON 1
	33 34	52 Hz 62 Hz	62 Hz	ON 2 ON 2
	35 36	74 Hz 88 Hz	74 Hz 88 Hz	ON 2 ON 2
	36	96 Hz	96 Hz	ON 2 ON 2
	37	104 Hz	104 Hz	ON 2 ON 2
	39	104 Hz	104 Hz	ON 2
	40	124 Hz	124 HZ	ON 2
	40	158 Hz	158 Hz	ON 2
	41	166 Hz	166 Hz	ON 2
	43	176 Hz	176 Hz	ON 2
	43	188 Hz	188 Hz	ON 2
	45	202 Hz	202 Hz	ON 2
	46	210 Hz	210 Hz	ON 2
		=10112		

represents the range in which "Hz" is not stepped up.

Notes:

1. INV : Inverter compressor

STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ24PAY1 (8+16HP)

(To increase Step No.) Master Slave STEP STD unit unit No INV INV OFF 52 Hz 52 Hz OFF OFF OFF OFF OFF OFF 56 Hz 56 Hz 62 Hz 62 Hz 66 Hz 66 Hz 70 Hz 74 Hz 70 Hz 74 Hz 80 Hz 80 Hz 8 88 Hz 88 Hz 96 Hz 96 Hz OFF 96 HZ 96 HZ 104 Hz 104 Hz 110 Hz 110 Hz 116 Hz 116 Hz 124 Hz 124 Hz OFF OFF OFF OFF 10 11 12 13 132 Hz 132 Hz 144 Hz 144 Hz OFF OFF OFF 14 15 144 Hz 144 Hz 158 Hz 158 Hz 166 Hz 166 Hz 176 Hz 176 Hz 16 OFF OFF ON 1 17 18 19 80 Hz 80 Hz 80 Hz 80 Hz 88 Hz 88 Hz 96 Hz 96 Hz 104 Hz 104 Hz 116 Hz 116 Hz 124 Hz 124 Hz 132 Hz 132 Hz 88 Hz 88 Hz ON 1 ON 1 20 21 ON 1 ON 1 ON 1 ON 1 ON 1 22 23 24 26 27 28 29 30 158 Hz 158 Hz UN 2 166 Hz 166 Hz ON 2 176 Hz 176 Hz ON 2 188 Hz 188 Hz ON 2 202 Hz 202 Hz ON 2 210 Hz 210 Hz ON 2 210 Hz 210 Hz ON 2 232 Hz 210 Hz ON 2 232 Hz 210 Hz ON 2 248 Hz 210 Hz ON 2 266 Hz 210 Hz ON 2 31 33 35 36 39 40

(To decrease Step No.)				
STEP	Master unit	Slave unit	STD	
No.	INV	INV	010	
1	52 Hz	OFF	OFF	
2	56 Hz	OFF	OFF	
3	62 Hz	OFF	OFF	
4	68 Hz	OFF	OFF	
5	74 Hz	OFF	OFF	
6	80 Hz	OFF	OFF	
7	88 Hz	OFF	OFF	
8	96 Hz	OFF	OFF	
9	104 Hz	OFF	OFF	
10	52 Hz	52 Hz	OFF	
11	56 Hz	56 Hz	OFF	
12	62 Hz	62 Hz	OFF	
13	66 Hz	66 Hz	OFF	
14	70 Hz	70 Hz	OFF	
15	74 Hz	74 Hz	OFF	
16	80 Hz	80 Hz	OFF	
17	88 Hz	88 Hz	OFF	
18	92 Hz	92 Hz	OFF	
19	96 Hz	96 Hz	OFF	
20	104 Hz	104 Hz	OFF	
21	110 Hz	110 Hz	OFF	
22	116 Hz	116 Hz	OFF	
23 24	124 Hz	124 Hz	OFF	
24	132 Hz 52 Hz	132 Hz 52 Hz	OFF ON 1	
			ON 1	
<u>26</u> 27	62 Hz 68 Hz	62 Hz 68 Hz	ON 1	
28	74 Hz	74 Hz	ON 1	
29	80 Hz	80 Hz	ON 1	
30	88 Hz	88 Hz	ON 1	
31	96 Hz	96 Hz	ON 1	
32	104 Hz	104 Hz	ON 1	
33	52 Hz	52 Hz	ON 2	
34	62 Hz	62 Hz	ON 2	
35	74 Hz	74 Hz	ON 2	
36	88 Hz	88 Hz	ON 2	
37	96 Hz	96 Hz	ON 2	
38	104 Hz	104 Hz	ON 2	
39	124 Hz	124 Hz	ON 2	
40	144 Hz	144 Hz	ON 2	
41	158 Hz	158 Hz	ON 2	
42	166 Hz	166 Hz	ON 2	
43	176 Hz	176 Hz	ON 2	
44	188 Hz	188 Hz	ON 2	
45	202 Hz	202 Hz	ON 2	
46	210 Hz	210 Hz	ON 2	
47	218 Hz	210 Hz	ON 2	
48	232 Hz	210 Hz	ON 2	
49	248 Hz	210 Hz	ON 2	
50	266 Hz	210 Hz	ON 2	

(To increase Step No.) Master Slave STEP STD unit unit No. INV INV OF 52 Hz 52 Hz OFF OFF OFF OFF OFF OFF 56 Hz 62 Hz 56 Hz 62 Hz 66 Hz 66 Hz 70 Hz 70 Hz 74 Hz 74 Hz 80 Hz 80 Hz 88 Hz 88 Hz 96 Hz 96 Hz 104 Hz 104 Hz 8 OFF OFF OFF OFF OFF 10 110 Hz 110 Hz 11 116 Hz 116 Hz 124 Hz 124 Hz 12 13 132 Hz 124 Hz 132 Hz 132 Hz 144 Hz 144 Hz 158 Hz 158 Hz 166 Hz 166 Hz 176 Hz 176 Hz OFF OFF OFF 14 15 16 OFI 17 18 OFF 19 80 Hz 80 Hz ON 1 88 Hz 88 Hz 96 Hz 96 Hz ON 1 ON 1 20 21 96 HZ 96 HZ ON 1 104 Hz 104 Hz ON 1 116 Hz 116 HZ ON 1 124 Hz 124 Hz ON 1 132 Hz 132 Hz ON 1 132 Hz 00 1 00 1 22 23 24 88 Hz 88 Hz 96 Hz 96 Hz ON 2 ON 2 26 104 Hz 104 Hz ON 2 124 Hz 124 Hz ON 2 28 29 30 144 Hz 144 Hz ON 2 158 Hz 158 Hz ON 2 158 Hz 158 Hz ON 2 166 Hz 166 Hz ON 2 176 Hz 176 Hz ON 2 188 Hz 188 Hz ON 2 202 Hz 202 Hz ON 2 210 Hz 210 Hz ON 2 232 Hz 213 Hz ON 2 232 Hz 232 Hz ON 2 248 Hz 248 Hz ON 2 266 Hz 266 Hz ON 2 33 35 36 39 40 266 Hz 266 Hz ON 2

RXYQ26PAY1 (8+18HP)

(To decrease Step No.)					
STEP No.	Master unit INV	Slave unit INV	STD		
1	52 Hz	ÖFF	OFF		
2	56 Hz	OFF	OFF		
3	62 Hz	OFF	OFF		
4	68 Hz	OFF	OFF		
5	74 Hz	OFF	OFF		
6	80 Hz	OFF	OFF		
7	88 Hz	OFF	OFF		
8	96 Hz	OFF	OFF		
9	104 Hz	OFF	OFF		
10	52 Hz	52 Hz	OFF		
11	-	-	OFF		
	56 Hz	56 Hz			
12	62 Hz	62 Hz	OFF		
13	66 Hz	66 Hz	OFF		
14	70 Hz	70 Hz	OFF		
15	74 Hz	74 Hz	OFF		
16	80 Hz	80 Hz	OFF		
17	88 Hz	88 Hz	OFF		
18	92 Hz	92 Hz	OFF		
19	96 Hz	96 Hz	OFF		
20	104 Hz	104 Hz	OFF		
21	110 Hz	110 Hz	OFF		
22	116 Hz	116 Hz	OFF		
23	124 Hz	124 Hz	OFF		
24	132 Hz	132 Hz	OFF		
25	52 Hz	52 Hz	ON 1		
26	62 Hz	62 Hz	ON 1		
27	68 Hz	68 Hz	ON 1		
28	74 Hz	74 Hz	ON 1		
29	80 Hz	80 Hz	ON 1		
30	88 Hz	88 Hz	ON 1		
31	96 Hz	96 Hz	ON 1		
32	104 Hz	104 Hz	ON 1		
33	52 Hz	52 Hz	ON 2		
34	62 Hz	62 Hz	ON 2		
35	74 Hz	74 Hz	ON 2		
36	88 Hz	88 Hz	ON 2		
37	96 Hz	96 Hz	ON 2		
38	104 Hz	104 Hz	ON 2		
39	124 Hz	124 Hz	ON 2		
40	144 Hz	144 Hz	ON 2		
41	158 Hz	158 Hz	ON 2		
42	166 Hz	166 Hz	ON 2		
43	176 Hz	176 Hz	ON 2		
44	188 Hz	188 Hz	ON 2		
44	202 Hz	202 Hz	ON 2		
45	210 Hz	202 HZ	ON 2		
40	210 Hz	218 Hz	ON 2		
47	232 Hz	232 Hz	ON 2		
40	248 Hz	232 HZ 248 Hz	ON 2		
50	266 Hz	266 Hz	ON 2		

represents the range in which "Hz" is not stepped up.

Notes:

1. INV : Inverter compressor

STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

represents the range in which "Hz" is not stepped up.

RXYQ28PAY1, 30PAY1 (10/12+18HP)

(To increase Step No.) Master Slave STEP STD unit unit No INV INV 52 Hz 56 Hz 62 Hz OF 52 Hz OFF OFF OFF 56 Hz 62 Hz 66 Hz 66 Hz 70 Hz 74 Hz 70 Hz 74 Hz O 80 Hz 80 Hz OF 8 88 Hz 88 Hz 96 Hz 96 Hz OF OF 9 96 HZ 96 HZ 104 Hz 104 Hz 110 Hz 110 Hz 116 Hz 116 Hz 124 Hz 124 Hz 10 OFF OFF OFF OFF 11 12 13 132 Hz 132 Hz 144 Hz 144 Hz OFF OFF OFF 14 15 16 158 Hz 158 Hz 166 Hz 166 Hz 176 Hz 176 Hz 1 OF 18 19 OFF 80 Hz 80 Hz ON 1 80 Hz 80 Hz 88 Hz 88 Hz 96 Hz 96 Hz 104 Hz 104 Hz 116 Hz 116 Hz 124 Hz 124 Hz 132 Hz 132 Hz 88 Hz 88 Hz 20 21 ON 1 ON 1 ON 1 ON 1 ON 1 ON 1 22 23 ON 2 ON 3 88 Hz 88 Hz 96 Hz 96 Hz 26 27 28 29 30 104 Hz 104 Hz 124 Hz 124 Hz 144 Hz 144 Hz 92 Hz 92 Hz 92 Hz 92 Hz 104 Hz 104 Hz 116 Hz 116 Hz 124 Hz 124 Hz 144 Hz 124 Hz 158 Hz 158 Hz 166 Hz 166 Hz 176 Hz 176 Hz 176 Hz 176 Hz 188 Hz 188 Hz 202 Hz 202 Hz 210 Hz 210 Hz 32 ON 3 ON 3 34 35 36 37 ON ON 3 ON 3 ON 3 ON 3 ON 3 ON 3 38 39 40 **ON** 202 HZ 202 HZ 210 Hz 210 Hz 210 Hz 218 Hz 210 Hz 232 Hz 210 Hz 248 Hz 210 Hz 266 Hz ON 3 ON 3 ON 3 ON 3 ON 3 ON 3 41 42 43

(To decrease Step No.)				
STEP No.	Master unit	Slave unit	STD	
1	INV 52 Hz	INV OFF	OFF	
2		OFF	OFF	
	56 Hz			
3	62 Hz	OFF	OFF	
4	68 Hz	OFF	OFF	
5	74 Hz	OFF	OFF	
6	80 Hz	OFF OFF	OFF	
7	88 Hz			
8	96 Hz			
9	104 Hz	OFF	OFF	
10	52 Hz	52 Hz	OFF	
11	56 Hz	56 Hz	OFF	
12	62 Hz	62 Hz	OFF	
13	66 Hz	66 Hz	OFF	
14	70 Hz	70 Hz	OFF	
15	74 Hz	74 Hz	OFF	
16	80 Hz	80 Hz	OFF	
17	88 Hz	88 Hz	OFF	
<u>18</u> 19	92 Hz 96 Hz	92 Hz 96 Hz	OFF OFF	
	104 Hz	104 Hz	OFF	
20 21			OFF	
22	110 Hz 116 Hz	110 Hz 116 Hz	OFF	
23	124 Hz	124 Hz	OFF	
23	132 Hz	132 Hz	OFF	
25	52 Hz	52 Hz	ON 1	
26	62 Hz	62 Hz	ON 1	
27	68 Hz	68 Hz	ON 1	
28	74 Hz	74 Hz	ON 1	
29	80 Hz	80 Hz	ON 1	
30	88 Hz	88 Hz	ON 1	
31	96 Hz	96 Hz	ON 1	
32	104 Hz	104 Hz	ON 1	
33	52 Hz	52 Hz	ON 2	
34	62 Hz	62 Hz	ON 2	
35	74 Hz	74 Hz	ON 2	
36	88 Hz	88 Hz	ON 2	
37	96 Hz	96 Hz	ON 2	
38	52 Hz	52 Hz	ON 3	
39	62 Hz	62 Hz	ON 3	
40	74 Hz	74 Hz	ON 3	
41	92 Hz	92 Hz	ON 3	
42	104 Hz	104 Hz	ON 3	
43	116 Hz	116 Hz	ON 3	
44	124 Hz	124 Hz	ON 3	
45	144 Hz	144 Hz	ON 3	
46	158 Hz	158 Hz	ON 3	
47	166 Hz	166 Hz	ON 3	
48	176 Hz	176 Hz	ON 3	
49 50	188 Hz	188 Hz	ON 3	
50 51	202 Hz	202 Hz	ON 3	
52	210 Hz 210 Hz	210 Hz 218 Hz	ON 3 ON 3	
53	210 HZ	218 HZ 232 Hz	ON 3 ON 3	
54	210 Hz	232 HZ	ON 3	
55	210 Hz	246 Hz	ON 3	
55	210112	200112	UNU	

	-	\ -	- /
(To increas		o.)
STEP	Master	Slave	
No.	unit	unit	STD
INU.	INV	INV	
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	74 Hz	74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
14	144 Hz	132 HZ	OFF
		144 Hz 158 Hz	OFF
16	158 Hz		
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	92 Hz	96 Hz	ON 3
32	104 Hz	104 Hz	ON 3
33	116 Hz	116 Hz	ON 3
34	124 Hz	124 Hz	ON 3
35	144 Hz	144 Hz	ON 3
36	96 Hz	96 Hz	ON 4
37	104 Hz	104 Hz	ON 4
38	116 Hz	116 Hz	ON 4
39	124 Hz	124 Hz	ON 4
40	144 Hz	144 Hz	ON 4
40	144 HZ 158 Hz	144 HZ 158 Hz	ON 4 ON 4
42	166 Hz	166 Hz	ON 4
43	176 Hz	176 Hz	ON 4
44	188 Hz	188 Hz	ON 4
45	202 Hz	202 Hz	ON 4
46	210 Hz	210 Hz	ON 4

RXYQ 32PAY1 (16+16HP)

STEP No. Master unit INV Slave unit INV STD 1 52 Hz OFF OFF OFF 2 56 Hz OFF OFF OFF 3 62 Hz OFF OFF OFF 4 68 Hz OFF OFF OFF 5 74 Hz OFF OFF OFF 7 88 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz OFF OFF OFF 12 62 Hz 62 Hz OFF OFF 13 66 Hz 06 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 14 70 Hz 06 Hz 06 Hz 0FF 13 96 Hz 96 Hz 0FF 0FF 22 <th colspan="6">(To decrease Step No.)</th>	(To decrease Step No.)					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				STD		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
14 70 Hz 70 Hz OFF 15 74 Hz 74 Hz OFF 16 80 Hz 80 Hz OFF 17 88 Hz 88 Hz OFF 18 92 Hz 92 Hz OFF 19 96 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 110 Hz OFF 23 124 Hz 124 Hz OFF 23 124 Hz 132 Hz OFF 24 132 Hz 132 Hz ON 1 26 62 Hz 62 Hz 0N 1 27 68 Hz 80 Hz ON 1 28 74 Hz 74 Hz ON 1 30 88 Hz 80 Hz 0N 1 31 96 Hz 96 Hz 0N 2 34 62 Hz 62 Hz ON 2 36 88 Hz 88 Hz ON 2 36 88 Hz 62 Hz ON 3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
16 80 Hz 80 Hz 0FF 17 88 Hz 0FF 18 92 Hz 0FF 19 96 Hz 96 Hz 0FF 20 104 Hz 104 Hz 0FF 21 110 Hz 110 Hz 0FF 21 110 Hz 110 Hz 0FF 22 116 Hz 116 Hz 0FF 23 124 Hz 132 Hz 0FF 24 132 Hz 132 Hz 0FF 25 52 Hz 52 Hz 0N 1 26 62 Hz 62 Hz 0N 1 27 68 Hz 68 Hz 0N 1 30 88 Hz 88 Hz 0N 1 30 88 Hz 88 Hz 0N 1 32 104 Hz 104 Hz 0N 1 33 52 Hz 52 Hz 0N 2 34 62 Hz 62 Hz 0N 2 35 74 Hz 74 Hz 0N 2 36 88 Hz						
17 88 Hz 88 Hz OFF 18 92 Hz 92 Hz OFF 19 96 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 104 Hz OFF 21 110 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 52 Hz ON 1 26 62 Hz 62 Hz ON 1 27 68 Hz 68 Hz ON 1 28 74 Hz 74 Hz ON 1 29 80 Hz 80 Hz 0N 1 30 88 Hz 80 Hz ON 1 31 96 Hz 96 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 92 Hz ON 3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
19 96 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 110 Hz OFF 22 116 Hz 116 Hz OFF 23 124 Hz 132 Hz OFF 24 132 Hz 132 Hz OFF 24 132 Hz 52 Hz ON 1 26 62 Hz 62 Hz ON 1 27 68 Hz 68 Hz ON 1 28 74 Hz 74 Hz ON 1 30 88 Hz 80 Hz ON 1 31 96 Hz 62 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 3 40 74 Hz 74 Hz ON 3						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
21 110 Hz 110 Hz OFF 22 116 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz OFF 25 52 Hz 52 Hz ON 1 26 62 Hz 68 Hz ON 1 27 68 Hz 68 Hz ON 1 28 74 Hz 74 Hz ON 1 29 80 Hz 80 Hz ON 1 30 88 Hz 88 Hz ON 1 31 96 Hz 96 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 35 74 Hz 52 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz ON 3 41 92 Hz ON 3 42 104 Hz 104 Hz<						
23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz OFF 25 52 Hz 52 Hz ON 1 26 62 Hz 62 Hz ON 1 27 68 Hz 68 Hz ON 1 28 74 Hz 74 Hz ON 1 29 80 Hz 80 Hz ON 1 30 88 Hz 80 Hz ON 1 31 96 Hz 96 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 20 Hz ON 3 42 104 Hz 104 Hz ON 4 44 62 Hz 62 Hz ON 4 <	21			OFF		
23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz OFF 25 52 Hz 52 Hz ON 1 26 62 Hz 62 Hz ON 1 27 68 Hz 68 Hz ON 1 28 74 Hz 74 Hz ON 1 29 80 Hz 80 Hz ON 1 30 88 Hz 80 Hz ON 1 31 96 Hz 96 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 20 Hz ON 3 42 104 Hz 104 Hz ON 4 44 62 Hz 62 Hz ON 4 <	22	116 Hz	116 Hz	OFF		
25 52 Hz 52 Hz ON 1 26 62 Hz 62 Hz ON 1 27 68 Hz 68 Hz ON 1 28 74 Hz 74 Hz ON 1 29 80 Hz 80 Hz ON 1 30 88 Hz 80 Hz ON 1 31 96 Hz 96 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 43 52 Hz 52 Hz ON 4 <tr< td=""><td>23</td><td></td><td>124 Hz</td><td>OFF</td></tr<>	23		124 Hz	OFF		
26 62 Hz 62 Hz ON 1 27 68 Hz 68 Hz ON 1 28 74 Hz 74 Hz ON 1 29 80 Hz 80 Hz ON 1 30 88 Hz 80 Hz ON 1 31 96 Hz 96 Hz ON 1 32 104 Hz 96 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 36 88 Hz 96 Hz ON 2 37 96 Hz 96 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 43 52 Hz 52 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4						
27 68 Hz 68 Hz ON 1 28 74 Hz 74 Hz ON 1 29 80 Hz 80 Hz ON 1 30 88 Hz 80 Hz ON 1 31 96 Hz 96 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 36 88 Hz 52 Hz ON 2 37 96 Hz 52 Hz ON 3 40 74 Hz 20 N 3 40 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 44 62 Hz 69 Hz ON 4 44 62 Hz 0N 4 44 0N 4	25	52 Hz	52 Hz	ON 1		
28 74 Hz 74 Hz ON 1 29 80 Hz 80 Hz 0N 1 30 88 Hz 88 Hz ON 1 31 96 Hz 96 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 3 39 62 Hz 62 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 4 42 104 Hz 104 Hz ON 4 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 00 H 44 46 96 Hz 0N 4 45	26	62 Hz	62 Hz	ON 1		
29 80 Hz 80 Hz ON 1 30 88 Hz 88 Hz ON 1 31 96 Hz 96 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 36 88 Hz 96 Hz ON 2 37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 <tr< td=""><td></td><td></td><td></td><td>ON 1</td></tr<>				ON 1		
30 88 Hz 88 Hz ON 1 31 96 Hz 96 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 45 74 Hz 74 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 <				ON 1		
31 96 Hz 96 Hz ON 1 32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz 0N 2 37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 45 74 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4						
32 104 Hz 104 Hz ON 1 33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 158 Hz ON 4 51 158 Hz 158 Hz ON 4 <td></td> <td></td> <td></td> <td></td>						
33 52 Hz 52 Hz ON 2 34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 62 Hz ON 3 42 104 Hz 104 Hz ON 3 43 52 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz ON 4 50 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4						
34 62 Hz 62 Hz ON 2 35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz I6Hz ON 4						
35 74 Hz 74 Hz ON 2 36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 3 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 48 116 Hz 116 Hz ON 4 48 116 Hz 116 Hz ON 4 50 144 Hz 124 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 53 176 Hz 176 Hz ON 4 <						
36 88 Hz 88 Hz ON 2 37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 3 43 52 Hz 62 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 50 144 Hz 104 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 53 176 Hz 176 Hz ON 4 <						
37 96 Hz 96 Hz ON 2 38 52 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 53 176 Hz 188 Hz 0N 4						
38 52 Hz 52 Hz ON 3 39 62 Hz 62 Hz ON 3 40 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 3 43 52 Hz 52 Hz ON 4 46 96 Hz 96 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 124 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 53 176 Hz 188 Hz ON 4						
39 62 Hz 62 Hz ON 3 40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 3 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 50 144 Hz 120 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 53 176 Hz 188 Hz ON 4						
40 74 Hz 74 Hz ON 3 41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 3 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 104 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 53 176 Hz 188 Hz ON 4						
41 92 Hz 92 Hz ON 3 42 104 Hz 104 Hz ON 3 43 52 Hz 52 Hz ON 4 44 62 Hz 52 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 166 Hz ON 4 54 188 Hz 188 Hz ON 4						
42 104 Hz 104 Hz ON 3 43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 124 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 18 Hz ON 4			02 H-			
43 52 Hz 52 Hz ON 4 44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
44 62 Hz 62 Hz ON 4 45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 166 Hz ON 4 54 188 Hz 188 Hz ON 4						
45 74 Hz 74 Hz ON 4 46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 124 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
46 96 Hz 96 Hz ON 4 47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
47 104 Hz 104 Hz ON 4 48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
48 116 Hz 116 Hz ON 4 49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 08 Hz ON 4						
49 124 Hz 124 Hz ON 4 50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
50 144 Hz 144 Hz ON 4 51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
51 158 Hz 158 Hz ON 4 52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
52 166 Hz 166 Hz ON 4 53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
53 176 Hz 176 Hz ON 4 54 188 Hz 188 Hz ON 4						
54 188 Hz 188 Hz ON 4						
56 210 Hz 210 Hz ON 4	56					

Notes:

44 45

1. INV : Inverter compressor

STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ 34PAY1 (16+18HP)

(To increase Step No.) Master Slave STEP STD unit unit No INV INV OFF 52 Hz 52 Hz OFF OFF OFF OFF OFF OFF 56 Hz 56 Hz 62 Hz 62 Hz 66 Hz 66 Hz 70 Hz 74 Hz 70 Hz 74 Hz 80 Hz 80 Hz 80 Hz 80 Hz 96 Hz 96 Hz 104 Hz 104 Hz 110 Hz 110 Hz 116 Hz 116 Hz 124 Hz 124 Hz 120 Hz 120 Hz 8 OFF 10 OFF OFF OFF OFF 11 12 13 124 Hz 124 Hz 132 Hz 132 Hz 144 Hz 144 Hz 158 Hz 158 Hz 166 Hz 166 Hz 176 Hz 176 Hz OFF OFF OFF 14 15 16 OFF OFF ON 1 17 18 19 80 Hz 80 Hz 88 Hz 88 Hz 96 Hz 96 Hz 104 Hz 104 Hz 104 Hz 116 Hz 116 Hz 116 Hz 116 Hz 124 Hz 124 Hz 132 Hz 132 Hz 132 Hz 132 Hz ON 1 ON 1 20 21 ON 1 ON 1 ON 1 ON 1 ON 1 22 23 24 124 Hz 124 Hz ON 1 132 Hz 132 Hz ON 1 88 Hz ON 2 ON 1 96 Hz 96 Hz ON 2 104 Hz 104 Hz ON 2 124 Hz 124 Hz ON 2 124 Hz 124 Hz ON 2 124 Hz 124 Hz ON 2 92 Hz 96 Hz ON 3 104 Hz 104 Hz ON 3 104 Hz 104 Hz ON 3 116 Hz 116 Hz ON 3 124 Hz 124 Hz ON 3 144 Hz 144 Hz ON 3 96 Hz 96 Hz ON 4 104 Hz 104 Hz ON 4 104 Hz 124 Hz ON 4 166 Hz 166 Hz ON 4 <t 26 27 28 29 30 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

(To decrease Step No.)				
OTED	Master	Slave		
STEP	unit	unit	STD	
No.	INV	INV	-	
1	52 Hz	ÖFF	OFF	
2	56 Hz	OFF	OFF	
3	62 Hz	OFF	OFF	
4	68 Hz	OFF	OFF	
5	74 Hz	OFF	OFF	
		OFF		
6	80 Hz		OFF	
7	88 Hz	OFF		
8	96 Hz	OFF	OFF	
9	104 Hz	OFF	OFF	
10	52 Hz	52 Hz	OFF	
11	56 Hz	56 Hz	OFF	
12	62 Hz	62 Hz	OFF	
13	66 Hz	66 Hz	OFF	
14	70 Hz	70 Hz	OFF	
15	74 Hz	74 Hz	OFF	
16	80 Hz	80 Hz	OFF	
17	88 Hz	88 Hz	OFF	
18	92 Hz	92 Hz	OFF	
		92 HZ 96 Hz	OFF	
19	96 Hz			
20	104 Hz	104 Hz	OFF	
21	110 Hz	110 Hz	OFF	
22	116 Hz	116 Hz	OFF	
23	124 Hz	124 Hz	OFF	
24	132 Hz	132 Hz	OFF	
25	52 Hz	52 Hz	ON 1	
26	62 Hz	62 Hz	ON 1	
27	68 Hz	68 Hz	ON 1	
28	74 Hz	74 Hz	ON 1	
29	80 Hz	80 Hz	ON 1	
30	88 Hz	88 Hz	ON 1	
31	96 Hz	96 Hz	ON 1	
32	104 Hz	104 Hz	ON 1	
33	52 Hz	52 Hz	ON 2	
34	62 Hz	62 Hz	ON 2	
35	74 Hz	74 Hz	ON 2	
36	88 Hz	88 Hz	ON 2	
37	96 Hz	96 Hz	ON 2	
38	52 Hz	52 Hz	ON 3	
39	62 Hz	62 Hz	ON 3	
40	74 Hz	74 Hz	ON 3	
41	92 Hz	92 Hz	ON 3	
42	104 Hz	104 Hz	ON 3	
42	52 Hz	52 Hz	ON 3 ON 4	
43	62 Hz	62 Hz	ON 4 ON 4	
45	74 Hz	74 Hz	ON 4	
46	96 Hz	96 Hz	ON 4	
47	104 Hz	104 Hz	ON 4	
48	116 Hz	116 Hz	ON 4	
49	124 Hz	124 Hz	ON 4	
50	144 Hz	144 Hz	ON 4	
51	158 Hz	158 Hz	ON 4	
52	166 Hz	166 Hz	ON 4	
53	176 Hz	176 Hz	ON 4	
54	188 Hz	188 Hz	ON 4	
55	202 Hz	202 Hz	ON 4	
56	202 HZ 210 Hz	202 HZ 210 Hz	ON 4 ON 4	
57	210 Hz	218 Hz	ON 4	
58	210 Hz	232 Hz	ON 4	

(To increas	se Step No	b.)
STEP	Master	Slave	
	unit	unit	STD
No.	INV	INV	- · -
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
	70 HZ	70 HZ	OFF
6	80 Hz	80 Hz	OFF
			-
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	144 Hz	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	104 Hz	ON 2
30	144 Hz	124 HZ	ON 2
	92 Hz	96 Hz	ON 2 ON 3
31			
32	104 Hz	104 Hz	ON 3
33	116 Hz	116 Hz	ON 3
34	124 Hz	124 Hz	ON 3
35	144 Hz	144 Hz	ON 3
36	96 Hz	96 Hz	ON 4
37	104 Hz	104 Hz	ON 4
38	116 Hz	116 Hz	ON 4
39	124 Hz	124 Hz	ON 4
40	144 Hz	144 Hz	ON 4
41	158 Hz	158 Hz	ON 4
42	166 Hz	166 Hz	ON 4
43	176 Hz	176 Hz	ON 4
44	188 Hz	188 Hz	ON 4
45	202 Hz	202 Hz	ON 4
46	210 Hz	210 Hz	ON 4
47	218 Hz	218 Hz	ON 4
48	232 Hz	232 Hz	ON 4
49	248 Hz	248 Hz	ON 4
50	266 Hz	266 Hz	ON 4
	200112	200112	

	(To decrease Step No.)					
┫	STEP No.	Master unit	Slave unit	STD		
١ŀ	-	INV	INV OFF	055		
١ŀ	1 2	52 Hz 56 Hz	OFF OFF	OFF OFF		
١ŀ	2		OFF	OFF OFF		
١ŀ	4	62 Hz 68 Hz	OFF	OFF		
١ŀ	5	74 Hz	OFF	OFF		
١ŀ	6	80 Hz	OFF	OFF		
١ŀ	7	88 Hz	OFF	OFF		
11	8	96 Hz	OFF	OFF		
11	9	104 Hz	OFF	OFF		
11	10	52 Hz	52 Hz	OFF		
10	11	56 Hz	56 Hz	OFF		
10	12	62 Hz	62 Hz	OFF		
	13	66 Hz	66 Hz	OFF		
	14	70 Hz	70 Hz	OFF		
	15	74 Hz	74 Hz	OFF		
	16	80 Hz	80 Hz	OFF		
	17	88 Hz	88 Hz	OFF		
	18	92 Hz	92 Hz	OFF		
	19	96 Hz	96 Hz	OFF		
	20	104 Hz	104 Hz	OFF		
١ŀ	21 22	110 Hz 116 Hz	110 Hz 116 Hz	OFF OFF		
١ŀ	23	124 Hz	124 Hz	OFF		
١ŀ	23	132 Hz	132 Hz	OFF		
١ŀ	25	52 Hz	52 Hz	ON 1		
١ŀ	26	62 Hz	62 Hz	ON 1		
١ŀ	27	68 Hz	68 Hz	ON 1		
11	28	74 Hz	74 Hz	ON 1		
11	29	80 Hz	80 Hz	ON 1		
11	30	88 Hz	88 Hz	ON 1		
10	31	96 Hz	96 Hz	ON 1		
10	32	104 Hz	104 Hz	ON 1		
	33	52 Hz	52 Hz	ON 2		
	34	62 Hz	62 Hz	ON 2		
	35	74 Hz	74 Hz	ON 2		
11	36	88 Hz	88 Hz	ON 2		
11	37	96 Hz	96 Hz	ON 2		
1ŀ	38	52 Hz	52 Hz	ON 3		
١ŀ	<u>39</u> 40	62 Hz 74 Hz	62 Hz 74 Hz	ON 3 ON 3		
١ŀ	40	92 Hz	92 Hz	ON 3		
	41	92 HZ	92 HZ 104 Hz	ON 3		
	42	52 Hz	52 Hz	ON 3 ON 4		
	44	62 Hz	62 Hz	ON 4		
	45	74 Hz	74 Hz	ON 4		
	46	96 Hz	96 Hz	ON 4		
	47	104 Hz	104 Hz	ON 4		
	48	116 Hz	116 Hz	ON 4		
	49	124 Hz	124 Hz	ON 4		
10	50	144 Hz	144 Hz	ON 4		
ЦĹ	51	158 Hz	158 Hz	ON 4		
	52	166 Hz	166 Hz	ON 4		
	53	176 Hz	176 Hz	ON 4		
	54	188 Hz	188 Hz	ON 4		
	55	202 Hz	202 Hz	ON 4		
	56	210 Hz	210 Hz	ON 4		
	57	218 Hz	218 Hz	ON 4 ON 4		
	<u>58</u> 59	232 Hz 248 Hz	232 Hz 248 Hz	ON 4 ON 4		
	<u>59</u> 60	248 HZ 266 Hz	248 HZ 266 Hz	ON 4 ON 4		
I L	00	200 HZ	200 HZ	UN 4		

represents the range in which "Hz" is not stepped up.

Notes:

1. INV : Inverter compressor

STD : Standard compressor

Figures after ON represent the number of STD compressors in operation.

248 Hz

210 Hz

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ36PAY1 (18+18HP)

Three-unit multi system

RXYQ38PAY1 (8+12+18HP)

(To increase Step No.) Slave Slave unit2 Master STEP STD unit1 INV unit No. INV INV OF 52 Hz 52 Hz 52 Hz 56 Hz 56 Hz 56 Hz 56 Hz 62 Hz 62 Hz 62 Hz 62 Hz OFF OFF 66 Hz 66 Hz 66 Hz 68 Hz 68 Hz 68 Hz 70 Hz 70 Hz 70 Hz 74 Hz 74 Hz 74 Hz 74 8 80 Hz 80 Hz 80 Hz 0 88 Hz 88 Hz 88 Hz 0 88 HZ 88 HZ 88 HZ 96 HZ 96 HZ 96 HZ 104 HZ 104 HZ 104 HZ 110 HZ 110 HZ 110 HZ 116 HZ 116 HZ 116 HZ 10 11 12 13 124 Hz 124 Hz 124 Hz 80 Hz 80 Hz 80 Hz 14 15 ON 1 80 HZ 80 HZ 80 HZ ON HZ 88 HZ 88 HZ 88 HZ 0N 1 96 HZ 96 HZ 96 HZ 0N 1 104 HZ 104 HZ 104 HZ 0N 1 116 HZ 116 HZ 104 HZ 0N 1 16 17 18 19 20 21 124 Hz 124 Hz 124 Hz ON 1 132 Hz 132 Hz 132 Hz ON 1 102 112 102 112 103 88 HZ 88 HZ 88 HZ 90 96 HZ 96 HZ 96 HZ 0N 2 104 HZ 104 HZ 104 HZ 0N 2 124 HZ 124 HZ 124 HZ 0N 2 22 23 24 25 26 27 28 29 144 Hz 144 Hz 144 Hz ON 2 92 Hz 92 Hz 92 Hz ON 3 104 Hz 104 Hz 104 Hz ON 3 116 Hz 116 Hz 116 Hz ON 3 30 124 Hz 124 Hz 124 Hz ON 3 144 Hz 144 Hz 144 Hz ON 3 31 158 Hz 158 Hz 158 Hz ON 3 166 Hz 166 Hz 166 Hz ON 3 32 33 176 Hz 176 Hz 176 Hz ON 3 188 Hz 188 Hz 188 Hz ON 3 34 35 1202 Hz 1202 Hz ON 3 202 Hz 202 Hz ON 3 210 Hz 210 Hz ON 3 210 Hz 210 Hz ON 3 218 Hz 210 Hz IA 232 Hz IA Hz IA 232 Hz IA Hz IA 248 Hz 210 Hz IA 36 37 38 39 40 41 266 Hz 210 Hz 266 Hz ON 3

STEP No. Master UNU Slave UNU STD UNV STD UNV 1 52 Hz OFF OFF OFF OFF 2 56 Hz OFF OFF OFF OFF 3 62 Hz OFF OFF OFF OFF 3 62 Hz OFF OFF OFF OFF 4 68 Hz OFF OFF OFF OFF 5 74 Hz OFF OFF OFF OFF 9 104 Hz OFF OFF OFF OFF 10 52 Hz 52 Hz OFF OFF OFF 11 56 Hz 56 Hz OFF OFF OFF 13 66 Hz 66 Hz 66 Hz OFF OFF 15 74 Hz 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 62 Hz 0FF OFF 16 52 Hz 52 Hz 62 Hz 0FF O		(To de	crease S	Step No.)
No. Unit Unit NILZ STD 1 52 Hz OFF OFF OFF OFF 2 56 Hz OFF OFF OFF OFF 3 62 Hz OFF OFF OFF OFF 4 68 Hz OFF OFF OFF OFF 5 74 Hz OFF OFF OFF OFF 6 80 Hz OFF OFF OFF OFF 9 104 Hz OFF OFF OFF OFF 10 52 Hz 52 Hz OFF OFF OFF 11 56 Hz 56 Hz OFF OFF OFF 12 62 Hz 52 Hz 52 Hz 52 Hz 52 Hz 52 Hz 13 66 Hz 66 Hz 0FF OFF 0FF 13 66 Hz 66 Hz 0FF OFF 0FF 14 70 Hz 70 Hz 0FF 0FF 0FF	OTED	Master	Slave	Slave	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			unit1	unit2	STD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		52 Hz	OFF	OFF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		56 Hz			OFF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	62 Hz		OFF	OFF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	68 Hz	OFF	OFF	OFF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	74 Hz	OFF	OFF	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	80 Hz	OFF	OFF	OFF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	88 Hz	OFF		OFF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					OFF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				OFF	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			52 Hz	OFF	OFF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
23 80 Hz 80 Hz 80 Hz 80 Hz 90 Hz OFF 24 88 Hz 88 Hz 88 Hz 96 Hz OFF 25 96 Hz 96 Hz 96 Hz OFF 26 52 Hz 52 Hz 52 Hz 0N 1 27 62 Hz 62 Hz 62 Hz 0N 1 28 68 Hz 68 Hz 68 Hz 0N 1 29 74 Hz 74 Hz 74 Hz 0N 1 30 80 Hz 80 Hz 80 Hz 0N 1 31 88 Hz 88 Hz 0N 1 33 104 Hz 104 Hz 0N 1 33 104 Hz 104 Hz 104 Hz 0N 1 33 104 Hz 0N 1 34 52 Hz 52 Hz 52 Hz 52 Hz 0N 1 35 62 Hz 62 Hz 62 Hz 0N 2 37 35 62 Hz 62 Hz 62 Hz 0N 2 39 52 Hz 52 Hz 52 Hz <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
24 88 Hz 88 Hz 88 Hz 88 Hz 0FF 25 96 Hz 96 Hz 96 Hz 9F Hz 0FF 26 52 Hz 52 Hz 0N 1 0N 1 27 62 Hz 62 Hz 62 Hz 0N 1 28 68 Hz 68 Hz 68 Hz 0N 1 30 80 Hz 80 Hz 80 Hz 0N 1 31 88 Hz 88 Hz 0N 1 0N 1 32 96 Hz 96 Hz 96 Hz 0N 1 33 104 Hz 104 Hz 104 Hz 0N 1 34 52 Hz 52 Hz 52 Hz 0N 1 35 62 Hz 62 Hz 62 Hz 0N 1 34 52 Hz 52 Hz 52 Hz 0N 2 37 88 Hz 88 Hz 0N 2 0N 2 38 96 Hz 96 Hz 0N 2 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
28 68 Hz 68 Hz 68 Hz 0N 1 29 74 Hz 74 Hz 74 Hz 0N 1 30 80 Hz 80 Hz 80 Hz 0N 1 31 88 Hz 88 Hz 88 Hz 0N 1 31 88 Hz 88 Hz 88 Hz 0N 1 33 104 Hz 104 Hz 0N 1 34 52 Hz 52 Hz 52 Hz 0N 2 35 62 Hz 62 Hz 62 Hz 0N 2 36 74 Hz 74 Hz 0N 2 37 88 Hz 88 Hz 88 Hz 0N 2 36 74 Hz 74 Hz 0N 2 37 38 Hz 88 Hz 88 Hz 0N 2 38 36 96 Hz 96 Hz 0N 2 38 39 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 0N 3 34					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27			62 Hz	ON 1
30 80 Hz 90	28	68 Hz	68 Hz	68 Hz	ON 1
31 88 Hz 88 Hz 88 Hz 88 Hz 0N 1 32 96 Hz 96 Hz 96 Hz 0N 1 33 104 Hz104 Hz104 Hz 104 Hz 0N 1 34 52 Hz 52 Hz 52 Hz 0N 2 35 62 Hz 62 Hz 62 Hz 62 Hz 0N 2 36 74 Hz 74 Hz 0N 2 37 88 Hz 88 Hz 88 Hz 0N 2 37 88 Hz 88 Hz 88 Hz 0N 2 38 96 Hz 96 Hz 96 Hz 0N 2 38 96 Hz 96 Hz 96 Hz 0N 2 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 45 124 Hz 124 Hz 104 Hz 0N 3 46 144 Hz 144 Hz 144 Hz	29	74 Hz	74 Hz	74 Hz	ON 1
32 96 Hz 96 Hz 96 Hz 00 N 1 33 104 Hz 104 Hz 104 Hz 0N 1 34 52 Hz 52 Hz 52 Hz 0N 2 35 62 Hz 62 Hz 62 Hz 0N 2 36 74 Hz 74 Hz 74 Hz 0N 2 37 88 Hz 88 Hz 88 Hz 0N 2 39 52 Hz 52 Hz 62 Hz 0N 2 39 52 Hz 52 Hz 52 Hz 0N 2 39 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 144 Hz 0N 3	30	80 Hz	80 Hz	80 Hz	ON 1
33 104 Hz 104 Hz 104 Hz 0N 1 34 52 Hz 52 Hz 52 Hz 62 Hz 0N 2 36 74 Hz 74 Hz 62 Hz 0N 2 36 74 Hz 74 Hz 74 Hz 0N 2 37 88 Hz 88 Hz 88 Hz 0N 2 38 96 Hz 96 Hz 96 Hz 0N 2 39 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 43 104 Hz 116 Hz 116 Hz 0N 3 44 116 Hz 116 Hz 108 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 146 Hz 0N 3 3 47 158 Hz	31	88 Hz	88 Hz	88 Hz	ON 1
34 52 Hz 52 Hz 52 Hz 0N 2 35 62 Hz 62 Hz 62 Hz 0N 2 36 74 Hz 74 Hz 74 Hz 0N 2 37 88 Hz 88 Hz 88 Hz 0N 2 38 96 Hz 96 Hz 96 Hz 0N 2 39 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 43 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 47 158 Hz 158 Hz 0N 3 46 164 Hz 166 Hz 166 Hz 0N 3 50 188 Hz 188 Hz 0N 3	32	96 Hz	96 Hz	96 Hz	ON 1
34 52 Hz 52 Hz 52 Hz 0N 2 35 62 Hz 62 Hz 62 Hz 0N 2 36 74 Hz 74 Hz 74 Hz 0N 2 37 88 Hz 88 Hz 88 Hz 0N 2 38 96 Hz 96 Hz 96 Hz 0N 2 39 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 43 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 47 158 Hz 158 Hz 0N 3 46 164 Hz 166 Hz 166 Hz 0N 3 50 188 Hz 188 Hz 0N 3	33	104 Hz	104 Hz	104 Hz	ON 1
35 62 Hz 62 Hz 62 Hz ON 2 36 74 Hz 74 Hz 74 Hz ON 2 37 88 Hz 88 Hz 88 Hz ON 2 38 96 Hz 96 Hz 96 Hz ON 2 39 52 Hz 52 Hz 52 Hz ON 3 40 62 Hz 62 Hz 62 Hz ON 3 41 74 Hz 74 Hz ON 3 42 92 Hz 92 Hz 92 Hz ON 3 43 104 Hz 104 Hz I04 Hz ON 3 44 116 Hz 116 Hz ON 3 45 124 Hz 124 Hz 124 Hz ON 3 45 124 Hz 124 Hz 144 Hz ON 3 46 144 Hz 144 Hz 144 Hz ON 3 47 158 Hz 158 Hz ON 3 48 166 Hz 166 Hz ON 3 50 188 Hz 188 Hz ON 3 51 202 Hz			52 Hz	52 Hz	ON 2
36 74 Hz 74 Hz 74 Hz ON 2 37 88 Hz 88 Hz 88 Hz 0N 2 38 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 39 52 Hz 52 Hz 52 Hz 0N 2 39 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 116 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 146 Hz 160 Hz 0N 3 47 158 Hz 158 Hz 168 Hz 0N 3 50 188 Hz 188 Hz 0N 3 12 0N 3 51 202 Hz 202 Hz 0N 3 12 0N 3 12					
37 88 Hz 88 Hz 88 Hz 88 Hz 0N 2 38 96 Hz 96 Hz 96 Hz 0N 2 39 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 104 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 144 Hz 144 Hz 0N 3 47 158 Hz 158 Hz 158 Hz 0N 3 48 166 Hz 166 Hz 0N 3 50 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N					
38 96 Hz 96 Hz 96 Hz 96 Hz 0N 2 39 52 Hz 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 0N 3 3 42 92 Hz 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 116 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 45 124 Hz 124 Hz 144 Hz 0N 3 46 144 Hz 144 Hz 144 Hz 0N 3 47 158 Hz 158 Hz 0N 3 50 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N 3 52 210 Hz 210 Hz 20N 3 54 232 Hz 20N 3 55 <td></td> <td></td> <td></td> <td></td> <td></td>					
39 52 Hz 52 Hz 52 Hz 52 Hz 0N 3 40 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 116 Hz 0N 3 44 112 Hz 124 Hz 124 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 144 Hz 0N 3 47 158 Hz 158 Hz 168 Hz 0N 3 48 166 Hz 166 Hz 108 Hz 0N 3 50 188 Hz 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 0N 3 3 52 210 Hz 210 Hz 210 Hz 0N 3 52 210 Hz 210 Hz 200 Hz 0N 3 54 232 Hz 21					
40 62 Hz 62 Hz 62 Hz 62 Hz 0N 3 41 74 Hz 74 Hz 74 Hz 0N 3 42 92 Hz 92 Hz 92 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 43 104 Hz 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 116 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 124 Hz 124 Hz 0N 3 47 158 Hz 158 Hz 158 Hz 0N 3 48 166 Hz 166 Hz 0N 3 3 49 176 Hz 176 Hz 176 Hz 0N 3 51 202 Hz 202 Hz 0N 3 3 51 202 Hz 202 Hz 0N 3 3 52 210 Hz 210 Hz 210 Hz 0N 3 53 218 Hz 210 Hz 232 Hz 0N 3 54 232 Hz <td></td> <td></td> <td></td> <td></td> <td></td>					
41 74 Hz 74 Hz 74 Hz ON 3 42 92 Hz 92 Hz 92 Hz ON 3 43 104 Hz 104 Hz 104 Hz ON 3 43 104 Hz 104 Hz I04 Hz ON 3 44 116 Hz 116 Hz 116 Hz ON 3 45 124 Hz 124 Hz I04 Hz ON 3 45 124 Hz 124 Hz I04 Hz ON 3 46 144 Hz 144 Hz I44 Hz ON 3 47 158 Hz 158 Hz ON 3 48 166 Hz 166 Hz 166 Hz ON 3 50 188 Hz 188 Hz ON 3 51 202 Hz 202 Hz ON 3 52 210 Hz 210 Hz 210 Hz ON 3 53 218 Hz 210 Hz 200 N 3 3 54 232 Hz 210 Hz 232 Hz ON 3 55 248 Hz 210 Hz 248 Hz ON 3 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
42 92 Hz 92 Hz 92 Hz 92 Hz ON 3 43 104 Hz 104 Hz 104 Hz 0N 4 N3 44 116 Hz 116 Hz 116 Hz 104 Hz ON 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 124 Hz ON 3 47 158 Hz 158 Hz ON 3 48 166 Hz 166 Hz 0N 3 49 176 Hz 176 Hz ON 3 50 188 Hz 188 Hz 188 Hz ON 3 51 202 Hz 202 Hz ON 3 3 52 210 Hz 210 Hz 210 Hz ON 3 53 218 Hz 1210 Hz 203 Hz ON 3 54 232 Hz 210 Hz 232 Hz ON 3 54 234 Hz 210 Hz 248 Hz ON 3					
43 104 Hz 104 Hz 104 Hz 0N 3 44 116 Hz 116 Hz 116 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 124 Hz 0N 3 46 144 Hz 124 Hz 0N 3 47 158 Hz 158 Hz 158 Hz 0N 3 48 166 Hz 166 Hz 0N 3 0N 3 49 176 Hz 176 Hz 176 Hz 0N 3 50 188 Hz 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 0N 3 51 202 Hz 202 Hz 0N 3 51 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N 3 53 218 Hz 210 Hz 232 Hz 0N 3 54 232 Hz 210 Hz 232 Hz 0N 3 55 248 Hz 210 Hz 248 Hz 0N 3					
44 116 Hz 116 Hz 116 Hz 0N 3 45 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 124 Hz 124 Hz 0N 3 47 158 Hz 158 Hz 158 Hz 0N 3 48 166 Hz 166 Hz 0N 3 49 176 Hz 176 Hz 176 Hz 0N 3 50 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N 3 53 18 Hz 188 Hz 0N 3 3 54 210 Hz 210 Hz 232 Hz 0N 3 54 232 Hz 210 Hz 232 Hz 0N 3					
45 124 Hz 124 Hz 124 Hz 124 Hz 124 Hz 0N 3 46 144 Hz 144 Hz 144 Hz 0N 3 47 158 Hz 158 Hz 158 Hz 0N 3 48 166 Hz 166 Hz 166 Hz 0N 3 49 176 Hz 176 Hz 176 Hz 0N 3 50 188 Hz 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N 3 53 218 Hz 128 Hz 180 Hz 0N 3 54 232 Hz 210 Hz 232 Hz 0N 3 55 248 Hz 210 Hz 240 Hz 0N 3					
46 144 Hz 144 Hz 144 Hz 0N 3 47 158 Hz 158 Hz 158 Hz 0N 3 48 166 Hz 166 Hz 0N 3 49 176 Hz 176 Hz 166 Hz 0N 3 50 188 Hz 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N 3 53 218 Hz 210 Hz 200 N 3 3 54 232 Hz 210 Hz 232 Hz 0N 3 55 248 Hz 210 Hz 248 Hz 0N 3					
47 158 Hz 158 Hz 158 Hz 0N 3 48 166 Hz 166 Hz 166 Hz 0N 3 49 176 Hz 176 Hz 176 Hz 0N 3 50 188 Hz 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N 3 53 218 Hz 210 Hz 210 Hz 0N 3 54 232 Hz 210 Hz 224 Hz 0N 3 55 248 Hz 210 Hz 248 Hz 0N 3					
48 166 Hz 166 Hz 166 Hz 0N 3 49 176 Hz 176 Hz 176 Hz 0N 3 50 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N 3 53 218 Hz 210 Hz 210 Hz 0N 3 54 232 Hz 210 Hz 232 Hz 0N 3 55 248 Hz 10 Hz 248 Hz 0N 3					
49 176 Hz 176 Hz 176 Hz 0N 3 50 188 Hz 188 Hz 188 Hz 0N 3 51 202 Hz 202 Hz 202 Hz 0N 3 52 210 Hz 210 Hz 210 Hz 0N 3 53 218 Hz 210 Hz 210 Hz 0N 3 53 218 Hz 210 Hz 210 Hz 0N 3 54 232 Hz 210 Hz 224 Hz 0N 3 55 248 Hz 210 Hz 248 Hz 0N 3					
50 188 Hz 188 Hz 188 Hz ON 3 51 202 Hz 202 Hz 202 Hz ON 3 52 210 Hz 210 Hz 210 Hz ON 3 53 218 Hz 210 Hz 218 Hz ON 3 54 232 Hz 210 Hz 232 Hz ON 3 55 248 Hz 210 Hz 248 Hz ON 3					
51 202 Hz 202 Hz 202 Hz ON 3 52 210 Hz 210 Hz 210 Hz ON 3 53 218 Hz 210 Hz 218 Hz ON 3 54 232 Hz 210 Hz 232 Hz ON 3 55 248 Hz 210 Hz 248 Hz ON 3					
52 210 Hz 210 Hz 210 Hz ON 3 53 218 Hz 210 Hz 218 Hz ON 3 54 232 Hz 210 Hz 232 Hz ON 3 55 248 Hz 210 Hz 248 Hz ON 3					
53 218 Hz 210 Hz 218 Hz ON 3 54 232 Hz 210 Hz 232 Hz ON 3 55 248 Hz 210 Hz 248 Hz ON 3					
54 232 Hz 210 Hz 232 Hz ON 3 55 248 Hz 210 Hz 248 Hz ON 3					
55 248 Hz 210 Hz 248 Hz ON 3					
56 266 Hz 210 Hz 266 Hz ON 3	55			248 Hz	
	56	266 Hz	210 Hz	266 Hz	ON 3

	(To inc	rease S	ten No.)	
r			, ,	
STEP	Master	Slave	Slave	
No.	unit	unit1	unit2	STD
-	INV	INV	INV	
1	52 Hz	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	66 Hz	OFF
5	68 Hz	68 Hz	68 Hz	OFF
6	70 Hz	70 Hz	70 Hz	OFF
7	74 Hz	74 Hz	74 Hz	OFF
8	80 Hz	80 Hz	80 Hz	OFF
9	88 Hz	88 Hz	88 Hz	OFF
10	96 Hz	96 Hz	96 Hz	OFF
11	104 Hz	104 Hz	104 Hz	OFF
12				-
	110 Hz	110 Hz	110 Hz	OFF
13	116 Hz	116 Hz	116 Hz	OFF
14	124 Hz	124 Hz	124 Hz	OFF
15	80 Hz	80 Hz	80 Hz	ON 1
16	88 Hz	88 Hz	88 Hz	ON 1
17	96 Hz	96 Hz	96 Hz	ON 1
18	104 Hz	104 Hz	104 Hz	ON 1
19	116 Hz	116 Hz	116 Hz	ON 1
20	124 Hz	124 Hz	124 Hz	ON 1
21	132 Hz	132 Hz	132 Hz	ON 1
22	88 Hz	88 Hz	88 Hz	ON 2
23	96 Hz	96 Hz	96 Hz	ON 2
24	104 Hz	104 Hz	104 Hz	ON 2
25	124 Hz	124 Hz	124 Hz	ON 2
26	144 Hz	144 Hz	144 Hz	ON 2
27	92 Hz	92 Hz	92 Hz	ON 3
28	104 Hz	104 Hz	92 HZ 104 Hz	ON 3
-				
29	116 Hz	116 Hz	116 Hz	ON 3
30	124 Hz	124 Hz	124 Hz	ON 3
31	144 Hz	144 Hz	144 Hz	<u>ON 3</u>
32	96 Hz	96 Hz	96 Hz	ON 4
33	104 Hz	104 Hz	104 Hz	ON 4
34	116 Hz	116 Hz	116 Hz	ON 4
35	124 Hz	124 Hz	124 Hz	ON 4
36	144 Hz	144 Hz	144 Hz	ON 4
37	158 Hz	158 Hz	158 Hz	ON 4
38	166 Hz	166 Hz	166 Hz	ON 4
39	176 Hz	176 Hz	176 Hz	ON 4
40	188 Hz	188 Hz	188 Hz	ON 4
41	202 Hz	202 Hz	202 Hz	ON 4
42	210 Hz	210 Hz	210 Hz	ON 4
42		210 Hz	210 HZ 210 HZ	ON 4
	-			
44	232 Hz	210 Hz	210 Hz	ON 4
45 46	248 Hz	210 Hz	210 Hz	ON 4
	266 Hz	210 Hz	210 Hz	ON 4

		(To de	crease S	Step No.)
۱.		Master	Slave	Slave	
r	STEP	unit	unit1	unit2	STD
	No.				010
		INV	INV	INV	
	1	52 Hz	OFF	OFF	OFF
	2	56 Hz	OFF	OFF	OFF
	3	62 Hz	OFF	OFF	OFF
			OFF		OFF
	4	68 Hz			
	5	74 Hz	OFF	OFF	OFF
	6	80 Hz	OFF	OFF	OFF
	7	88 Hz	OFF	OFF	OFF
	8	96 Hz	OFF	OFF	OFF
	9	104 Hz	OFF	OFF	OFF
	10	52 Hz	52 Hz	OFF	OFF
	11	56 Hz	56 Hz	OFF	OFF
	12			OFF	OFF
			62 Hz		
	13	66 Hz	66 Hz	OFF	OFF
	14	70 Hz	70 Hz	OFF	OFF
1	15	74 Hz	74 Hz	OFF	OFF
		52 Hz	52 Hz	52 Hz	OFF
1	16				
	17	56 Hz	56 Hz	56 Hz	OFF
	18	62 Hz	62 Hz	62 Hz	OFF
1	19	66 Hz	66 Hz	66 Hz	ÖFF
1	20	68 Hz	68 Hz	68 Hz	OFF
1					
1	21	70 Hz	70 Hz	70 Hz	OFF
1	22	74 Hz	74 Hz	74 Hz	OFF
L	23	80 Hz	80 Hz	80 Hz	OFF
	24	88 Hz	88 Hz	88 Hz	OFF
	25	96 Hz	96 Hz	96 Hz	OFF
	26	52 Hz	52 Hz	52 Hz	ON 1
	27	62 Hz	62 Hz	62 Hz	ON 1
	28	68 Hz	68 Hz	68 Hz	ON 1
	29	74 Hz	74 Hz	74 Hz	ON 1
	30				
		80 Hz	80 Hz	80 Hz	<u>ON 1</u>
	31	88 Hz	88 Hz	88 Hz	ON 1
	32	96 Hz	96 Hz	96 Hz	ON 1
	33	104 Hz	104 Hz	104 Hz	ON 1
	34	52 Hz	52 Hz	52 Hz	ON 2
	35	62 Hz	62 Hz	62 Hz	0112
	36	74 Hz	74 Hz	74 Hz	ON 2
	37	88 Hz	88 Hz	88 Hz	ON 2
	38	96 Hz	96 Hz	96 Hz	ON 2
1	39	52 Hz	52 Hz	52 Hz	ON 3
	40	62 Hz	62 Hz	62 Hz	ON 3
1	41	74 Hz	74 Hz	74 Hz	ON 3
	42	92 Hz	92 Hz	92 Hz	ON 3
1	43	104 Hz	104 Hz	104 Hz	ON 3
1					
1	44	52 Hz	52 Hz	52 Hz	<u>ON 4</u>
1	45	62 Hz	62 Hz	62 Hz	ON 4
1	46	74 Hz	74 Hz	74 Hz	ON 4
1	47	96 Hz	96 Hz	96 Hz	ON 4
1	48	104 Hz	104 Hz	104 Hz	ON 4
1					
1	49	116 Hz	116 Hz	116 Hz	ON 4
1	50	124 Hz	124 Hz	124 Hz	ON 4
1	51	144 Hz	144 Hz	144 Hz	ON 4
1	52	158 Hz	158 Hz	158 Hz	ON 4
1	53	166 Hz	166 Hz	166 Hz	ON 4
1					-
1	54	176 Hz	176 Hz	176 Hz	<u>ON 4</u>
1	55	188 Hz	188 Hz	188 Hz	ON 4
1	56	202 Hz	202 Hz	202 Hz	ON 4
1	57	210 Hz	210 Hz		ON 4
1					
1	58	218 Hz	210 Hz	210 Hz	<u>ON 4</u>
1	59	232 Hz	210 Hz		ON 4
	60	248 Hz	210 Hz	210 Hz	ON 4
	61		210 Hz		ON 4

Notes:

- 1. INV : Inverter compressor
 - STD : Standard compressor
 - Figures after ON represent the number of STD compressors in operation.
- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

represents the range in which "Hz" is not stepped up.

RXYQ 40PAY1 (8+16+16HP)

RXYQ 42PAY1 (8+16+18HP)

(To increase Step No.) Slave Slave unit2 Maste STEP STD unit unit1 No. INV INV INV 0 52 Hz | 52 Hz | 52 Hz 56 Hz 56 Hz 56 Hz 62 Hz 62 Hz 62 Hz OFF OFF 62 Hz 62 Hz 62 Hz 62 Hz 62 Hz 62 Hz 66 Hz 66 Hz 66 Hz 68 Hz 68 Hz 68 Hz 70 Hz 70 Hz 70 Hz 70 Hz 74 14 <th14</th> 14 14 14</ 8 80 Hz 80 Hz 80 Hz 88 Hz 88 Hz 88 Hz 88 HZ 88 HZ 88 HZ 96 HZ 96 HZ 96 HZ 104 HZ 104 HZ 104 HZ 110 HZ 110 HZ 110 HZ 116 HZ 116 HZ 116 HZ 10 11 12 13 124 Hz 124 Hz 124 Hz 80 Hz 80 Hz 80 Hz 14 15 ON 1 80 HZ 80 HZ 80 HZ ON H 88 HZ 88 HZ 88 HZ 0N 1 96 HZ 96 HZ 96 HZ 0N 1 104 HZ 104 HZ 104 HZ 0N 1 116 HZ 116 HZ 104 HZ 0N 1 16 17 18 19 20 21 124 Hz 124 Hz 124 Hz ON 1 132 Hz 132 Hz 132 Hz ON 1 132 112 132 112 131 188 HZ 188 HZ 188 HZ 101 196 HZ 96 HZ 96 HZ 00 2 104 HZ 104 HZ 104 HZ 104 HZ 00 2 124 HZ 124 HZ 124 HZ 00 2 22 23 24 25 144 Hz 144 Hz 144 Hz ON 2 92 Hz 92 Hz 92 Hz ON 3 26 27 28 29 104 Hz 104 Hz 104 Hz ON 3 116 Hz 116 Hz 116 Hz ON 3 30 124 Hz 124 Hz 124 Hz ON 3 144 Hz 144 Hz 144 Hz ON 3 31 96 Hz 96 Hz 96 Hz ON 4 104 Hz 104 Hz 104 Hz ON 4 32 33 116 Hz 116 Hz 116 Hz ON 4 124 Hz 124 Hz 124 Hz ON 4 34 35 36 37 124 Hz 124 Hz 124 Hz ON 4 144 Hz 144 Hz 144 Hz ON 4 158 Hz 158 Hz 158 Hz ON 4 166 Hz 166 Hz 166 Hz ON 4 176 Hz 176 Hz 176 Hz ON 4 176 Hz 176 Hz 176 Hz ON 4 202 Hz 202 Hz 202 Hz ON 4 210 Hz 210 Hz 210 Hz ON 4 218 Hz 210 Hz 210 Hz ON 4 232 Hz 210 Hz 232 Hz ON 4 248 Hz 210 Hz 248 Hz ON 4 248 Hz 210 Hz 248 Hz ON 4 248 Hz 210 Hz 266 Hz ON 4 38 39 40 41 42 43 44 45 46 266 Hz 210 Hz 266 Hz ON 4

	(To de	crease S	Step No.)
OTED	Master	Slave	Slave	
STEP	unit	unit1	unit2	STD
No.	INV	INV	INV	010
1	52 Hz	OFF		OFF
		V	U	0.1
2	56 Hz	OFF	OFF	OFF
3	62 Hz	OFF	OFF	OFF
4	68 Hz	OFF	OFF	OFF
5	74 Hz	OFF	OFF	OFF
6	80 Hz	OFF	OFF	OFF
7	88 Hz	OFF	OFF	OFF
8	96 Hz	OFF	OFF	OFF
-				
9	104 Hz	OFF	OFF	OFF
10	52 Hz	52 Hz	OFF	OFF
11	56 Hz	56 Hz	OFF	OFF
12	62 Hz	62 Hz	OFF	OFF
13	66 Hz	66 Hz	OFF	OFF
14	70 Hz	70 Hz	OFF	OFF
15	74 Hz	74 Hz	OFF	OFF
16	52 Hz	52 Hz		OFF
17	56 Hz	56 Hz	56 Hz	0.1
18	62 Hz	62 Hz	62 Hz	OFF
19	66 Hz	66 Hz	66 Hz	OFF
20	68 Hz	68 Hz	68 Hz	OFF
21	70 Hz	70 Hz	70 Hz	OFF
22	74 Hz	74 Hz	74 Hz	OFF
23	80 Hz	80 Hz	80 Hz	OFF
				OFF
24		88 Hz	88 Hz	
25	96 Hz	96 Hz	96 Hz	OFF
26	52 Hz	52 Hz	52 Hz	ON 1
27	62 Hz	62 Hz	62 Hz	ON 1
28	68 Hz	68 Hz	68 Hz	ON 1
29	74 Hz	74 Hz	74 Hz	ON 1
30	80 Hz	80 Hz	80 Hz	ON 1
31	88 Hz	88 Hz	88 Hz	ON 1
32	96 Hz	96 Hz	96 Hz	ON 1
33	104 Hz	104 Hz	104 Hz	ON 1
34	52 Hz	52 Hz	52 Hz	ON 2
35	62 Hz	62 Hz	62 Hz	ON 2
36	74 Hz	74 Hz	74 Hz	ON 2
37	88 Hz	88 Hz	88 Hz	ON 2
38	96 Hz	96 Hz	96 Hz	ON 2
39	52 Hz	52 Hz	52 Hz	ON 3
40	62 Hz	62 Hz	62 Hz	ON 3
41	74 Hz	74 Hz	74 Hz	ON 3
42	92 Hz	92 Hz	92 Hz	ON 3
43	104 Hz	104 Hz	104 Hz	ON 3
44	52 Hz	52 Hz	52 Hz	ON 4
45	62 Hz	62 Hz	62 Hz	ON 4
46	74 Hz	74 Hz	74 Hz	ON 4
47	96 Hz	96 Hz	96 Hz	ON 4
48	104 Hz	104 Hz	104 Hz	ON 4
40				
	116 Hz	116 Hz		
50	124 Hz	124 Hz	124 Hz	ON 4
51	144 Hz	144 Hz	144 Hz	ON 4
52	158 Hz	158 Hz	158 Hz	ON 4
53	166 Hz	166 Hz	166 Hz	ON 4
54	176 Hz			ON 4
55	188 Hz	188 Hz	188 Hz	ON 4
56	202 Hz	202 Hz	202 Hz	ON 4
57	210 Hz		210 Hz	ON 4
58	218 Hz		218 Hz	ON 4
59	232 Hz	210 Hz	232 Hz	ON 4
60	248 Hz		248 Hz	ON 4
61	266 Hz	210 Hz	266 Hz	ON 4

	(To inc	rease S	tep No.)	
STEP	Master	Slave	Slave	
No.	unit	unit1	unit2	STD
INO.	INV	INV	INV	
1	52 Hz	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	66 Hz	OFF
5	68 Hz	68 Hz	68 Hz	OFF
6	70 Hz	70 Hz	70 Hz	OFF
7	74 Hz	74 Hz	74 Hz	OFF
8	80 Hz	80 Hz	80 Hz	OFF
9	88 Hz	88 Hz	88 Hz	OFF
10	96 Hz	96 Hz	96 Hz	OFF
11	104 Hz	104 Hz	104 Hz	OFF
12	110 Hz	110 Hz	110 Hz	OFF
13	116 Hz	116 Hz	116 Hz	OFF
14	124 Hz	124 Hz	124 Hz	OFF
15	80 Hz	80 Hz	80 Hz	ON
16	88 Hz	88 Hz	88 Hz	ON
17	96 Hz	96 Hz	96 Hz	ON
18	104 Hz	104 Hz	104 Hz	ON
19	116 Hz	116 Hz	116 Hz	ON
20	124 Hz	124 Hz	124 Hz	ON
	132 Hz	132 Hz	132 Hz	- · ·
21 22	132 HZ 88 Hz	88 Hz	88 Hz	ON 2
23	96 Hz	96 Hz	96 Hz	ON
24	104 Hz	104 Hz	104 Hz	ON
25	124 Hz	124 Hz	124 Hz	ON
26	144 Hz	144 Hz	144 Hz	ON
27	92 Hz	92 Hz	92 Hz	ON :
28	104 Hz	104 Hz	104 Hz	ON :
29	116 Hz	116 Hz	116 Hz	ON :
30	124 Hz	124 Hz	124 Hz	ON :
31	144 Hz	144 Hz	144 Hz	ON :
32	96 Hz	96 Hz	96 Hz	ON ·
33	104 Hz	104 Hz	104 Hz	ON ·
34	116 Hz	116 Hz	116 Hz	ON ·
35	124 Hz	124 Hz	124 Hz	ON ·
36	144 Hz	144 Hz	144 Hz	ON ·
37	158 Hz	158 Hz	158 Hz	ON ·
38	166 Hz	166 Hz	166 Hz	ON ·
39	176 Hz	176 Hz	176 Hz	ON ·
40	188 Hz	188 Hz	188 Hz	ON ·
41	202 Hz	202 Hz	202 Hz	ON ·
42	210 Hz	210 Hz	210 Hz	ON 4
43	218 Hz	218 Hz	218 Hz	ON 4
44	232 Hz	232 Hz	232 Hz	ON 4
45	248 Hz	248 Hz	248 Hz	ON 4
46	266 Hz	266 Hz	266 Hz	ON -
-10	200112	200112	200112	

		-	crease S)
4	STEP	Master	Slave	Slave	OTD
	No.	unit	unit1	unit2	STD
		INV	INV	INV	055
	1	52 Hz	OFF	OFF	OFF
	2	56 Hz	OFF	OFF	OFF
	3	62 Hz	OFF	OFF	OFF
	4	68 Hz	OFF	OFF	OFF
	5	74 Hz	OFF	OFF	OFF
	6	80 Hz	OFF	OFF	OFF
	7	88 Hz	OFF	OFF	OFF
	8	96 Hz	OFF	OFF	OFF
	9	104 Hz	OFF	OFF	OFF
	10	52 Hz	52 Hz	OFF	OFF
	11	56 Hz	56 Hz	OFF	OFF
	12	62 Hz	62 Hz	OFF	OFF
	13	66 Hz	66 Hz	OFF	OFF
	14	70 Hz	70 Hz	OFF	OFF
	15	74 Hz	74 Hz	OFF	OFF
	16	52 Hz	52 Hz	52 Hz	OFF
	17	56 Hz	56 Hz	56 Hz	OFF
	18	62 Hz	62 Hz	62 Hz	OFF
	19	66 Hz	66 Hz	66 Hz	OFF
	20	68 Hz	68 Hz	68 Hz	OFF
	21	70 Hz	70 Hz	70 Hz	OFF
	22	74 Hz	74 Hz	74 Hz	OFF
	23	80 Hz	80 Hz	80 Hz	OFF
	24	88 Hz	88 Hz	88 Hz	OFF
	25	96 Hz	96 Hz	96 Hz	OFF
	26	52 Hz	52 Hz	52 Hz	ON 1
	27	62 Hz	62 Hz	62 Hz	ON 1
	28	68 Hz	68 Hz	68 Hz	ON 1
	29	74 Hz	74 Hz	74 Hz	ON 1
	30	80 Hz	80 Hz	80 Hz	ON 1
	31	88 Hz	88 Hz	88 Hz	<u>ON 1</u>
	32	96 Hz	96 Hz	96 Hz	<u>ON 1</u>
	33	104 Hz	104 Hz	104 Hz	<u>ON 1</u>
	34	52 Hz	52 Hz	52 Hz	ON 2
	35	62 Hz	62 Hz	62 Hz	ON 2
	36	74 Hz	74 Hz	74 Hz	ON 2
	37	88 Hz	88 Hz	88 Hz	ON 2
	38	96 Hz	96 Hz	96 Hz	ON 2
	39	52 Hz	52 Hz	52 Hz	ON 3
	40	62 Hz	62 Hz	62 Hz	ON 3
	41	74 Hz	74 Hz	74 Hz	ON 3
	42	92 Hz	92 Hz	92 Hz	ON 3
1	43	104 Hz	104 Hz	104 Hz	ON 3
	44	52 Hz	52 Hz	52 Hz	ON 4
	45	62 Hz	62 Hz	62 Hz	ON 4
	46	74 Hz	74 Hz	74 Hz	ON 4
	47	96 Hz	96 Hz	96 Hz	ON 4
	48	104 Hz	104 Hz	104 Hz	ON 4
	40	116 Hz	116 Hz	104 HZ	ON 4
	49 50	124 Hz	124 Hz	124 Hz	ON 4
	51	144 Hz	144 Hz	144 Hz	ON 4
	52	158 Hz	158 Hz	158 Hz	ON 4
	53	166 Hz	166 Hz	166 Hz	ON 4
	54	176 Hz	176 Hz	176 Hz	<u>ON 4</u>
	55	188 Hz	188 Hz	188 Hz	ON 4
	56	202 Hz	202 Hz	202 Hz	ON 4
	57	210 Hz	210 Hz	210 Hz	ON 4
	58	218 Hz	218 Hz	218 Hz	ON 4
	59	232 Hz	232 Hz	232 Hz	ON 4
1	60			248 Hz	ON 4
1	61	266 Hz	266 Hz	266 Hz	ON 4

Notes:

- 1. INV : Inverter compressor
 - STD : Standard compressor
 - Figures after ON represent the number of STD compressors in operation.
- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

represents the range in which "Hz" is not stepped up.

RXYQ44PAY1 (8+18+18HP)

Slave unit2

INV

56 Hz OI

66 Hz OF 68 Hz OF 70 Hz OF 74 Hz OF 80 Hz OF

88 Hz OFF

96 Hz 52 Hz 62 Hz ON 68 Hz ON 74 Hz ON 80 Hz z 88 Hz ON 96 Hz ON Iz 104 Hz (52 Hz (62 Hz O 74 Hz (88 Hz (96 Hz ON 52 Hz 0 Z 62 HZ ON 74 Hz O 92 Hz 104 Hz 52 Hz ON 74 Hz 96 Hz 04 Hz (68 Hz

> 96 Hz 0 04 Hz 68 Hz 80 Hz 104 Hz 116 Hz 44 Hz

58 Hz 158 Hz 158 Hz

166 Hz

176 Hz 176 Hz 176 Hz 188 Hz 188 Hz

202 Hz 202 Hz

166 Hz

218 Hz 218 Hz ON 6

232 Hz

166 Hz

188 H

210 H

202 Hz

0 Hz 210 Hz

6

66

68

OFF OFF OF OF OFF

STD

OF

OF OF

OF

RXYQ46PAY1, 48PAY1 (10/12+18+18HP)

(To decrease Step No.)

BXYQ50PAY1 52PAY1 (14/16+18+18HP)

represents the range in which "Hz" is not stepped up.

e Step No.)

STEP No. Master unit Slave unit Slave unit Unit2 STD 1 52 Hz 52 Hz 52 Hz 52 Hz STD 1 52 Hz 52 Hz 52 Hz OFF 2 56 Hz 56 Hz OFF 3 62 Hz 62 Hz 62 Hz OFF 4 66 Hz 66 Hz 0FF OFF 5 68 Hz 68 Hz 0FF 0FF 6 70 Hz 70 Hz 70 Hz 0FF 7 74 Hz 74 Hz 74 Hz 0FF 8 80 Hz 80 Hz 80 Hz 0FF
No. Unit Unit <thu< th=""></thu<>
INV INV INV INV 1 55 Hz 52 Hz 52 Hz 52 Hz 0FF 2 56 Hz 56 Hz 56 Hz 0FF 3 62 Hz 62 Hz 62 Hz 0FF 4 66 Hz 66 Hz 64 Hz 0FF 5 68 Hz 68 Hz 0FF 0FF 6 70 Hz 70 Hz 70 Hz 0FF 7 74 Hz 74 Hz 0FF 80 Hz 80 Hz 0FF
2 56 Hz 56 Hz 56 Hz OFF 3 62 Hz 62 Hz 62 Hz 62 Hz OFF 4 66 Hz 66 Hz 66 Hz 0FF 5 68 Hz 68 Hz 0FF 6 70 Hz 70 Hz 0FF 7 74 Hz 74 Hz 0FF 8 80 Hz 80 Hz 06 Hz
3 62 Hz 62 Hz 62 Hz 06 FF 4 66 Hz 66 Hz 66 Hz 0FF 5 68 Hz 68 Hz 68 Hz 0FF 6 70 Hz 70 Hz 07 Hz 0FF 7 74 Hz 74 Hz 0FF 0FF 8 80 Hz 80 Hz 0FF 0FF
4 66 Hz 66 Hz 66 Hz 0FF 5 68 Hz 68 Hz 68 Hz 0FF 6 70 Hz 70 Hz 70 Hz OFF 7 74 Hz 74 Hz 74 Hz 74 Hz OFF 8 80 Hz 80 Hz 80 Hz 0FF
5 68 Hz 68 Hz 68 Hz OFF 6 70 Hz 70 Hz 70 Hz OFF 7 74 Hz 74 Hz 74 Hz OFF 8 80 Hz 80 Hz 80 Hz OFF
6 70 Hz 70 Hz 70 Hz OFF 7 74 Hz 74 Hz 74 Hz OFF 8 80 Hz 80 Hz 80 Hz OFF
7 74 Hz 74 Hz 74 Hz OFF 8 80 Hz 80 Hz 80 Hz 0FF
8 80 Hz 80 Hz 80 Hz OFF
9 88 Hz 88 Hz 88 Hz OFF
10 96 Hz 96 Hz 96 Hz OFF
11 104 Hz 104 Hz 104 Hz OFF
12 110 Hz 110 Hz 110 Hz OFF
13 116 Hz 116 Hz 116 Hz OFF
14 124 Hz 124 Hz 124 Hz OFF
15 80 Hz 80 Hz 80 Hz ON 1
16 88 Hz 88 Hz 88 Hz ON 1
17 96 Hz 96 Hz 96 Hz ON 1
18 104 Hz 104 Hz 104 Hz ON 1
19 116 Hz 116 Hz 116 Hz ON 1
20 124 Hz 124 Hz 124 Hz ON 1
21 132 Hz 132 Hz 132 Hz ON 1
22 88 Hz 88 Hz 88 Hz ON 2
23 96 Hz 96 Hz 96 Hz ON 2
24 104 Hz 104 Hz 104 Hz ON 2
25 124 Hz 124 Hz 124 Hz ON 2
26 144 Hz 144 Hz 144 Hz ON 2
27 92 Hz 92 Hz 92 Hz ON 3
28 104 Hz 104 Hz 104 Hz ON 3
29 116 Hz 116 Hz 116 Hz ON 3
30 124 Hz 124 Hz 124 Hz ON 3
31 144 Hz 144 Hz 144 Hz ON 3
32 96 Hz 96 Hz 96 Hz ON 4
33 104 Hz 104 Hz 104 Hz ON 4
34 116 Hz 116 Hz 116 Hz ON 4
35 124 Hz 124 Hz 124 Hz ON 4
36 144 Hz 144 Hz 144 Hz ON 4
52 96 Hz 96 Hz 96 Hz ON 5 53 104 Hz 104 Hz 104 Hz ON 5
54 116 Hz 116 Hz 116 Hz ON 5 55 124 Hz 124 Hz 124 Hz ON 5
56 144 Hz 144 Hz 144 Hz 0N 5
57 158 Hz 158 Hz 158 Hz 158 Hz 0N 5
58 166 Hz 166 Hz 166 Hz 0N 5
59 176 Hz 176 Hz 176 Hz 00 15
60 188 Hz 188 Hz 188 Hz ON 5
61 202 Hz 202 Hz 202 Hz ON 5
62 210 Hz 210 Hz 210 Hz ON 5
63 210 Hz 218 Hz 218 Hz ON 5
64 210 Hz 232 Hz 232 Hz ON 5
65 210 Hz 248 Hz 248 Hz ON 5
▼ 66 210 Hz 266 Hz 266 Hz ON 5
······································

STEP	Master	Slave	Slave	
No.	unit	unit1	unit2	STD
	INV	INV	INV	
1	52 Hz	OFF	OFF	OFF
2	56 Hz	OFF	OFF	OFF
3	62 Hz	OFF	OFF	OFF
4	68 Hz	OFF	OFF	OFF
5	74 Hz	OFF	OFF	OFF
6	80 Hz	OFF	OFF	OFF
7	88 Hz	OFF	OFF	OFF
8	96 Hz	OFF	OFF	OFF
9	104 Hz	OFF	OFF	OFF
10	52 Hz	52 Hz	OFF	OFF
11	56 Hz	56 Hz	OFF	OFF
12	62 Hz	62 Hz	OFF	OFF
13	66 Hz	66 Hz	OFF	OFF
14	70 Hz	70 Hz	OFF	OFF
15	74 Hz	74 Hz	OFF	OFF
16	52 Hz	52 Hz	52 Hz	OFF
		56 112		
	56 Hz	56 Hz	56 Hz	
18	62 Hz	62 Hz	62 Hz	
19	66 Hz	66 Hz	66 Hz	OFF
20	68 Hz	68 Hz	68 Hz	OFF
21	70 Hz	70 Hz	70 Hz	OFF
22	74 Hz	74 Hz	74 Hz	OFF
23	80 Hz	80 Hz	80 Hz	OFF
24	88 Hz	88 Hz	88 Hz	OFF
24 25	96 Hz	96 Hz	96 Hz	OFF
26	52 Hz	52 Hz	52 Hz	ON 1
27	62 Hz	62 Hz	62 Hz	ON 1
28	68 Hz	68 Hz	68 Hz	ON 1
29	74 Hz	74 Hz	74 Hz	ON 1
30				ON 1
30				
31	88 Hz	88 Hz	88 Hz	ON 1
32	96 Hz	96 Hz	96 Hz	ON 1
33	104 Hz	104 Hz	104 Hz	ON 1
34	52 Hz	52 Hz	52 Hz	ON 2
35	62 Hz	62 Hz	62 Hz	ON 2
36	74 Hz	74 Hz	74 Hz	ON 2
37	88 Hz	88 Hz	88 Hz	ON 2
38	96 Hz	96 Hz	96 Hz	ON 2
39	52 Hz	52 Hz	52 Hz	ON 3
40	62 Hz	62 Hz	62 Hz	ON 3
41	74 Hz	74 Hz	74 Hz	ON 3
42	92 Hz	92 Hz	92 Hz	ON 3
42	104 Hz	104 Hz	104 Hz	ON 3
43	52 Hz	52 Hz	52 Hz	ON 3 ON 4
45 46	62 Hz	62 Hz	62 Hz	ON 4 ON 4
	74 Hz	74 Hz	74 Hz	ON 4
47	96 Hz	96 Hz	96 Hz	ON 4
48	104 Hz	104 Hz	104 Hz	ON 4
49	52 Hz	52 Hz	52 Hz	ON 5
50	68 Hz	68 Hz	68 Hz	ON 5
51	80 Hz	80 Hz	80 Hz	ON 5
52	96 Hz	96 Hz	96 Hz	ON 5
52 53	104 Hz	104 Hz	104 Hz	ON 5
54	116 Hz	116 Hz	116 Hz	ON 5
55	124 Hz	124 Hz	124 Hz	ON 5
56	144 Hz	144 Hz	144 Hz	ON 5
57	158 Hz	158 Hz	158 Hz	ON 5
58	166 Hz	166 Hz	166 Hz	ON 5
59	176 Hz	176 Hz		ON 5
			176 Hz 188 Hz	0110
60				ON 5
60	188 Hz	188 Hz	100 112	
<u>60</u> 61	188 Hz 202 Hz	202 Hz	202 Hz	ON 5
60 61 62	188 Hz 202 Hz 210 Hz	202 Hz 210 Hz	202 Hz 210 Hz	ON 5 ON 5
60 61 62 63	188 Hz 202 Hz 210 Hz 210 Hz	202 Hz 210 Hz 218 Hz	202 Hz 210 Hz 218 Hz	ON 5 ON 5 ON 5
60 61 62 63 64	188 Hz 202 Hz 210 Hz 210 Hz 210 Hz	202 Hz 210 Hz 218 Hz 232 Hz	202 Hz 210 Hz 218 Hz 232 Hz	ON 5 ON 5 ON 5 ON 5
60 61 62 63	188 Hz 202 Hz 210 Hz 210 Hz 210 Hz 210 Hz	202 Hz 210 Hz 218 Hz 232 Hz 248 Hz	202 Hz 210 Hz 218 Hz 232 Hz 248 Hz	ON 5 ON 5 ON 5 ON 5 ON 5
60 61 62 63 64	188 Hz 202 Hz 210 Hz 210 Hz 210 Hz 210 Hz	202 Hz 210 Hz 218 Hz 232 Hz	202 Hz 210 Hz 218 Hz 232 Hz 248 Hz	ON 5 ON 5 ON 5 ON 5

	``	rease S	,				(To de	
STEP	Master	Slave	Slave			STEP	Master	Slave
No.	unit	unit1	unit2	STD		No.	unit	unit1
1	INV	INV	INV	OFF		1	INV	INV OFF
2	52 Hz 56 Hz	52 Hz	52 Hz 56 Hz	OFF		2	52 Hz 56 Hz	OFF
3	62 Hz	56 Hz 62 Hz	62 Hz	OFF		3	62 Hz	OFF
4	66 Hz	66 Hz	66 Hz	OFF		4	68 Hz	OFF
5	68 Hz	68 Hz	68 Hz	OFF		5	74 Hz	OFF
6	70 Hz	70 Hz	70 Hz	OFF		6	80 Hz	OFF
7	74 Hz	74 Hz	74 Hz	OFF		7	88 Hz	OFF
8	80 Hz	80 Hz	80 Hz	OFF		8	96 Hz	OFF
9	88 Hz	88 Hz	88 Hz	OFF		9	104 Hz	OFF
10	96 Hz	96 Hz	96 Hz	OFF		10	52 Hz	52 Hz
11	104 Hz	104 Hz	104 Hz	OFF		11	56 Hz	56 Hz
12	110 Hz	110 Hz	110 Hz	OFF		12	62 Hz	62 Hz
13	116 Hz	116 Hz	116 Hz	OFF		13	66 Hz	66 Hz
14		124 Hz	124 Hz	OFF		14	70 Hz	70 Hz
15	80 Hz	80 Hz	80 Hz	ON 1		15	74 Hz	74 Hz
16	88 Hz	88 Hz	88 Hz	ON 1		16	52 Hz	52 Hz
17	96 Hz	96 Hz	96 Hz	ON 1		17	56 Hz	56 Hz
18	104 Hz	104 Hz	104 Hz	ON 1		18	62 Hz	62 Hz
19		116 Hz	116 Hz	ON 1		19	66 Hz	66 Hz
20	124 Hz	124 Hz	124 Hz	ON 1		20	68 Hz	68 Hz
21	132 Hz	132 Hz	132 Hz	ON 1		21	70 Hz	70 Hz
22	88 Hz	88 Hz	88 Hz	ON 2		22	74 Hz	74 Hz
23	96 Hz	96 Hz	96 Hz	ON 2		23	80 Hz	80 Hz
24	104 Hz	104 Hz	104 Hz	ON 2		24	88 Hz	88 Hz
25	124 Hz	124 Hz		ON 2		25	96 Hz	96 Hz
26	144 Hz	144 Hz	144 Hz	ON 2		26	52 Hz	52 Hz
27	92 Hz	92 Hz	92 Hz	ON 3		27	62 Hz	62 Hz
28		104 Hz	104 Hz	ON 3		28	68 Hz	68 Hz
29		116 Hz	116 Hz	ON 3		29	74 Hz	74 Hz
30		124 Hz	124 Hz	ON 3		30	80 Hz	80 Hz
31	144 Hz	144 Hz	144 Hz	ON 3		31	88 Hz	88 Hz
32	96 Hz	96 Hz	96 Hz	ON 4		32	96 Hz	96 Hz
33		104 Hz	104 Hz	ON 4		33	104 Hz	104 H
34			116 Hz	ON 4		34	52 Hz	52 Hz
35	124 Hz	124 Hz	124 Hz	ON 4		35	62 Hz	62 Hz
36	144 Hz	144 Hz	144 Hz	ON 4		36	74 Hz	74 Hz
37	96 Hz	96 Hz	96 Hz	ON 5		37	88 Hz	88 Hz
38	104 Hz	104 Hz	104 Hz	ON 5		38	96 Hz	96 Hz
39	116 Hz	116 Hz	116 Hz	ON 5		39	52 Hz	52 Hz
40	124 Hz	124 Hz	124 Hz	ON 5		40	62 Hz	62 Hz
41	144 Hz	144 Hz	144 Hz	ON 5		41	74 Hz	74 Hz
42	96 Hz	96 Hz	96 Hz	ON 6		42	92 Hz	92 Hz
43		104 Hz	104 Hz	ON 6		43	104 Hz	104 H
44	116 Hz	116 Hz	116 Hz	ON 6		44	52 Hz	52 Hz
45	124 Hz	124 Hz	124 Hz	ON 6		45	62 Hz	62 Hz
46		144 Hz	144 Hz	ON 6		46	74 Hz	74 Hz
47		158 Hz	158 Hz	ON 6		47	96 Hz	96 Hz
48		166 Hz	166 Hz	ON 6		48	104 Hz	104 H
49	176 Hz	176 Hz	176 Hz	ON 6		49	52 Hz	52 Hz
50		188 Hz	188 Hz	ON 6		50	68 Hz	68 Hz
51		202 Hz		ON 6		51	80 Hz	80 Hz
52		210 Hz		ON 6		52	96 Hz	96 Hz
53		218 Hz		ON 6		53	104 Hz	104 H
54		232 Hz	232 Hz	ON 6		54	52 Hz	52 Hz
55		248 Hz		ON 6		55	68 Hz	68 Hz
56	210 Hz	266 Hz	266 Hz	ON 6	I	56	80 Hz	80 Hz
						57	96 Hz	96 Hz
						58	104 Hz	104 H
						59	116 Hz	116 H
						60	124 Hz	124 H
					- 1	61	144 Hz	144 H

- 1. INV : Inverter compressor
 - STD : Standard compressor
 - Figures after ON represent the number of STD compressors in operation.
- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ54PAY1 (18+18+18HP)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STEP No.	Master unit	Slave unit1	Slave unit2	STD		STEF No.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		INV	INV	INV	OFF		- 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-						_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c} 11 & 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ 0FF \\ 11 \\ 12 & 110 \ Hz \ 110 \ Hz \ 110 \ Hz \ 0FF \\ 13 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0FF \\ 13 \\ 14 & 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 0FF \\ 13 \\ 14 & 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 14 \\ 15 & 80 \ Hz \ 80 \ Hz \ 80 \ Hz \ 0FF \\ 16 & 88 \ Hz \ 88 \ Hz \ 88 \ Hz \ 0FF \\ 17 \\ 18 & 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ 0N \ 1 \\ 19 \\ 20 \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 0N \ 1 \\ 22 \\ 23 \ 96 \ Hz \ 96 \ Hz \ 96 \ Hz \ 0N \ 2 \\ 22 \\ 23 \ 96 \ Hz \ 96 \ Hz \ 96 \ Hz \ 0N \ 2 \\ 22 \\ 24 \ 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ 0N \ 2 \\ 22 \\ 26 \ 144 \ Hz \ 144 \ Hz \ 144 \ Hz \ 0N \ 2 \\ 26 \\ 27 \ 92 \ Hz \ 92 \ Hz \ 92 \ Hz \ 0N \ 3 \\ 29 \\ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0N \ 3 \\ 29 \\ 30 \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 0N \ 3 \\ 30 \\ 30 \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 104 \ Hz \ 0N \ 3 \\ 30 \\ 31 \ 144 \ Hz \ 144 \ Hz \ 144 \ Hz \ 0N \ 3 \\ 33 \\ 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ 0N \ 4 \\ 33 \\ 30 \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 0N \ 4 \\ 33 \\ 30 \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 0N \ 4 \\ 33 \\ 30 \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0N \ 5 \\ 39 \\ 40 \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 0N \ 5 \\ 39 \\ 40 \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 0N \ 5 \\ 39 \ 30 \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0N \ 5 \\ 39 \ 30 \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0N \ 5 \\ 30 \ 30 \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0N \ 5 \\ 30 \ 30 \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0N \ 5 \\ 30 \ 30 \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0N \ 5 \\ 30 \ 30 \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 0N \ 6 \ 44 \ 41 \ 414 \ Hz \ 0N \ 6 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 416 \ 4$	<u> </u>						<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10		96 Hz	96 Hz			10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		104 Hz	104 Hz	104 Hz	OFF		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		110 Hz	110 Hz	110 Hz	OFF		12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	116 Hz	116 Hz	116 Hz	OFF		13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	124 Hz	124 Hz	124 Hz	OFF		14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	80 Hz	80 Hz	80 Hz	ON 1		15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	88 Hz	88 Hz	88 Hz	ON 1		16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17		96 Hz	96 Hz			17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c} 26 & 144 \ Hz \ 144 \ Hz \ 144 \ Hz \ ON \ 2 \\ 27 & 92 \ Hz \ 92 \ Hz \ 92 \ Hz \ ON \ 3 \\ 29 & 116 \ Hz \ 104 \ Hz \ 104 \ Hz \ ON \ 4 \\ 29 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 3 \\ 29 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 3 \\ 29 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 3 \\ 30 & 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ ON \ 3 \\ 31 & 134 & H16 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 4 \\ 33 & 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ ON \ 4 \\ 33 & 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ ON \ 4 \\ 33 & 104 \ Hz \ 104 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 4 \\ 36 & 144 \ Hz \ 144 \ Hz \ 144 \ Hz \ ON \ 4 \\ 36 & 144 \ Hz \ 144 \ Hz \ 144 \ Hz \ ON \ 4 \\ 36 & 144 \ Hz \ 144 \ Hz \ 116 \ Hz \ ON \ 5 \\ 39 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 5 \\ 39 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 5 \\ 39 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 5 \\ 39 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 5 \\ 39 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 5 \\ 39 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 5 \\ 39 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 5 \\ 39 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 5 \\ 42 & 96 \ Hz \ 96 \ Hz \ 96 \ Hz \ 96 \ Hz \ ON \ 6 \\ 42 & 43 & 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ 104 \ Hz \ ON \ 6 \\ 44 & 116 \ Hz \ 116 \ Hz \ 116 \ Hz \ ON \ 6 \\ 45 & 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ ON \ 6 \\ 45 & 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ 124 \ Hz \ ON \ 6 \\ 46 & 144 \ Hz \ 144 \ Hz \ 144 \ Hz \ 144 \ Hz \ ON \ 6 \\ 45 & 124 \ Hz \ 126 \ Hz \ 166 \ Hz \ 166 \ Hz \ ON \ 6 \\ 46 & 144 \ Hz \ 176 \ Hz \ 176 \ Hz \ ON \ 6 \\ 46 & 144 \ Hz \ 176 \ Hz \ 176 \ Hz \ ON \ 6 \\ 46 & 144 \ Hz \ 176 \ Hz \ 176 \ Hz \ ON \ 6 \\ 46 & 144 \ Hz \ 176 \ Hz \ 176 \ Hz \ ON \ 6 \\ 55 & 210 \ Hz \ 218 \ Hz \ 218 \ Hz \ 218 \ Hz \ 200 \ 6 \\ 55 & 248 \ Hz \ 228 \ Hz \ 228 \ Hz \ 228 \ Hz \ ON \ 6 \\ 55 & 248 \ Hz \ 228 \ Hz \ 228 \ Hz \ 248 \ Hz \ ON \ 6 \\ 55 & 248 \ Hz \ 2266 \ Hz \ 266 \ $							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c} \hline 33 & 104 \ \text{Hz} \ 104 \ \text{Hz} \ 104 \ \text{Hz} \ 0N \ 4} \\ \hline 34 & 116 \ \text{Hz} \ 116 \ \text{Hz} \ 116 \ \text{Hz} \ 0N \ 4} \\ \hline 35 & 124 \ \text{Hz} \ 124 \ \text{Hz} \ 124 \ \text{Hz} \ 0N \ 4} \\ \hline 35 & 124 \ \text{Hz} \ 124 \ \text{Hz} \ 124 \ \text{Hz} \ 0N \ 4} \\ \hline 36 & 144 \ \text{Hz} \ 144 \ \text{Hz} \ 144 \ \text{Hz} \ 0N \ 4} \\ \hline 36 & 144 \ \text{Hz} \ 144 \ \text{Hz} \ 144 \ \text{Hz} \ 0N \ 5} \\ \hline 37 & 96 \ \text{Hz} \ 96 \ \text{Hz} \ 96 \ \text{Hz} \ 0N \ 5} \\ \hline 39 & 116 \ \text{Hz} \ 116 \ \text{Hz} \ 116 \ \text{Hz} \ 0N \ 5} \\ \hline 39 & 116 \ \text{Hz} \ 116 \ \text{Hz} \ 116 \ \text{Hz} \ 0N \ 5} \\ \hline 39 & 116 \ \text{Hz} \ 116 \ \text{Hz} \ 116 \ \text{Hz} \ 0N \ 5} \\ \hline 40 & 124 \ \text{Hz} \ 124 \ \text{Hz} \ 124 \ \text{Hz} \ 0N \ 5} \\ \hline 41 & 144 \ \text{Hz} \ 144 \ \text{Hz} \ 144 \ 124 \ \text{Hz} \ 0N \ 5} \\ \hline 41 & 144 \ \text{Hz} \ 144 \ \text{Hz} \ 144 \ \text{Hz} \ 0N \ 6} \\ \hline 42 & 96 \ \text{Hz} \ 96 \ \text{Hz} \ 96 \ \text{Hz} \ 96 \ \text{Hz} \ 0N \ 6} \\ \hline 44 & 116 \ \text{Hz} \ 104 \ \text{Hz} \ 104 \ \text{Hz} \ 0N \ 6} \\ \hline 44 & 116 \ \text{Hz} \ 104 \ \text{Hz} \ 104 \ \text{Hz} \ 0N \ 6} \\ \hline 44 & 116 \ \text{Hz} \ 104 \ \text{Hz} \ 104 \ \text{Hz} \ 0N \ 6} \\ \hline 44 & 116 \ \text{Hz} \ 116 \ \text{Hz} \ 116 \ \text{Hz} \ 0N \ 6} \\ \hline 44 & 15 \ 124 \ \text{Hz} \ 124 \ \text{Hz} \ 124 \ \text{Hz} \ 0N \ 6} \\ \hline 47 & 158 \ \text{Hz} \ 158 \ \text{Hz} \ 158 \ \text{Hz} \ 158 \ \text{Hz} \ 0N \ 6} \\ \hline 47 & 158 \ \text{Hz} \ 176 \ \text{Hz} \ 176 \ \text{Hz} \ 0N \ 6} \\ \hline 50 & 188 \ \text{Hz} \ 188 \ \text{Hz} \ 188 \ \text{Hz} \ 0N \ 6} \\ \hline 50 & 120 \ 120 \ \text{Hz} \ 210 \ \text{Hz} \ 210 \ \text{Hz} \ 0N \ 6} \\ \hline 55 & 248 \ \text{Hz} \ 228 \ \text{Hz} \ 228 \ \text{Hz} \ 232 \ \text{Hz} \ 232 \ \text{Hz} \ 232 \ \text{Hz} \ 232 \ \text{Hz} \ 236 \ \text{Hz} \ 0N \ 6} \\ \hline 55 & 248 \ \text{Hz} \ 248 \ \text{Hz} \ 248 \ \text{Hz} \ 260 \ 6} \\ \hline 55 & 266 \ 12266 \ \text{Hz} \ 266 \ \text{Hz} \ 266 \ \text{Hz} \ 0N \ 6} \\ \hline 57 & 160 \ \text{Hz} \ 150 \ $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		96 Hz	96 Hz				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	104 Hz	104 Hz	104 Hz	ON 5		38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	116 Hz	116 Hz	116 Hz	ON 5		39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	124 Hz	124 Hz	124 Hz	ON 5		40
43 104 Hz 104 Hz 104 Hz 0N 6 44 116 Hz 116 Hz 116 Hz 0N 6 44 116 Hz 116 Hz 116 Hz 0N 6 45 124 Hz 124 Hz 124 Hz 0N 6 46 144 Hz 144 Hz 144 Hz 0N 6 47 158 Hz 158 Hz 158 Hz 0N 6 49 176 Hz 166 Hz 166 Hz 0N 6 49 176 Hz 176 Hz 176 Hz 0N 6 50 188 Hz 188 Hz 0N 6 50 51 202 Hz 202 Hz 0N 6 51 52 210 Hz 210 Hz 10 Hz 0N 6 53 218 Hz 1218 Hz 120 Hz 0N 6 54 232 Hz 232 Hz 232 Hz 0N 6 55 248 Hz 248 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 55	41	144 Hz	144 Hz	144 Hz	ON 5		41
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42	96 Hz	96 Hz	96 Hz	ON 6		42
45 124 Hz 124 Hz 124 Hz 0N 6 46 144 Hz 144 Hz 144 Hz 0N 6 46 144 Hz 144 Hz 144 Hz 0N 6 47 158 Hz 158 Hz 0N 6 48 166 Hz 166 Hz 166 Hz 0N 6 49 176 Hz 176 Hz 176 Hz 0N 6 50 188 Hz 188 Hz 188 Hz 0N 6 51 202 Hz 202 Hz 0N 6 51 52 210 Hz 210 Hz 210 Hz 0N 6 53 218 Hz 218 Hz 0N 6 53 54 232 Hz 232 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 55	43	104 Hz	104 Hz	104 Hz	ON 6		43
45 124 Hz 124 Hz 124 Hz 0N 6 46 144 Hz 144 Hz 144 Hz 0N 6 46 144 Hz 144 Hz 144 Hz 0N 6 47 158 Hz 158 Hz 0N 6 48 166 Hz 166 Hz 166 Hz 0N 6 49 176 Hz 176 Hz 176 Hz 0N 6 50 188 Hz 188 Hz 188 Hz 0N 6 51 202 Hz 202 Hz 0N 6 51 52 210 Hz 210 Hz 210 Hz 0N 6 53 218 Hz 218 Hz 0N 6 53 54 232 Hz 232 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 55	44	116 Hz	116 Hz	116 Hz	ON 6		44
46 144 Hz 144 Hz 144 Hz 0N 6 47 158 Hz 158 Hz 158 Hz 0N 6 48 166 Hz 166 Hz 166 Hz 0N 6 49 176 Hz 176 Hz 176 Hz 0N 6 50 188 Hz 188 Hz 0N 6 50 51 202 Hz 202 Hz 0N 6 51 52 210 Hz 210 Hz 210 Hz 0N 6 53 218 Hz 123 Hz 0N 6 53 54 232 Hz 232 Hz 232 Hz 0N 6 56 266 Hz 266 Hz 0N 6 55	45	124 Hz	124 Hz				45
47 158 Hz 158 Hz 158 Hz 0N 6 48 166 Hz 166 Hz 166 Hz 0N 6 49 176 Hz 176 Hz 176 Hz 0N 6 50 188 Hz 188 Hz 0N 6 50 51 202 Hz 202 Hz 0N 6 51 52 210 Hz 210 Hz 210 Hz 0N 6 53 218 Hz 18 Hz 18 Hz 0N 6 54 232 Hz 232 Hz 232 Hz 0N 6 55 248 Hz 248 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 55							
48 166 Hz 166 Hz 166 Hz 0N 6 49 176 Hz 176 Hz 176 Hz 0N 6 50 188 Hz 188 Hz 188 Hz 186 Hz 0N 6 51 202 Hz 202 Hz 0N 6 50 51 52 210 Hz 210 Hz 210 Hz 0N 6 53 53 218 Hz 218 Hz 218 Hz 0N 6 53 54 232 Hz 232 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 56 266 Hz 266 Hz 0N 6 55 56 56 56 56 56 57							
49 176 Hz 176 Hz 176 Hz 0N 6 50 188 Hz 188 Hz 188 Hz 0N 6 51 202 Hz 202 Hz 200 6 51 52 210 Hz 210 Hz 10 Hz 50 53 53 218 Hz 128 Hz 218 Hz 0N 6 53 54 232 Hz 232 Hz 232 Hz 0N 6 54 55 248 Hz 248 Hz 248 Hz 0N 6 55 56 266 Hz 266 Hz 266 Hz 0N 6 57							
50 188 Hz 188 Hz 188 Hz 0N 6 51 202 Hz 202 Hz 0N 6 51 52 210 Hz 210 Hz 210 Hz 0N 6 53 218 Hz 1218 Hz 0N 6 53 54 232 Hz 232 Hz 232 Hz 0N 6 55 248 Hz 248 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 57							
51 202 Hz 202 Hz 202 Hz 0N 6 52 210 Hz 210 Hz 210 Hz 0N 6 52 53 218 Hz 218 Hz 128 Hz 0N 6 53 54 232 Hz 232 Hz 232 Hz 0N 6 54 55 248 Hz 248 Hz 248 Hz 0N 6 55 56 266 Hz 266 Hz 0N 6 57							
52 210 Hz 210 Hz 210 Hz ON 6 53 218 Hz 218 Hz 218 Hz ON 6 53 54 232 Hz 232 Hz 232 Hz ON 6 54 55 248 Hz 248 Hz 248 Hz ON 6 55 56 266 Hz 266 Hz ON 6 57							
53 218 Hz 218 Hz 218 Hz ON 6 54 232 Hz 232 Hz 232 Hz ON 6 54 55 248 Hz 248 Hz 248 Hz ON 6 55 56 266 Hz 266 Hz 266 Hz ON 6 57							
54 232 Hz 232 Hz 232 Hz 0N 6 55 248 Hz 248 Hz 248 Hz 0N 6 56 266 Hz 266 Hz 266 Hz 0N 6							
55 248 Hz 248 Hz 248 Hz ON 6 55 56 266 Hz 266 Hz 266 Hz ON 6 56 57 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 57		-					
56 266 Hz 266 Hz 266 Hz 56 56 57							
57							
	90	200 HZ	∠00 HZ	200 HZ	OIN 0	1	
						1	
							59

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(/
No. Inv Inv Invital unit1 unit2 STL2 OFF OFF <t< td=""><td>075D</td><td>Master</td><td>Slave</td><td>Slave</td><td></td></t<>	075D	Master	Slave	Slave	
NO. INV INV INV 1 52 Hz OFF OFF OFF OFF 2 56 Hz OFF OFF OFF OFF 3 62 Hz OFF OFF OFF 3 62 Hz OFF OFF OFF 5 74 Hz OFF OFF OFF 6 80 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 11 56 Hz 56 Hz OFF OFF 12 66 Hz 66 Hz OFF OFF 13 66 Hz 52 Hz 52 Hz OFF 15 74 Hz 74 Hz 74 Hz OFF 16 52 Hz 52 Hz 52 Hz OFF 17 56 Hz 66 Hz 66 Hz 0FF 20 68 Hz 68 Hz 68 Hz 0FF <	SIEP				OTD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No				510
1 52 Hz OFF OFF OFF OFF OFF 3 62 Hz OFF OFF OFF OFF 3 62 Hz OFF OFF OFF OFF 4 68 Hz OFF OFF OFF OFF 6 80 Hz OFF OFF OFF OFF 7 88 Hz OFF OFF OFF OFF 90 Hz OFF OFF OFF OFF OFF 10 52 Hz 52 Hz OFF OFF OFF 11 56 Hz 56 Hz OFF OFF OFF 12 62 Hz 52 Hz OFF OFF OFF 13 66 Hz 66 Hz OFF OFF OFF OFF 14 70 Hz 70 Hz OFF OFF OFF OFF 15 74 Hz 74 Hz OFF OFF OFF OFF 15 74 Hz	INO.	INV	INV	INV	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-				
3 62 Hz OFF OFF OFF OFF OFF OFF 5 74 Hz OFF OFF OFF OFF OFF 6 80 Hz OFF OFF OFF OFF 7 88 Hz OFF OFF OFF OFF 9 104 Hz OFF OFF OFF OFF 10 52 Hz 52 Hz OFF OFF OFF 11 56 Hz 66 Hz OFF OFF OFF 13 66 Hz 66 Hz OFF OFF OFF 14 70 Hz 70 Hz OFF OFF OFF 15 74 Hz 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 52 Hz OFF OFF 17 56 Hz 66 Hz 66 Hz 0FF 0FF 20 68 Hz 68 Hz 68 Hz 0FF 0FF 21 70 Hz <t< td=""><td>1</td><td>52 HZ</td><td>OFF</td><td>OFF</td><td>OFF</td></t<>	1	52 HZ	OFF	OFF	OFF
3 62 Hz OFF OFF OFF OFF OFF OFF 5 74 Hz OFF OFF OFF OFF OFF 6 80 Hz OFF OFF OFF OFF 7 88 Hz OFF OFF OFF OFF 9 104 Hz OFF OFF OFF OFF 10 52 Hz 52 Hz OFF OFF OFF 11 56 Hz 66 Hz OFF OFF OFF 13 66 Hz 66 Hz OFF OFF OFF 14 70 Hz 70 Hz OFF OFF OFF 15 74 Hz 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 52 Hz OFF OFF 17 56 Hz 66 Hz 66 Hz 0FF 0FF 20 68 Hz 68 Hz 68 Hz 0FF 0FF 21 70 Hz <t< td=""><td>2</td><td>56 Hz</td><td>OFF</td><td>OFF</td><td>OFF</td></t<>	2	56 Hz	OFF	OFF	OFF
4 68 Hz OFF OFF <td></td> <td></td> <td></td> <td></td> <td></td>					
5 74 Hz OFF OFF <td>3</td> <td>62 Hz</td> <td>OFF</td> <td></td> <td></td>	3	62 Hz	OFF		
5 74 Hz OFF OFF <td></td> <td></td> <td></td> <td>OFF</td> <td>OFF</td>				OFF	OFF
6 80 Hz OFF OFF OFF OFF OFF 7 88 Hz OFF OFF OFF OFF 9 104 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 62 Hz OFF OFF 12 62 Hz 62 Hz OFF OFF 13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz 66 Hz 66 Hz 66 Hz 16 52 Hz 52 Hz 52 Hz OFF 20 68 Hz 68 Hz 68 Hz 0FF 21 70 Hz 70 Hz 70 Hz 0FF 23 80 Hz 88 Hz 88 Hz 0FF 23 80 Hz 88 Hz 88 Hz 0FF 24 88 Hz </td <td></td> <td></td> <td></td> <td></td> <td></td>					
6 80 Hz OFF OFF OFF OFF OFF 7 88 Hz OFF OFF OFF OFF 9 104 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 62 Hz OFF OFF 12 62 Hz 62 Hz OFF OFF 13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz 66 Hz 66 Hz 66 Hz 16 52 Hz 52 Hz 52 Hz OFF 20 68 Hz 68 Hz 68 Hz 0FF 21 70 Hz 70 Hz 70 Hz 0FF 23 80 Hz 88 Hz 88 Hz 0FF 23 80 Hz 88 Hz 88 Hz 0FF 24 88 Hz </td <td>5</td> <td>74 Hz</td> <td>OFF</td> <td>OFF</td> <td>OFF</td>	5	74 Hz	OFF	OFF	OFF
7 88 Hz OFF OFF <td>-</td> <td></td> <td></td> <td></td> <td></td>	-				
8 96 Hz OFF OFF <td>6</td> <td>80 HZ</td> <td></td> <td>UFF</td> <td>OFF</td>	6	80 HZ		UFF	OFF
8 96 Hz OFF OFF <td>7</td> <td>88 Hz</td> <td>OFF</td> <td>OFF</td> <td>OFF</td>	7	88 Hz	OFF	OFF	OFF
9 104 Hz OFF OFF OFF OFF 10 52 Hz 52 Hz OFF OFF OFF 11 56 Hz 66 Hz OFF OFF OFF 12 62 Hz 62 Hz OFF OFF OFF 13 66 Hz 66 Hz OFF OFF OFF 14 70 Hz 70 Hz OFF OFF OFF 15 74 Hz 74 Hz OFF OFF OFF 17 56 Hz 56 Hz 66 Hz 66 Hz 06F 20 68 Hz 68 Hz 68 Hz 0FF 0FF 21 70 Hz 70 Hz 70 Hz 0FF 0FF 23 80 Hz 88 Hz 68 Hz 08 Hz 0FF 23 80 Hz 80 Hz 80 Hz 0FF 0FF 24 88 Hz 88 Hz 0FF 0FF 0FF 0FF 23 80 Hz 80 Hz <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
10 52 Hz 52 Hz OFF OFF 11 56 Hz OFF OFF OFF 12 66 Hz OFF OFF OFF 13 66 Hz 66 Hz OFF OFF 13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 52 Hz 05 Hz 06 Hz 17 56 Hz 56 Hz 06 Hz 06 Hz 06 Hz 07 Hz 17 70 Hz 70 Hz 70 Hz 07 Hz 07 Hz 07 Hz 20 68 Hz 68 Hz 08 Hz 08 Hz 08 Hz 08 Hz 07 Hz 21 70 Hz 70 Hz 70 Hz 07 Hz 07 Hz 07 Hz 23 80 Hz 88 Hz 88 Hz 08	8	96 Hz	OFF	OFF	OFF
10 52 Hz 52 Hz OFF OFF 11 56 Hz OFF OFF OFF 12 66 Hz OFF OFF OFF 13 66 Hz 66 Hz OFF OFF 13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 52 Hz 05 Hz 06 Hz 17 56 Hz 56 Hz 06 Hz 06 Hz 06 Hz 07 Hz 17 70 Hz 70 Hz 70 Hz 07 Hz 07 Hz 07 Hz 20 68 Hz 68 Hz 08 Hz 08 Hz 08 Hz 08 Hz 07 Hz 21 70 Hz 70 Hz 70 Hz 07 Hz 07 Hz 07 Hz 23 80 Hz 88 Hz 88 Hz 08	0	104 U-	OFF		OFF
11 56 Hz 0FF 0FF 12 62 Hz 62 Hz 0FF 0FF 13 66 Hz 62 Hz 0FF 0FF 14 70 Hz 74 Hz 0FF 0FF 15 74 Hz 74 Hz 0FF 0FF 16 52 Hz 52 Hz 52 Hz 0FF 17 56 Hz 56 Hz 56 Hz 0FF 18 62 Hz 62 Hz 62 Hz 0FF 19 66 Hz 66 Hz 0FF 0FF 20 68 Hz 68 Hz 08 Hz 0FF 21 70 Hz 70 Hz 70 Hz 0FF 23 80 Hz 80 Hz 80 Hz 0FF 23 80 Hz 80 Hz 80 Hz 0FF 24 88 Hz 88 Hz 0FF 0FF 25 96 Hz 96 Hz 0FF 0FF 26 52 Hz 52 Hz 0N I 27					UFF
11 56 Hz 0FF 0FF 12 62 Hz 62 Hz 0FF 0FF 13 66 Hz 62 Hz 0FF 0FF 14 70 Hz 74 Hz 0FF 0FF 15 74 Hz 74 Hz 0FF 0FF 16 52 Hz 52 Hz 52 Hz 0FF 17 56 Hz 56 Hz 56 Hz 0FF 18 62 Hz 62 Hz 62 Hz 0FF 19 66 Hz 66 Hz 0FF 0FF 20 68 Hz 68 Hz 08 Hz 0FF 21 70 Hz 70 Hz 70 Hz 0FF 23 80 Hz 80 Hz 80 Hz 0FF 23 80 Hz 80 Hz 80 Hz 0FF 24 88 Hz 88 Hz 0FF 0FF 25 96 Hz 96 Hz 0FF 0FF 26 52 Hz 52 Hz 0N I 27	10	52 Hz	52 Hz	OFF	OFF
12 62 Hz 62 Hz OFF OFF 13 66 Hz 7F OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 17 56 Hz 56 Hz 56 Hz OFF 20 68 Hz 68 Hz 68 Hz OFF 20 68 Hz 68 Hz 68 Hz OFF 21 70 Hz 70 Hz 70 Hz OFF 23 80 Hz 88 Hz 0FF OFF 24 88 Hz 88 Hz 0FF OFF 25 96 Hz 96 Hz 96 Hz 0FF 26 74 Hz 74 Hz 74 Hz OFF 26 74 Hz 74 Hz 74 Hz OFF 26 74 Hz 74 Hz 74 Hz OFF 26 74 Hz 74 Hz 74 Hz ON 1 <					0
13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 52 Hz 52 Hz OFF 16 52 Hz 52 Hz 62 Hz 62 Hz OFF 19 66 Hz 66 Hz 66 Hz OFF 19 66 Hz 68 Hz 68 Hz OFF 20 68 Hz 68 Hz 68 Hz OFF 21 70 Hz 70 Hz 70 Hz OFF 22 74 Hz 74 Hz 74 Hz OFF 23 80 Hz 88 Hz 88 Hz OFF 24 88 Hz 88 Hz 08 Hz OFF 25 96 Hz 96 Hz 96 Hz OFF 26 74 Hz 74 Hz 74 Hz ON 1 30 80 Hz 80 Hz 80 Hz 0N 1 31 88 Hz 88	11	56 HZ	56 HZ	OFF	OFF
13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 52 Hz 52 Hz OFF 16 52 Hz 52 Hz 62 Hz 62 Hz OFF 19 66 Hz 66 Hz 66 Hz OFF 19 66 Hz 68 Hz 68 Hz OFF 20 68 Hz 68 Hz 68 Hz OFF 21 70 Hz 70 Hz 70 Hz OFF 22 74 Hz 74 Hz 74 Hz OFF 23 80 Hz 88 Hz 88 Hz OFF 24 88 Hz 88 Hz 08 Hz OFF 25 96 Hz 96 Hz 96 Hz OFF 26 74 Hz 74 Hz 74 Hz ON 1 30 80 Hz 80 Hz 80 Hz 0N 1 31 88 Hz 88	12	62 Hz	62 Hz		OFF
14 70 Hz 70 Hz 70 FF OFF 15 74 Hz 74 Hz 0FF 0FF 16 52 Hz 52 Hz 52 Hz 0FF 17 56 Hz 56 Hz 0FE 0FF 18 62 Hz 52 Hz 0FF 0FF 19 66 Hz 66 Hz 0FF 0FF 20 68 Hz 68 Hz 0FF 0FF 20 68 Hz 68 Hz 0FF 0FZ 21 70 Hz 70 Hz 70 Hz 0FF 23 80 Hz 80 Hz 80 Hz 0FF 23 80 Hz 80 Hz 0FF 0FF 26 52 Hz 52 Hz 0FZ Hz 0FZ Hz 0FF 26 52 Hz 52 Hz 0FZ Hz 0FZ Hz 0FZ Hz 0FZ Hz 27 62 Hz 62 Hz 62 Hz 0FZ Hz 0					
14 70 Hz 70 Hz 70 FF OFF 15 74 Hz 74 Hz 0FF 0FF 16 52 Hz 52 Hz 52 Hz 0FF 17 56 Hz 56 Hz 0FE 0FF 18 62 Hz 52 Hz 0FF 0FF 19 66 Hz 66 Hz 0FF 0FF 20 68 Hz 68 Hz 0FF 0FF 20 68 Hz 68 Hz 0FF 0FZ 21 70 Hz 70 Hz 70 Hz 0FF 23 80 Hz 80 Hz 80 Hz 0FF 23 80 Hz 80 Hz 0FF 0FF 26 52 Hz 52 Hz 0FZ Hz 0FZ Hz 0FF 26 52 Hz 52 Hz 0FZ Hz 0FZ Hz 0FZ Hz 0FZ Hz 27 62 Hz 62 Hz 62 Hz 0FZ Hz 0	13	66 Hz	66 Hz	OFF	OFF
15 74 Hz 74 Hz 74 Hz $0FF$ $0FF$ 16 52 Hz 52 Hz 52 Hz $0FF$ 17 56 Hz 56 Hz 56 Hz $0FF$ 18 62 Hz 62 Hz 62 Hz $0FF$ 20 68 Hz 68 Hz 68 Hz $0FF$ 20 68 Hz 68 Hz $0FF$ $0FF$ 20 68 Hz 68 Hz $0FF$ $0FF$ 21 70 Hz 70 Hz 70 Hz $0FF$ 23 80 Hz 80 Hz 08 Hz 08 Hz $0FF$ 23 80 Hz 88 Hz $0FF$ $0FF$ $0FF$ 24 88 Hz 88 Hz $0FF$ $0FF$ $0FF$ 25 96 Hz 96 Hz $09F$ $20F$ $0F$ $0F$ 26 74 Hz 74 Hz 74 Hz $0N$ $0H$ $0H$ $0H$ $0N$ $0H$ 31 88 Hz 88 Hz 88 Hz $0N$ $0H$ $0H$ $0H$ $0H$ $0H$ <td< td=""><td></td><td></td><td>70 Ц-</td><td></td><td></td></td<>			70 Ц-		
16 52 Hz 52 Hz 52 Hz 52 Hz 52 Hz OFF 17 56 Hz 66 Hz 66 Hz 06 Hz 06 Hz 07F 18 62 Hz 62 Hz 62 Hz 07F 07		~			
16 52 Hz 52 Hz 52 Hz 52 Hz 52 Hz OFF 17 56 Hz 66 Hz 66 Hz 06 Hz 06 Hz 07F 18 62 Hz 62 Hz 62 Hz 07F 07	15	74 Hz	74 Hz	OFF	OFF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10				
18 62 Hz 62 Hz 64 Hz 66 Hz 66 Hz 06 Hz 19 66 Hz 66 Hz 66 Hz 06 Hz 06 Hz 06 Hz 06 Hz 07 Hz <td></td> <td></td> <td>52 HZ</td> <td>52 HZ</td> <td></td>			52 HZ	52 HZ	
18 62 Hz 62 Hz 64 Hz 66 Hz 66 Hz 06 Hz 19 66 Hz 66 Hz 66 Hz 06 Hz 06 Hz 06 Hz 06 Hz 07 Hz <td>17</td> <td>56 Hz</td> <td>56 Hz</td> <td>56 Hz</td> <td>OFF</td>	17	56 Hz	56 Hz	56 Hz	OFF
19 66 Hz 66 Hz 66 Hz 66 Hz 0 FF 20 68 Hz 68 Hz 04 Hz 07 Hz 70 Hz 70 Hz 07 Hz 21 70 Hz 70 Hz 70 Hz 07 Hz 07 Hz 07 Hz 22 74 Hz 74 Hz 74 Hz 07 Hz 07 Hz 07 Hz 23 80 Hz 80 Hz 80 Hz 80 Hz 06 Hz 07 FF 24 88 Hz 88 Hz 88 Hz 08 Hz					
19 66 Hz 66 Hz 66 Hz 66 Hz 0 FF 20 68 Hz 68 Hz 04 Hz 07 Hz 70 Hz 70 Hz 07 Hz 21 70 Hz 70 Hz 70 Hz 07 Hz 07 Hz 07 Hz 22 74 Hz 74 Hz 74 Hz 07 Hz 07 Hz 07 Hz 23 80 Hz 80 Hz 80 Hz 80 Hz 06 Hz 07 FF 24 88 Hz 88 Hz 88 Hz 08 Hz	18	62 Hz	62 Hz	62 Hz	OFF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	68 Hz	68 Hz	68 Hz	OFF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	74 H7	74 H7	74 H7	OFF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	<u>80 Hz</u>	<u>80</u> Hz	80 Hz	OFF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	96 Hz	96 Hz	96 Hz	OFF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	62 H7	62 H7	62 Hz	ON 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	68 HZ	68 HZ	68 HZ	ON 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	74 H7			ON 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	80 Hz	80 Hz	80 Hz	ON 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		88 Hz	88 Hz	88 Hz	ON 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	96 Hz	96 Hz	96 Hz	ON 1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	52 Hz	52 Hz	52 Hz	ON 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	62 Hz	62 Hz	62 Hz	ON 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36		74 Hz	74 Hz	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	88 Hz	88 Hz	88 Hz	ON 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	52 Hz	52 Hz	52 Hz	ON 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	74 Hz	74 Hz	74 Hz	ON 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		92 HZ	92 HZ	92 HZ	ON 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	104 Hz	104 H7	104 Hz	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	<u>52 Hz</u>	<u>52</u> Hz	52 Hz	ON 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	74 Hz	74 Hz	74 Hz	ON 4
48 104 Hz 104 Hz 104 Hz ON 4 49 52 Hz 52 Hz 52 Hz ON 5 50 68 Hz 68 Hz 68 Hz ON 5 51 80 Hz 80 Hz 80 Hz ON 5 52 96 Hz 96 Hz 96 Hz ON 5 53 104 Hz 104 Hz 104 Hz ON 5 53 104 Hz 104 Hz 104 Hz ON 5 54 52 Hz 52 Hz 52 Hz ON 6 55 68 Hz 68 Hz 68 Hz ON 6 57 96 Hz 80 Hz 80 Hz ON 6 58 104 Hz 104 Hz 104 Hz ON 6 59 116 Hz 116 Hz 116 Hz ON 6 60 124 Hz 124 Hz 104 Hz ON 6 61 144 Hz 144 Hz 144 Hz ON 6 62 158 Hz 158 Hz 158 Hz ON 6 64 176 Hz 176 H					
49 52 Hz 52 Hz 52 Hz 52 Hz 52 Hz 52 Hz 50 Hz 68 Hz 68 Hz 68 Hz 0N 5 51 80 Hz 80 Hz 90 Hz 90 Hz 90 Hz 90 Hz 0N 5 52 96 Hz 96 Hz 96 Hz 90 Hz 0N 5 53 104 Hz 104 Hz 104 Hz 0N 5 54 52 Hz 52 Hz 52 Hz 0N 6 55 68 Hz 68 Hz 0N 6 0N 6 56 80 Hz 80 Hz 0N 6 0N 6 57 96 Hz 96 Hz 90 Hz 0N 6 58 104 Hz 104 Hz 104 Hz 0N 6 59 116 Hz 116 Hz 116 Hz 0N 6 60 124 Hz 124 Hz 124 Hz 0N 6 61 144 Hz 144 Hz 144 Hz 0N 6 62 158 Hz 158 Hz 158 Hz 0N 6 63 166 Hz 166 Hz					
49 52 Hz 52 Hz 52 Hz 52 Hz 52 Hz 52 Hz 50 Hz 68 Hz 68 Hz 68 Hz 0N 5 51 80 Hz 80 Hz 90 Hz 90 Hz 90 Hz 90 Hz 0N 5 52 96 Hz 96 Hz 96 Hz 90 Hz 0N 5 53 104 Hz 104 Hz 104 Hz 0N 5 54 52 Hz 52 Hz 52 Hz 0N 6 55 68 Hz 68 Hz 0N 6 0N 6 56 80 Hz 80 Hz 0N 6 0N 6 57 96 Hz 96 Hz 90 Hz 0N 6 58 104 Hz 104 Hz 104 Hz 0N 6 59 116 Hz 116 Hz 116 Hz 0N 6 60 124 Hz 124 Hz 124 Hz 0N 6 61 144 Hz 144 Hz 144 Hz 0N 6 62 158 Hz 158 Hz 158 Hz 0N 6 63 166 Hz 166 Hz	48	104 Hz	104 Hz	104 Hz	ON 4
50 68 Hz 68 Hz 68 Hz 68 Hz 0N 5 51 80 Hz 80 Hz 80 Hz 0N 5 52 96 Hz 96 Hz 0N 5 53 104 Hz 104 Hz 104 Hz 0N 5 53 104 Hz 104 Hz 104 Hz 0N 5 54 52 Hz 52 Hz 52 Hz 0N 6 55 68 Hz 68 Hz 68 Hz 0N 7 56 80 Hz 80 Hz 80 Hz 0N 6 57 96 Hz 96 Hz 96 Hz 0N 6 58 104 Hz 104 Hz 104 Hz 0N 6 59 116 Hz 116 Hz 116 Hz 0N 6 60 124 Hz 124 Hz 124 Hz 0N 6 61 144 Hz 144 Hz 144 Hz 0N 6 62 158 Hz 158 Hz 158 Hz 0N 6 63 166 Hz 166 Hz 166 Hz 0N 6 64 176 Hz 176 H					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	68 Hz	68 Hz	68 Hz	ON 5
52 96 Hz 96 Hz 96 Hz 96 Hz ON 5 53 104 Hz 104 Hz 104 Hz 0N 5 0N 5 54 52 Hz 52 Hz 52 Hz 52 Hz 0N 6 55 68 Hz 68 Hz 68 Hz 0N 6 56 80 Hz 80 Hz 80 Hz 0N 6 57 96 Hz 96 Hz 96 Hz 0N 6 58 104 Hz 104 Hz 104 Hz 0N 6 59 116 Hz 116 Hz 110 Hz 0N 6 60 124 Hz 124 Hz 124 Hz 0N 6 61 144 Hz 144 Hz 144 Hz 0N 6 62 158 Hz 158 Hz 158 Hz 0N 6 63 166 Hz 166 Hz 166 Hz 0N 6 64 176 Hz 176 Hz 0N 6 6 65 188 Hz 188 Hz 188 Hz 0N 6 66 202 Hz 202 Hz 0N 6 6 7210					
53 104 Hz 104 Hz 0N 4 54 52 Hz 52 Hz 52 Hz 0N 6 55 68 Hz 68 Hz 68 Hz 0N 6 56 80 Hz 80 Hz 0N Hz 0N 6 57 96 Hz 96 Hz 90 Hz 0N 6 58 104 Hz 104 Hz 104 Hz 0N 6 59 116 Hz 116 Hz 116 Hz 0N 6 60 124 Hz 124 Hz 124 Hz 0N 6 61 144 Hz 144 Hz 144 Hz 0N 6 62 158 Hz 158 Hz 158 Hz 0N 6 63 166 Hz 166 Hz 166 Hz 0N 6 64 176 Hz 176 Hz 176 Hz 0N 6 65 188 Hz 188 Hz 188 Hz 0N 6 66 202 Hz 202 Hz 0N 6 6 202 Hz 0N 6 67 210 Hz 210 Hz 210 Hz 0N 6 6 218 Hz <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
53 104 Hz 104 Hz 0N 4 54 52 Hz 52 Hz 52 Hz 0N 6 55 68 Hz 68 Hz 68 Hz 0N 6 56 80 Hz 80 Hz 0N Hz 0N 6 57 96 Hz 96 Hz 90 Hz 0N 6 58 104 Hz 104 Hz 104 Hz 0N 6 59 116 Hz 116 Hz 116 Hz 0N 6 60 124 Hz 124 Hz 124 Hz 0N 6 61 144 Hz 144 Hz 144 Hz 0N 6 62 158 Hz 158 Hz 158 Hz 0N 6 63 166 Hz 166 Hz 166 Hz 0N 6 64 176 Hz 176 Hz 176 Hz 0N 6 65 188 Hz 188 Hz 188 Hz 0N 6 66 202 Hz 202 Hz 0N 6 6 202 Hz 0N 6 67 210 Hz 210 Hz 210 Hz 0N 6 6 218 Hz <td< td=""><td>52</td><td>96 Hz</td><td>96 Hz</td><td>96 Hz</td><td>ON 5</td></td<>	52	96 Hz	96 Hz	96 Hz	ON 5
54 52 Hz 52 Hz 52 Hz 0N € 55 68 Hz 68 Hz 68 Hz 0N € 56 80 Hz 80 Hz 80 Hz 0N € 57 96 Hz 96 Hz 96 Hz 0N € 58 104 Hz 104 Hz 104 Hz 0N € 59 116 Hz 116 Hz 116 Hz 0N € 60 124 Hz 124 Hz 124 Hz 0N € 61 144 Hz 144 Hz 144 Hz 0N € 62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 106 Hz 0N € 63 166 Hz 166 Hz 100 Hz 0N € 65 188 Hz 188 Hz 0N € 0N € 65 188 Hz 188 Hz 0N € 0N € 66 202 Hz 202 Hz 202 Hz 0N € 67 210 Hz 114 Hz 114 Hz 10 Hz 68 218 Hz <t2< td=""><td></td><td></td><td></td><td></td><td></td></t2<>					
55 68 Hz 68 Hz 68 Hz 0N € 56 80 Hz 80 Hz 80 Hz 0N € 57 96 Hz 96 Hz 96 Hz 0N € 58 104 Hz 104 Hz 104 Hz 0N € 59 116 Hz 116 Hz 116 Hz 0N € 60 124 Hz 124 Hz 124 Hz 0N € 61 144 Hz 144 Hz 144 Hz 0N € 62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 166 Hz 0N € 64 176 Hz 176 Hz 176 Hz 0N € 65 188 Hz 188 Hz 0N € 0 6 66 202 Hz 202 Hz 0N € 0 6 67 210 Hz 124 Hz 124 Hz 0N € 0 67 218 Hz 218 Hz 184 Hz 0N € 0 0					
55 68 Hz 68 Hz 68 Hz 0N € 56 80 Hz 80 Hz 80 Hz 0N € 57 96 Hz 96 Hz 96 Hz 0N € 58 104 Hz 104 Hz 104 Hz 0N € 59 116 Hz 116 Hz 116 Hz 0N € 60 124 Hz 124 Hz 124 Hz 0N € 61 144 Hz 144 Hz 144 Hz 0N € 62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 166 Hz 0N € 64 176 Hz 176 Hz 176 Hz 0N € 65 188 Hz 188 Hz 0N € 0 6 66 202 Hz 202 Hz 0N € 0 6 67 210 Hz 124 Hz 124 Hz 0N € 0 67 218 Hz 218 Hz 184 Hz 0N € 0 0	54	52 Hz	52 Hz	52 Hz	ON 6
56 80 Hz 80 Hz 80 Hz 90 Hz 91 Hz 91 Hz 116 Hz 116 Hz 114 Hz 114 Hz 114 Hz 114 Hz 114 Hz 104 Hz 116 Hz					
57 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 90 Hz 91					
57 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 90 Hz 91	56		80 H7	80 Hz	ON 6
58 104 Hz 104 Hz 104 Hz 00 Hz 59 116 Hz 116 Hz 116 Hz 0N fc 60 124 Hz 124 Hz 124 Hz 0N fc 61 144 Hz 124 Hz 124 Hz 0N fc 62 158 Hz 158 Hz 158 Hz 0N fc 63 166 Hz 166 Hz 166 Hz 0N fc 64 176 Hz 176 Hz 176 Hz 0N fc 65 188 Hz 188 Hz 188 Hz 0N fc 65 188 Hz 120 Hz 200 Hz 00 fc 66 202 Hz 202 Hz 0N fc 0N fc 67 210 Hz 120 Hz 0N fc 0N fc 67 210 Hz 210 Hz 120 Hz 0N fc 68 218 Hz 218 Hz 18 Hz 0N fc					
59 116 Hz Hz Hz N € 60 124 Hz 124 Hz 124 Hz 0N € 61 144 Hz 144 Hz 144 Hz 0N € 62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 166 Hz 0N € 64 176 Hz 176 Hz 176 Hz 0N € 65 188 Hz 188 Hz 0N € 6 66 202 Hz 202 Hz 0N € 6 67 210 Hz 210 Hz 0N € 6 67 210 Hz 202 Hz 0N € 6 68 218 Hz 1218 Hz 12 0 N € 0N €	5/			96 HZ	UN 6
59 116 Hz Hz Hz N € 60 124 Hz 124 Hz 124 Hz 0N € 61 144 Hz 144 Hz 144 Hz 0N € 62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 166 Hz 0N € 64 176 Hz 176 Hz 176 Hz 0N € 65 188 Hz 188 Hz 0N € 6 66 202 Hz 202 Hz 0N € 6 67 210 Hz 210 Hz 0N € 6 67 210 Hz 202 Hz 0N € 6 68 218 Hz 1218 Hz 12 0 N € 0N €	58	104 Hz	104 Hz	104 Hz	ON 6
60 124 Hz 124 Hz 124 Hz 0N € 61 144 Hz 144 Hz 144 Hz 0N € 62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 0N € 64 176 Hz 176 Hz 176 Hz 0N € 65 188 Hz 188 Hz 188 Hz 0N € 66 202 Hz 202 Hz 0N € 0N € 67 210 Hz 100 Hz 100 Hz 0N € 67 210 Hz 200 Hz 202 Hz 0N € 68 218 Hz 182 Hz 184 Hz 0N €					
60 124 Hz 124 Hz 124 Hz 0N € 61 144 Hz 144 Hz 144 Hz 0N € 62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 0N € 64 176 Hz 176 Hz 176 Hz 0N € 65 188 Hz 188 Hz 188 Hz 0N € 66 202 Hz 202 Hz 0N € 0N € 67 210 Hz 100 Hz 100 Hz 0N € 67 210 Hz 200 Hz 202 Hz 0N € 68 218 Hz 182 Hz 184 Hz 0N €	59	116 Hz	116 Hz	116 Hz	<u>UN 6</u>
61 144 Hz 144 Hz 144 Hz 0N € 62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 0N € 64 176 Hz 176 Hz 176 Hz 655 188 Hz 188 Hz 0N € 66 202 Hz 202 Hz 00 Hz 67 210 Hz 100 Hz 100 Hz 67 210 Hz 218 Hz 218 Hz 218 Hz 218 Hz 184 Hz 0N €				124 H-	
62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 166 Hz 0N € 64 176 Hz 76 Hz 176 Hz 0N € 65 188 Hz 188 Hz 188 Hz 0N € 66 202 Hz 202 Hz 0N € 67 210 Hz 101 Hz 101 Hz 0N € 67 210 Hz 202 Hz 0N € 0N € 68 218 Hz 18 Hz 18 Hz 0N €					
62 158 Hz 158 Hz 158 Hz 0N € 63 166 Hz 166 Hz 166 Hz 0N € 64 176 Hz 76 Hz 176 Hz 0N € 65 188 Hz 188 Hz 188 Hz 0N € 66 202 Hz 202 Hz 0N € 67 210 Hz 101 Hz 101 Hz 0N € 67 210 Hz 202 Hz 0N € 0N € 68 218 Hz 18 Hz 18 Hz 0N €	61	144 Hz	144 Hz	144 Hz	ON 6
63 166 Hz 166 Hz 166 Hz 0 N € 64 176 Hz 176 Hz 176 Hz 0 N € 65 188 Hz 188 Hz 188 Hz 0 N € 66 202 Hz 202 Hz 0 N € 67 210 Hz 210 Hz 0 N € 68 218 Hz 218 Hz 218 Hz 0 N €					
64 176 Hz 176 Hz 176 Hz ON 6 65 188 Hz 188 Hz 188 Hz ON 6 66 202 Hz 202 Hz 202 Hz ON 6 67 210 Hz 11 Hz ON 6 ON 6 68 218 Hz 218 Hz 218 Hz ON 6					
64 176 Hz 176 Hz 176 Hz ON 6 65 188 Hz 188 Hz 188 Hz ON 6 66 202 Hz 202 Hz 202 Hz ON 6 67 210 Hz 11 Hz ON 6 ON 6 68 218 Hz 218 Hz 218 Hz ON 6	63	166 H7	166 H7	166 H7	ON 6
65 188 Hz 188 Hz 188 Hz ON 6 66 202 Hz 202 Hz 202 Hz ON 6 67 210 Hz 210 Hz 210 Hz ON 6 68 218 Hz 218 Hz 218 Hz ON 6					
66 202 Hz 202 Hz 202 Hz ON 6 67 210 Hz 210 Hz 210 Hz ON 6 68 218 Hz 218 Hz 218 Hz ON 6			170 HZ	1/6 HZ	ON 6
66 202 Hz 202 Hz 202 Hz ON 6 67 210 Hz 210 Hz 210 Hz ON 6 68 218 Hz 218 Hz 218 Hz ON 6	65	188 H7			ON 6
67 210 Hz 210 Hz 210 Hz ON 6 68 218 Hz 218 Hz 218 Hz ON 6					
67 210 Hz 210 Hz 210 Hz ON 6 68 218 Hz 218 Hz 218 Hz ON 6	<u>6</u> 6	202 Hz	202 Hz	202 Hz	<u>UN</u> 6
68 218 Hz 218 Hz 218 Hz ON 6					
	68	218 Hz	218 Hz	218 Hz	ON 6
70 248 Hz 248 Hz 248 Hz ON 6	70	248 Hz	248 Hz	248 Hz	ON 6
				-	
71 266 Hz 266 Hz 266 Hz ON 6	/ 1	∠00 HZ	∠00 HZ	∠00 HZ	ON 6

(To decrease Step No.)

Notes:

1. INV : Inverter compressor

STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

60Hz

Stand-alone installation

RXYQ5PAYL, PTL					
STEP No.	INV				
1	52 Hz				
2	56 Hz				
3	62 Hz				
4	68 Hz				
5	74 Hz				
6	80 Hz				
7	88 Hz				
8	96 Hz				
9	104 Hz				
10	110 Hz				
11	116 Hz				
12	124 Hz				
13	132 Hz				
14	144 Hz				
15	158 Hz				
16	166 Hz				
17	176 Hz				
18	188 Hz				

	AYL, PTL		0/12PA	YL, PTL	
STEP	INV	STEP	INV	STD1	STE
No.	52 Hz	No.	52 Hz	OFF	No
1 2	56 Hz	1	56 Hz	OFF	1
3	62 Hz	3	62 Hz	OFF	2
4	68 Hz	4	68 Hz	OFF	3
5	74 Hz	5	74 Hz	OFF	4
6	80 Hz	6	80 Hz	OFF	5
7	88 Hz	7	88 Hz	OFF	7
8	96 Hz	8	96 Hz	OFF	8
9	104 Hz	9	104 Hz	ÖFF	9
10	110 Hz	10	110 Hz	OFF	10
11	116 Hz	11	116 Hz	OFF	11
12	124 Hz	12	124 Hz	OFF	12
13	132 Hz	13	132 Hz	OFF	13
14	144 Hz	14	144 Hz	OFF	14
15	158 Hz	15	158 Hz	OFF	15
16	166 Hz	16	166 Hz	OFF	16
17	176 Hz	17	176 Hz	OFF	17
18	188 Hz	18	188 Hz	OFF	18
19	202 Hz	19	202 Hz	OFF	19
20	210 Hz	20	210 Hz	OFF	20
21	218 Hz	21	52 Hz	ON	21
22	232 Hz	22	62 Hz	ON	22
23	248 Hz	23	68 Hz	ON	23
24	266 Hz	24	74 Hz	ON	24
		25	80 Hz	ON	25
		26	88 Hz	ON	26
		27	96 Hz	ON	27
		28	104 Hz	ON	28
		29 30	116 Hz 124 Hz	ON ON	29
		30	132 Hz	ON	30
		32	144 Hz	ON	31
		33	158 Hz	ON	32
		34	176 Hz	ON	33
		35	188 Hz	ON	34
		36	202 Hz	ON ON	35
		37	210 Hz	ON	37
		07	210112		38
					39
					40
					41
					42
					43
					44
					45
					16

RXYQ14/16PAYL, PTL				I	RXYQ18PAYL, PTL			
STEP No.	INV	STD1	STD2	ſ	STEP No.	INV	STD1	STD2
1	52 Hz	OFF	OFF	Ē	1	52 Hz	OFF	OFF
2	56 Hz	OFF	OFF	Ē	2	56 Hz	OFF	OFF
3	62 Hz	OFF	OFF		3	62 Hz	OFF	OFF
4	68 Hz	OFF	OFF		4	68 Hz	OFF	OFF
5	74 Hz	OFF	OFF	Ē	5	74 Hz	OFF	OFF
6	80 Hz	OFF	OFF		6	80 Hz	OFF	OFF
7	88 Hz	OFF	OFF		7	88 Hz	OFF	OFF
8	96 Hz	OFF	OFF		8	96 Hz	OFF	OFF
9	104 Hz	OFF	OFF		9	104 Hz	OFF	OFF
10	110 Hz	OFF	OFF		10	110 Hz	OFF	OFF
11	116 Hz	OFF	OFF		11	116 Hz	OFF	OFF
12	124 Hz	OFF	OFF		12	124 Hz	OFF	OFF
13	132 Hz	OFF	OFF		13	132 Hz	OFF	OFF
14	144 Hz	OFF	OFF		14	144 Hz	OFF	OFF
15	158 Hz	OFF	OFF		15	158 Hz	OFF	OFF
16	166 Hz	OFF	OFF		16	166 Hz	OFF	OFF
17	176 Hz	OFF	OFF		17	176 Hz	OFF	OFF
18	188 Hz	OFF	OFF		18	188 Hz	OFF	OFF
19	202 Hz	OFF	OFF		19	202 Hz	OFF	OFF
20	210 Hz	OFF	OFF	L	20	210 Hz	OFF	OFF
21	52 Hz	ON	OFF	L	21	52 Hz	ON	OFF
22	62 Hz	ON	OFF		22	62 Hz	ON	OFF
23	68 Hz	ON	OFF		23	68 Hz	ON	OFF
24	74 Hz	ON	OFF		24	74 Hz	ON	OFF
25	80 Hz	ON	OFF	L	25	80 Hz	ON	OFF
26	88 Hz	ON	OFF	L	26	88 Hz	ON	OFF
27	96 Hz	ON	OFF	L	27	96 Hz	ON	OFF
28	104 Hz	ON	OFF	L	28	104 Hz	ON	OFF
29	116 Hz	ON	OFF	L	29	116 Hz	ON	OFF
30	124 Hz	ON	OFF	L	30	124 Hz	ON	OFF
31	132 Hz	ON	OFF	ŀ	31	132 Hz	ON	OFF
32	144 Hz	ON	OFF	ŀ	32	144 Hz	ON	OFF
33	158 Hz	ON	OFF	ŀ	<u>33</u> 34	158 Hz	ON ON	OFF OFF
34	176 Hz	ON	OFF	┝		176 Hz		
35	188 Hz	ON	OFF	ŀ	<u>35</u> 36	188 Hz 202 Hz	ON ON	OFF OFF
36	202 Hz	ON	OFF	ŀ	37	202 HZ 210 Hz	ON	OFF
37 38	210 Hz 52 Hz	ON ON	OFF ON	ŀ	38	52 Hz		OFF
38	52 HZ 62 Hz	ON	ON	ŀ	39	62 Hz		ON
<u> </u>	62 HZ 74 Hz	ON	ON	ŀ	40	74 Hz	ON	ON
40	74 HZ 88 Hz	ON	ON	ŀ	40	88 Hz		ON
41	96 Hz	ON	ON	ŀ	42	96 Hz	ON	ON
42	104 Hz	ON	ON	ŀ	43	104 Hz	ON	ON
43	104 Hz	ON	ON	ŀ	44	124 Hz	ON	ON
44	144 Hz	ON	ON	ŀ	45	144 Hz	ON ON	ON
45	158 Hz	ON	ON	ŀ	46	158 Hz	ON	ON
40	166 Hz	ON	ON	F	47	166 Hz	ON	ON
48	176 Hz	ON	ON	ŀ	48	176 Hz	ON ON	ON
40	188 Hz	ON	ON	ŀ	49	188 Hz	ON	ON
50	202 Hz	ON	ON	t	50	202 Hz	ON	ON
50	202 112			L	50	202112		

- 1. INV : Inverter compressor STD1 : Standard compressor 1 STD2 : Standard compressor 2
- 2. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

Two-unit multi system

RXYQ20PAYL, PTL (8+12HP)

(To decrease Step No.)

	(To increas	Slave	,
STEP No.	unit	unit	STD
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	74 Hz	74 Hz	OFF
6	80 Hz	80 Hz	OFF
7	88 Hz	88 Hz	OFF
8	96 Hz	96 Hz	OFF
9	104 Hz	104 Hz	OFF
10	110 Hz	110 Hz	OFF
11	116 Hz	116 Hz	OFF
12	124 Hz	124 Hz	OFF
13	132 Hz	132 Hz	OFF
14	144 Hz	144 Hz	OFF
15	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON
20	88 Hz	88 Hz	ON
21	96 Hz	96 Hz	ON
22	104 Hz	104 Hz	ON
23	116 Hz	116 Hz	ON
24	124 Hz	124 Hz	ON
25	132 Hz	132 Hz	ON
26	144 Hz	144 Hz	ON
27	158 Hz	158 Hz	ON
28	176 Hz	176 Hz	ON
29	188 Hz	188 Hz	ON
30	202 Hz	202 Hz	ON
31	210 Hz	210 Hz	ON
32	218 Hz	210 Hz	ON
33	232 Hz	210 Hz	ON
34	248 Hz	210 Hz	ON
35	266 Hz	210 Hz	ON

STEP No. Master INV Slave unit INV STD INV 1 52 Hz OFF OFF 2 56 Hz OFF OFF 3 62 Hz OFF OFF 4 68 Hz OFF OFF 5 74 Hz OFF OFF 7 88 Hz OFF OFF 9 104 Hz OFF OFF 11 56 Hz OFF OFF 12 62 Hz 52 Hz OFF 11 56 Hz OFF OFF 11 56 Hz 62 Hz 0FF 13 66 Hz 66 Hz 0FF 14 70 Hz 70 Hz 0FF 15 74 Hz 74 Hz 0FF 16 80 Hz 80 Hz 0FF 17 88 Hz 0FF 18 92 Hz 96 Hz 0FF 20 104 Hz 104 Hz 0FF 21 110 Hz <th>(</th> <th>10 000100</th> <th></th> <th>0.)</th>	(10 000100		0.)
No. Unit Unit INV INV 1 52 Hz OFF OFF OFF 2 56 Hz OFF OFF OFF 3 62 Hz OFF OFF OFF 4 68 Hz OFF OFF OFF 5 74 Hz OFF OFF OFF 6 80 Hz OFF OFF OFF 7 88 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 66 Hz OFF OFF 12 62 Hz 62 Hz 0FF OFF 13 66 Hz 0FF 0FF 16 80 Hz 0FF 14 70 Hz 70 Hz 0FF 0FF 17 88 Hz 0FF 15 74 Hz 74 Hz 0FF 0FF 20 104 Hz 104 Hz	STED	Master	Slave	
INV INV 1 52 Hz OFF OFF 2 56 Hz OFF OFF 3 62 Hz OFF OFF 4 68 Hz OFF OFF 5 74 Hz OFF OFF 7 88 Hz OFF OFF 7 88 Hz OFF OFF 9 104 Hz OFF OFF 10 52 Hz 52 Hz OFF 11 56 Hz 56 Hz OFF 12 62 Hz 62 Hz OFF 13 66 Hz OFF OFF 14 70 Hz 70 Hz OFF 15 74 Hz 74 Hz OFF 16 80 Hz 80 Hz OFF 17 88 Hz 80 Hz OFF 18 92 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 110 Hz OFF				STD
2 56 Hz OFF OFF 3 62 Hz OFF OFF OFF 4 68 Hz OFF OFF OFF 5 74 Hz OFF OFF OFF 7 88 Hz OFF OFF OFF 7 88 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 56 Hz OFF OFF 12 62 Hz 62 Hz OFF OFF 13 66 Hz OFF OFF 0FF 14 70 Hz 70 Hz OFF 0FF 15 74 Hz 74 Hz OFF 0FF 16 80 Hz 80 Hz 0FF 0FF 17 88 Hz 88 Hz 0FF 0FF 18 92 Hz 96 Hz 0FF 0FF 21 104 Hz	-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		52 Hz		
4 68 Hz OFF OFF 5 74 Hz OFF OFF OFF 6 80 Hz OFF OFF OFF 7 88 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 56 Hz OFF OFF 12 62 Hz 62 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 80 Hz 80 Hz OFF OFF 17 88 Hz 88 Hz OFF OFF 18 92 Hz 96 Hz OFF OFF 20 104 Hz 104 Hz OFF OFF 21 110 Hz 110 Hz OFF OFF 22 116 Hz 106 Hz OFF OFF 23	2			
5 74 Hz OFF OFF 6 80 Hz OFF OFF OFF 7 88 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 56 Hz OFF OFF 12 62 Hz 62 Hz OFF OFF 13 66 Hz OFF OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 80 Hz 80 Hz OFF OFF 17 88 Hz 88 Hz OFF OFF 18 92 Hz 96 Hz OFF OFF 20 104 Hz 104 Hz OFF OFF 21 110 Hz 116 Hz OFF OFF 22 116 Hz 116 Hz OFF OFF 24 <td< td=""><td>3</td><td>62 Hz</td><td>OFF</td><td></td></td<>	3	62 Hz	OFF	
6 80 Hz OFF OFF 7 88 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 56 Hz OFF OFF 12 62 Hz 62 Hz OFF OFF 13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 80 Hz 80 Hz OFF OFF 17 88 Hz 88 Hz OFF OFF 19 96 Hz 96 Hz OFF OFF 21 110 Hz 104 Hz OFF OFF 22 116 Hz 116 Hz OFF OFF 23 124 Hz 124 Hz OFF OFF 24 132 Hz 132 Hz ON 27 68 Hz ON	4	68 Hz	OFF	OFF
7 88 Hz OFF OFF 8 96 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 56 Hz OFF OFF 12 62 Hz 62 Hz OFF OFF 13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 80 Hz 80 Hz OFF OFF 17 88 Hz 80 Hz OFF OFF 18 92 Hz 96 Hz OFF OFF 20 104 Hz 104 Hz OFF OFF 21 110 Hz 110 Hz OFF OFF 23 124 Hz 132 Hz OFF OFF 24 132 Hz 132 Hz OFF ON 25	5	74 Hz	OFF	OFF
7 88 Hz OFF OFF 8 96 Hz OFF OFF OFF 9 104 Hz OFF OFF OFF 10 52 Hz 52 Hz OFF OFF 11 56 Hz 56 Hz OFF OFF 12 62 Hz 62 Hz OFF OFF 13 66 Hz 66 Hz OFF OFF 14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 80 Hz 80 Hz OFF OFF 17 88 Hz 80 Hz OFF OFF 18 92 Hz 96 Hz OFF OFF 20 104 Hz 104 Hz OFF OFF 21 110 Hz 110 Hz OFF OFF 23 124 Hz 132 Hz OFF OFF 24 132 Hz 132 Hz ON 25 52 Hz ON	6	80 Hz	OFF	OFF
9 104 Hz OFF OFF 10 52 Hz 52 Hz OFF 11 56 Hz 56 Hz OFF 12 62 Hz 62 Hz OFF 13 66 Hz 66 Hz OFF 14 70 Hz 70 Hz OFF 15 74 Hz 74 Hz OFF 16 80 Hz 80 Hz OFF 17 88 Hz 88 Hz OFF 18 92 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 104 Hz OFF 22 116 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 32 Hz ON 25 52 Hz 52 Hz ON 26 62 Hz 68 Hz ON 27 68 Hz 80 Hz ON 30 88 Hz 88 Hz ON 32	7	88 Hz	OFF	OFF
9 104 Hz OFF OFF 10 52 Hz 52 Hz OFF 11 56 Hz 56 Hz OFF 12 62 Hz 62 Hz OFF 13 66 Hz 66 Hz OFF 14 70 Hz 70 Hz OFF 15 74 Hz 74 Hz OFF 16 80 Hz 80 Hz OFF 17 88 Hz 88 Hz OFF 18 92 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 104 Hz OFF 22 116 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 32 Hz ON 25 52 Hz 52 Hz ON 26 62 Hz 68 Hz ON 27 68 Hz 80 Hz ON 30 88 Hz 88 Hz ON 32	8	96 Hz	OFF	OFF
10 52 Hz 52 Hz OFF 11 56 Hz 56 Hz OFF 13 66 Hz 66 Hz OFF 13 66 Hz 66 Hz OFF 14 70 Hz 70 Hz OFF 15 74 Hz 74 Hz OFF 16 80 Hz 80 Hz OFF 17 88 Hz 88 Hz OFF 18 92 Hz 96 Hz OFF 104 Hz 104 Hz OFF OFF 20 104 Hz 104 Hz OFF 21 110 Hz 110 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz OFF ON 25 52 Hz 52 Hz ON 26 62 Hz 68 Hz ON 29 80 Hz 80 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34<			OFF	
11 56 Hz 56 Hz OFF 12 62 Hz 62 Hz OFF 13 66 Hz OFF 14 70 Hz 70 Hz OFF 14 70 Hz 70 Hz OFF 15 74 Hz 74 Hz OFF 16 80 Hz 80 Hz OFF 17 88 Hz 88 Hz OFF 18 92 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 23 124 Hz 124 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 0FF ON 25 52 Hz 52 Hz ON 26 62 Hz 62 Hz ON 32 104 Hz 104 Hz ON 33 16 Hz 104 Hz ON 34 124 H		52 Hz		OFF
12 62 Hz 62 Hz OFF 13 66 Hz 66 Hz OFF 14 70 Hz 70 Hz OFF 15 74 Hz 74 Hz OFF 16 80 Hz 80 Hz OFF 17 88 Hz 88 Hz OFF 19 96 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 10 Hz OFF 23 124 Hz 124 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz ON 25 52 Hz 52 Hz ON 26 62 Hz 68 Hz ON 27 68 Hz 80 Hz ON 30 88 Hz 88 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 132 Hz ON 35			56 Hz	OFF
13 66 Hz 66 Hz OFF 14 70 Hz 70 Hz OFF 15 74 Hz OFF OFF 16 80 Hz 80 Hz OFF 17 88 Hz 88 Hz OFF 18 92 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 110 Hz OFF 23 124 Hz 124 Hz OFF 23 124 Hz 132 Hz OFF 24 132 Hz OFF ON 25 52 Hz 52 Hz ON 26 62 Hz 68 Hz ON 27 68 Hz 68 Hz ON 29 80 Hz 80 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 132 Hz ON 35 132 Hz 132 Hz ON 36 <td>12</td> <td></td> <td></td> <td></td>	12			
14 70 Hz 70 Hz 0FF 15 74 Hz 74 Hz 0FF 15 74 Hz 74 Hz 0FF 16 80 Hz 00 Hz 0FF 17 88 Hz 88 Hz 0FF 18 92 Hz 96 Hz 0FF 19 96 Hz 09 Hz 06 FF 20 104 Hz 104 Hz 0FF 21 110 Hz 110 Hz 0FF 23 124 Hz 124 Hz 0FF 23 124 Hz 124 Hz 0FF 24 132 Hz 014 Hz 0FF 24 132 Hz 132 Hz 0N 26 62 Hz 62 Hz 0N 27 68 Hz 80 Hz 0N 30 88 Hz 80 Hz 0N 31 96 Hz 96 Hz 0N 33 116 Hz 104 Hz 0N 33 116 Hz 104 Hz 0N <t< td=""><td></td><td></td><td></td><td></td></t<>				
15 74 Hz 74 Hz OFF 16 80 Hz 80 Hz OFF 17 88 Hz 0FF 18 92 Hz 96 Hz 0FF 19 96 Hz 96 Hz 0FF 20 104 Hz 104 Hz 0FF 21 110 Hz 110 Hz 0FF 22 116 Hz 116 Hz 0FF 23 124 Hz 124 Hz 0FF 23 124 Hz 124 Hz 0FF 24 132 Hz 132 Hz 0FF 25 52 Hz 52 Hz 0N 26 62 Hz 68 Hz 0N 27 68 Hz 68 Hz 0N 30 88 Hz 88 Hz 0N 31 96 Hz 96 Hz 0N 32 104 Hz 104 Hz 0N 33 116 Hz 116 Hz 0N 34 124 Hz 132 Hz 0N 35 13				
16 80 Hz 80 Hz 0FF 17 88 Hz 88 Hz 0FF 18 92 Hz 96 Hz 0FF 19 96 Hz 96 Hz 0FF 20 104 Hz 104 Hz 0FF 21 110 Hz 104 Hz 0FF 23 124 Hz 116 Hz 0FF 23 124 Hz 132 Hz 0FF 24 132 Hz 132 Hz 0FF 25 52 Hz 52 Hz 0N 26 62 Hz 68 Hz 0N 27 68 Hz 68 Hz 0N 29 80 Hz 80 Hz 0N 31 96 Hz 96 Hz 0N 32 104 Hz 104 Hz 0N 33 116 Hz 116 Hz 0N 34 124 Hz 132 Hz 0N 35 132 Hz 132 Hz 0N 36 176 Hz 176 Hz 0N <td< td=""><td></td><td></td><td></td><td></td></td<>				
17 88 Hz 88 Hz OFF 18 92 Hz 96 Hz OFF 19 96 Hz 06 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 110 Hz OFF 22 116 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz OFF 25 52 Hz 52 Hz 0N 26 62 Hz 62 Hz 0N 27 68 Hz 80 Hz 0N 30 88 Hz 88 Hz 0N 31 96 Hz 00 Hz 0N 32 104 Hz 104 Hz 0N 33 116 Hz 116 Hz 0N 34 124 Hz 132 Hz 0N 35 132 Hz 132 Hz 0N 36 144 Hz 144 Hz 0N <		=		
18 92 Hz 96 Hz OFF 19 96 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 110 Hz OFF 22 116 Hz 110 Hz OFF 23 124 Hz 124 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz OFF OFF 25 52 Hz 52 Hz ON 26 62 Hz 68 Hz ON 27 68 Hz 86 Hz ON 28 74 Hz 74 Hz ON 30 88 Hz 88 Hz ON 30 88 Hz 0N 33 31 96 Hz 96 Hz ON 32 104 Hz 114 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 132 Hz ON 35 132 Hz 132 Hz ON 36 <td></td> <td></td> <td></td> <td></td>				
19 96 Hz 96 Hz OFF 20 104 Hz 104 Hz OFF 21 110 Hz 101 Hz OFF 22 116 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz OFF 24 132 Hz 132 Hz OFF 25 52 Hz 52 Hz ON 26 62 Hz 62 Hz ON 27 68 Hz 68 Hz ON 28 74 Hz 74 Hz ON 30 88 Hz 80 Hz ON 31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 176 Hz 176 Hz ON 38 176 Hz 176 Hz ON <				
20 104 Hz 104 Hz 0FF 21 110 Hz 110 Hz 0FF 21 116 Hz 116 Hz 0FF 22 116 Hz 116 Hz 0FF 23 124 Hz 124 Hz 0FF 23 124 Hz 124 Hz 0FF 24 132 Hz 132 Hz 0FF 24 132 Hz 52 Hz 0N 26 62 Hz 62 Hz 0N 26 62 Hz 68 Hz 0N 27 68 Hz 80 Hz 0N 30 88 Hz 88 Hz 0N 31 96 Hz 96 Hz 0N 32 104 Hz 104 Hz 0N 33 116 Hz 116 Hz 0N 34 124 Hz 132 Hz 0N 35 132 Hz 132 Hz 0N 36 144 Hz 144 Hz 0N 37 158 Hz 158 Hz 0N				
21 110 Hz 110 Hz OFF 22 116 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz OFF 25 52 Hz 52 Hz ON 26 62 Hz 62 Hz ON 27 68 Hz 68 Hz ON 28 74 Hz 74 Hz ON 29 80 Hz 80 Hz ON 30 88 Hz 88 Hz ON 31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 40 202 Hz 20 Hz ON 4				
22 116 Hz 116 Hz OFF 23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz OFF 25 52 Hz 52 Hz ON 26 62 Hz 62 Hz ON 27 68 Hz 68 Hz ON 28 74 Hz 74 Hz ON 29 80 Hz 80 Hz ON 30 88 Hz 88 Hz ON 31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 122 Hz 132 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 38 176 Hz 176 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 39 188 Hz 100 Hz ON 4				
23 124 Hz 124 Hz OFF 24 132 Hz 132 Hz OFF 25 55 Z Hz 52 Hz ON 26 62 Hz 62 Hz ON 27 68 Hz 68 Hz ON 28 74 Hz 74 Hz ON 29 80 Hz 80 Hz ON 30 88 Hz 88 Hz ON 31 96 Hz 00 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 200 Hz ON 41 210 Hz ON 42 218				
24 132 Hz 132 Hz OFF 25 52 Hz 52 Hz ON 26 62 Hz 62 Hz ON 27 68 Hz 68 Hz ON 28 74 Hz 74 Hz ON 29 80 Hz 80 Hz ON 30 88 Hz 88 Hz ON 31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44<				
25 52 Hz 52 Hz 62 Hz ON 26 62 Hz 62 Hz ON 08 Hz 08 Hz 0N 28 74 Hz 74 Hz ON 08 Hz 88 Hz ON 30 88 Hz 88 Hz ON 08 Hz 88 Hz ON 31 96 Hz 96 Hz ON 031 96 Hz ON 32 104 Hz 104 Hz ON 08 12 88 Hz ON 33 116 Hz 116 Hz ON 08 12 84 Hz ON 33 116 Hz 116 Hz ON 08 12 84 Hz ON 34 124 Hz 124 Hz ON 08 138 Hz 180 Hz 0N 35 132 Hz 132 Hz ON 08 176 Hz ON 36 176 Hz 176 Hz ON 08 176 Hz ON 39 188 Hz 188 Hz ON 040 200 Hz 20 Hz O				
26 62 Hz 62 Hz ON 27 68 Hz 68 Hz ON 28 74 Hz 74 Hz ON 29 80 Hz 80 Hz ON 30 88 Hz 88 Hz ON 31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 HZ ON 36 144 Hz 144 DN 37 36 144 Hz 176 HZ ON 37 158 Hz 188 Hz ON 39 188 Hz 182 ON 40 202 Hz ON		50 LL-7		
27 68 Hz 68 Hz ON 28 74 Hz 74 Hz ON 29 80 Hz 80 Hz ON 30 88 Hz 80 Hz ON 31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 36 144 Hz 148 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 20 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 43 232 Hz 210 Hz ON				
28 74 Hz 74 Hz ON 29 80 Hz 80 Hz ON 30 88 Hz 80 Hz ON 31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 176 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
29 80 Hz 80 Hz ON 30 88 Hz 88 Hz ON 31 96 Hz 06 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 104 Hz ON 33 116 Hz 114 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz ON 42 218 Hz 210 Hz ON 42 218 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
30 88 Hz 88 Hz ON 31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
31 96 Hz 96 Hz ON 32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 176 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
32 104 Hz 104 Hz ON 33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz I76 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
33 116 Hz 116 Hz ON 34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
34 124 Hz 124 Hz ON 35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
35 132 Hz 132 Hz ON 36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
36 144 Hz 144 Hz ON 37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
37 158 Hz 158 Hz ON 38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
38 176 Hz 176 Hz ON 39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
39 188 Hz 188 Hz ON 40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
40 202 Hz 202 Hz ON 41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
41 210 Hz 210 Hz ON 42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
42 218 Hz 210 Hz ON 43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
43 232 Hz 210 Hz ON 44 248 Hz 210 Hz ON				
44 248 Hz 210 Hz ON			-	
45 266 Hz 210 Hz ON				
	45	266 Hz	210 Hz	ON

STEP	Master	Slave	
No.	unit	unit	STD
INO.	INV	INV	
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	74 Hz	74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	144 Hz	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	158 Hz	158 Hz	ON 2
32	166 Hz	166 Hz	ON 2
33	176 Hz	176 Hz	ON 2
34	188 Hz	188 Hz	ON 2
35	202 Hz	202 Hz	ON 2
36	210 Hz	210 Hz	ON 2

RXYQ	22PAY	L, PTL	(10+1	2⊦	IP)			
(To increas	se Step No	o.)		(To decrea	ise Step N	o.)
STEP No.	Master unit INV	Slave unit INV	STD		STEP No.	Master unit INV	Slave unit INV	STD
1	52 Hz	52 Hz	OFF		1	52 Hz	OFF	OFF
2	56 Hz	56 Hz	OFF		2	56 Hz	OFF	OFF
3	62 Hz	62 Hz	OFF		3	62 Hz	OFF	OFF
4	66 Hz	66 Hz	OFF		4	68 Hz	OFF	OFF
5	70 Hz	70 Hz	OFF		5	74 Hz	OFF	OFF
6	74 Hz	74 Hz	OFF	11	6	80 Hz	OFF	OFF
7	80 Hz	80 Hz	OFF	11	7	88 Hz	OFF	OFF
8	88 Hz	88 Hz	OFF	11	8	96 Hz	OFF	OFF
9	96 Hz	<u>96 Hz</u> 104 Hz	OFF	11	9 10	104 Hz	OFF	OFF OFF
<u>10</u> 11	104 Hz 110 Hz	104 Hz	OFF OFF	11	11	52 Hz 56 Hz	52 Hz 56 Hz	OFF
12	110 Hz	116 Hz	OFF	11	12	62 Hz	62 Hz	OFF
13	124 Hz	124 Hz	OFF	11	13	66 Hz	66 Hz	OFF
14	132 Hz	132 Hz	OFF	11	14	70 Hz	70 Hz	OFF
15	144 Hz	144 Hz	OFF	11	14	70 HZ	70 HZ	OFF
16	158 Hz	158 Hz	OFF	11	16	80 Hz	80 Hz	OFF
17	166 Hz	166 Hz	OFF	11	17	88 Hz	88 Hz	OFF
18	176 Hz	176 Hz	OFF	11	18	92 Hz	92 Hz	OFF
19	80 Hz	80 Hz	ON 1	11	19	96 Hz	96 Hz	OFF
20	88 Hz	88 Hz	ON 1	11	20	104 Hz	104 Hz	OFF
21	96 Hz	96 Hz	ON 1	11	21	110 Hz	110 Hz	OFF
22	104 Hz	104 Hz	ON 1	11	22	116 Hz	116 Hz	OFF
23	116 Hz	116 Hz	ON 1	11	23	124 Hz	124 Hz	OFF
24	124 Hz	124 Hz	ON 1	11	24	132 Hz	132 Hz	OFF
25	132 Hz	132 Hz	ON 1	11	25	52 Hz	52 Hz	ON 1
26	88 Hz	88 Hz	ON 2	11	26	62 Hz	62 Hz	ON 1
27	96 Hz	96 Hz	ON 2	11	27	68 Hz	68 Hz	ON 1
28	104 Hz	104 Hz	ON 2	11	28	74 Hz	74 Hz	ON 1
29	124 Hz	124 Hz	ON 2	11	29	80 Hz	80 Hz	ON 1
30	144 Hz	144 Hz	ON 2	11	30	88 Hz	88 Hz	ON 1
31	158 Hz	158 Hz	ON 2	11	31	96 Hz	96 Hz	ON 1
32	166 Hz	166 Hz	ON 2		32	104 Hz	104 Hz	ON 1
33	176 Hz	176 Hz	ON 2		33	52 Hz	52 Hz	ON 2
34	188 Hz	188 Hz	ON 2		34	62 Hz	62 Hz	ON 2
35	202 Hz	202 Hz	ON 2		35	74 Hz	74 Hz	ON 2
36	210 Hz	210 Hz	ON 2		36	88 Hz	88 Hz	ON 2
					37	96 Hz	96 Hz	ON 2
					38	104 Hz	104 Hz	ON 2
					39	124 Hz	124 Hz	ON 2
					40	144 Hz	144 Hz	ON 2
					41	158 Hz	158 Hz	ON 2
					42	166 Hz	166 Hz	ON 2
					43	176 Hz	176 Hz	ON 2
					44	188 Hz	188 Hz	ON 2
					45	202 Hz	202 Hz	ON 2
				I	46	210 Hz	210 Hz	ON 2

represents the range in which "Hz" is not stepped up.

Notes:

1. INV : Inverter compressor

STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ24PAYL, PTL (8+16HP)

(To decrease Step No.)

R.

RXYQ26PAYL,PTL (8+18HP)

represents the range in which "Hz" is not stepped up.

STEP	Master	Slave	
No.	unit	unit	STD
INO.	INV	INV	
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	74 Hz	74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	144 Hz	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	158 Hz	158 Hz	ON 2
32	166 Hz	166 Hz	ON 2
33	176 Hz	176 Hz	ON 2
34	188 Hz	188 Hz	ON 2
35	202 Hz	202 Hz	ON 2
36	210 Hz	202 Hz	ON 2
37	218 Hz	202 Hz	ON 2
38	232 Hz	202 Hz	ON 2
39	248 Hz	202 Hz	ON 2
40	266 Hz	202 Hz	ON 2

(To decrease Step No.)				
STEP	Master	Slave		
No.	unit	unit	STD	
NO.	INV	INV		
1	52 Hz	OFF	OFF	
2	56 Hz	OFF	OFF	
3	62 Hz	OFF	OFF	
4	68 Hz	OFF	OFF	
5	74 Hz	OFF	OFF	
6	80 Hz	OFF	OFF	
7	88 Hz	OFF	OFF	
8	96 Hz	OFF	OFF	
9	104 Hz	OFF	OFF	
10	52 Hz	52 Hz	OFF	
11	56 Hz	56 Hz	OFF	
12	62 Hz	62 Hz	OFF	
13	66 Hz	66 Hz	OFF	
14	70 Hz	70 Hz	OFF	
15	74 Hz	74 Hz	OFF	
16	80 Hz	80 Hz	OFF	
17	88 Hz	88 Hz	OFF	
18	92 Hz	92 Hz	OFF	
19		92 HZ 96 Hz	OFF	
	96 Hz 104 Hz	104 Hz		
20 21	104 Hz	104 Hz	OFF OFF	
22	116 Hz	116 Hz	OFF	
23	124 Hz	124 Hz	OFF	
24	132 Hz	132 Hz	OFF	
25	52 Hz	52 Hz	ON 1	
26	62 Hz	62 Hz	ON 1	
27	68 Hz	68 Hz	ON 1	
28	74 Hz	74 Hz	ON 1	
29	80 Hz	80 Hz	ON 1	
30	88 Hz	88 Hz	ON 1	
31	96 Hz	96 Hz	ON 1	
32	104 Hz	104 Hz	ON 1	
33	52 Hz	52 Hz	ON 2	
34	62 Hz	62 Hz	ON 2	
35	74 Hz	74 Hz	ON 2	
36	88 Hz	88 Hz	ON 2	
37	96 Hz	96 Hz	ON 2	
38	104 Hz	104 Hz	ON 2	
39	124 Hz	124 Hz	ON 2	
40	144 Hz	144 Hz	ON 2	
41	158 Hz	158 Hz	ON 2	
42	166 Hz	166 Hz	ON 2	
43	176 Hz	176 Hz	ON 2	
44	188 Hz	188 Hz	ON 2	
45	202 Hz	202 Hz	ON 2	
46	210 Hz	202 Hz	ON 2	
47	218 Hz	202 Hz	ON 2	
48	232 Hz	202 Hz	ON 2	
49	248 Hz	202 Hz	ON 2	
50	266 Hz	202 Hz	ON 2	
		2022	0	

STEP No.	Master unit INV	Slave unit INV	STD
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	74 Hz	74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	144 Hz	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	158 Hz	158 Hz	ON 2
32	166 Hz	166 Hz	ON 2
33	176 Hz	176 Hz	ON 2
34	188 Hz	188 Hz	ON 2
35	202 Hz	202 Hz	ON 2
36	210 Hz	202 Hz	ON 2
37	218 Hz	202 Hz	ON 2
38	232 Hz	202 Hz	ON 2
39	248 Hz	202 Hz	ON 2
40	266 Hz	202 Hz	ON 2

,	(To decrea	se Step N	o.)
	TEP No.	Master unit INV	Slave unit INV	STD
	1	52 Hz	OFF	OFF
	2	56 Hz	OFF	OFF
	3	62 Hz	OFF	OFF
	4	68 Hz	OFF	OFF
	5	74 Hz	OFF	OFF
	6	80 Hz	OFF	OFF
	7	88 Hz	OFF	OFF
	8	96 Hz	OFF	OFF
	9	104 Hz	OFF	OFF
	10	52 Hz	52 Hz	OFF
	11	56 Hz	56 Hz	OFF
	12	62 Hz	62 Hz	OFF
	13	66 Hz	66 Hz	OFF
	14	70 Hz	70 Hz	OFF
	15	70 HZ 74 Hz	74 Hz	OFF
	16	80 Hz	80 Hz	OFF
	17	88 Hz	88 Hz	OFF
	18	92 Hz	92 Hz	OFF
	19	96 Hz	96 Hz	OFF
	20	104 Hz	104 Hz	OFF
	21	110 Hz	110 Hz	OFF
	22	116 Hz	116 Hz	OFF
	23	124 Hz	124 Hz	OFF
	24	132 Hz	132 Hz	OFF
	25	52 Hz	52 Hz	ON 1
	26	62 Hz	62 Hz	ON 1
	27	68 Hz	68 Hz	ON 1
	28	74 Hz	74 Hz	ON 1
	29	80 Hz	80 Hz	ON 1
	30	88 Hz	88 Hz	ON 1
	31	96 Hz	96 Hz	ON 1
	32	104 Hz	104 Hz	ON 1
	33	52 Hz	52 Hz	ON 2
	34	62 Hz	62 Hz	ON 2
	35	74 Hz	74 Hz	ON 2
	36	88 Hz	88 Hz	ON 2
	37	96 Hz	96 Hz	ON 2
	38	104 Hz	104 Hz	ON 2
	39	124 Hz	124 Hz	ON 2
	40	144 Hz	144 Hz	ON 2
	41	158 Hz	158 Hz	ON 2
	42	166 Hz	166 Hz	ON 2
	43	176 Hz	176 Hz	ON 2
	44	188 Hz	188 Hz	ON 2
	45	202 Hz	202 Hz	ON 2
	46	210 Hz	202 Hz	ON 2
	47	218 Hz	202 Hz	ON 2
	48	232 Hz	202 Hz	ON 2
	49	248 Hz	202 Hz	ON 2
	50	266 Hz	202 Hz	ON 2
<u> </u>		200112	-02112	

Notes:

1. INV : Inverter compressor

STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ28/30PAYL, PTL (10/12+18HP)

(To increas	se Step No	b.)
STEP No.	Master unit	Slave unit	STD
-	INV	INV	
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	74 Hz	74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	144 Hz	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	92 Hz	92 Hz	ON 3
32	104 Hz	104 Hz	ON 3
33	116 Hz	116 Hz	ON 3
34	124 Hz	124 Hz	ON 3
35	144 Hz	144 Hz	ON 3
36	158 Hz	158 Hz	ON 3
37	166 Hz	166 Hz	ON 3
38	176 Hz	176 Hz	ON 3
39	188 Hz	188 Hz	ON 3
40	202 Hz	202 Hz	ON 3
41	210 Hz	202 Hz	ON 3

(To decrease Step No.) Master Slave STEP No. STD unit INV unit INV OFF OFF OFF OFF OFF OFF OFF 52 Hz 56 Hz 62 Hz 68 Hz 74 Hz OF 80 Hz OF OF OFF OFF OFF OFF OFF 88 Hz 96 Hz 104 Hz 52 Hz 56 Hz 62 Hz 66 Hz 70 Hz 52 Hz 56 Hz 62 Hz 66 Hz 70 Hz 74 Hz OF OF 10 11 12 OF 13 OF 14 OF 74 Hz ÖF
 80 Hz
 80 Hz

 88 Hz
 88 Hz

 92 Hz
 92 Hz
 OF OF 16 17 18 OF 96 Hz 104 Hz 110 Hz 19 96 Hz OF OF 104 Hz 110 Hz 20 ÖF 116 Hz 116 Hz 124 Hz 124 Hz OF 124 Hz 124 Hz 132 Hz 132 Hz OF 52 Hz 52 Hz 62 Hz 62 Hz 25 ON ON 1 68 Hz 68 Hz ON ON 1 ON 1 74 Hz 74 Hz 80 Hz 80 Hz 30 88 Hz 88 Hz ON 1 96 Hz 96 Hz ON 1 104 Hz 104 Hz ON 1 31 52 Hz 52 Hz ON 2 62 Hz 74 Hz 62 Hz 74 Hz 34 ON 2 ÖN 36 88 Hz 88 Hz ON 96 Hz 96 Hz ON 2 37 52 Hz 52 Hz ON 3 62 Hz 74 Hz 62 Hz 74 Hz ON 3 ON 3 39 40 92 Hz 104 Hz 92 Hz 4 42 104 Hz ON 3 43 116 Hz 116 Hz ON 3 124 Hz 124 Hz 144 Hz 144 Hz 158 Hz 158 Hz 44 ON 3 124 HZ 124 HZ 0N 3 144 HZ 144 HZ 0N 3 158 HZ 158 HZ 0N 3 166 HZ 166 HZ 0N 3 176 HZ 176 HZ 0N 3 188 HZ 188 HZ 0N 3 202 HZ 202 HZ 0N 3 45 46 47 48 49 50 202 Hz 202 Hz ON 3 210 Hz 202 Hz ON 3

OTED	Master	Slave	-
STEP	unit	unit	STD
No.	INV	INV	-
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	74 Hz	74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	144 Hz	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	92 Hz	96 Hz	ON 3
32	104 Hz	104 Hz	ON 3
33	116 Hz	116 Hz	ON 3
34	124 Hz	124 Hz	ON 3
35	144 Hz	144 Hz	ON 3
36	96 Hz	96 Hz	ON 4
37	104 Hz	104 Hz	ON 4
38	116 Hz	116 Hz	ON 4
39	124 Hz	124 Hz	ON 4
40	144 Hz	144 Hz	ON 4
41	158 Hz	158 Hz	ON 4
42	166 Hz	166 Hz	ON 4
43	176 Hz	176 Hz	ON 4
44	188 Hz	188 Hz	ON 4
45	202 Hz	202 Hz	ON 4

RXYQ32PAYL, PTL (16+16HP)

(To decrea	ise Step N	o.)
A	Master	Slave	
STEP	unit	unit	STD
No.	INV	INV	010
1	52 Hz	OFF	OFF
2	56 Hz	OFF	OFF
3	62 Hz	OFF	OFF
4	68 Hz	OFF	OFF
5	74 Hz	OFF	OFF
6	80 Hz	OFF	OFF
7	88 Hz	OFF	OFF
8	96 Hz	OFF	OFF
9	104 Hz	OFF	OFF
10	52 Hz	52 Hz	OFF
11	56 Hz	56 Hz	OFF
12	62 Hz	62 Hz	OFF
13	66 Hz	66 Hz	OFF
14	70 Hz	70 Hz	OFF
15	74 Hz	74 Hz	OFF
16	80 Hz	80 Hz	OFF
17	88 Hz	88 Hz	OFF
18	92 Hz	92 Hz	OFF
19	96 Hz	96 Hz	OFF
20	104 Hz	104 Hz	OFF
21	110 Hz	110 Hz	OFF
22	116 Hz	116 Hz	OFF
23	124 Hz	124 Hz	OFF
		132 Hz	
24	132 Hz		OFF
25	52 Hz	52 Hz	ON 1
26	62 Hz	62 Hz	ON 1
27	68 Hz	68 Hz	ON 1
28	74 Hz	74 Hz	ON 1
29	80 Hz	80 Hz	ON 1
30	88 Hz	88 Hz	ON 1
31	96 Hz	96 Hz	ON 1
32	104 Hz	104 Hz	ON 1
33	52 Hz	52 Hz	ON 2
34	62 Hz	62 Hz	ON 2
35	74 Hz	74 Hz	ON 2
36	88 Hz	88 Hz	ON 2
37	96 Hz	96 Hz	ON 2
38	52 Hz	52 Hz	ON 3
39	62 Hz	62 Hz	ON 3
40	74 Hz	74 Hz	ON 3
41	92 Hz	92 Hz	ON 3
42	104 Hz	104 Hz	ON 3
43	52 Hz	52 Hz	ON 4
44	62 Hz	62 Hz	ON 4
45	74 Hz	74 Hz	ON 4
46	96 Hz	96 Hz	ON 4
40	104 Hz	104 Hz	ON 4
48	116 Hz	116 Hz	•
49	124 Hz	124 Hz	ON 4
50	144 Hz	144 Hz	ON 4
51	158 Hz	158 Hz	ON 4
52	166 Hz	166 Hz	ON 4
53	176 Hz	176 Hz	ON 4
54	188 Hz	188 Hz	ON 4
55	202 Hz	202 Hz	ON 4

represents the range in which "Hz" is not stepped up.

Notes:

1. INV : Inverter compressor

STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ34PAYL, PTL (16+18HP)

(To decrease Step No.)

RXYQ36PAYL, PTL (18+18HP)

represents the range in which "Hz" is not stepped up.

(To decrease Step No.)

STEP	Master	Slave	075
No.	unit	unit	STD
1	INV 52 Hz	INV 52 Hz	OFF
2	-	56 Hz	OFF
3	56 Hz 62 Hz	62 Hz	OFF
<u>3</u> 4	62 HZ	62 HZ 66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	70 HZ	70 HZ 74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	132 HZ	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	92 Hz	96 Hz	ON 3
32	104 Hz	104 Hz	ON 3
33	116 Hz	116 Hz	ON 3
34	124 Hz	124 Hz	ON 3
35	144 Hz	144 Hz	ON 3
36	96 Hz	96 Hz	ON 4
37	104 Hz	104 Hz	ON 4
38	116 Hz	116 Hz	ON 4
39	124 Hz	124 Hz	ON 4
40	144 Hz	144 Hz	ON 4
41	158 Hz	158 Hz	ON 4
42	166 Hz	166 Hz	ON 4
43	176 Hz	176 Hz	ON 4
44	188 Hz	188 Hz	ON 4
45	202 Hz	202 Hz	ON 4

OTED	Master	Slave	
STEP	unit	unit	STD
No.	INV	INV	010
1	52 Hz	OFF	OFF
2	56 Hz	OFF	OFF
3	62 Hz	OFF	OFF
4	68 Hz	OFF	OFF
5	74 Hz	OFF	OFF
6	80 Hz	OFF	OFF
7	88 Hz	OFF	OFF
8	96 Hz	OFF	OFF
9	104 Hz	OFF	OFF
10	52 Hz	52 Hz	OFF
11	56 Hz	56 Hz	OFF
12	62 Hz	62 Hz	OFF
13	66 Hz	66 Hz	OFF
14	70 Hz	70 Hz	OFF
15	74 Hz	74 Hz	OFF
16	80 Hz	80 Hz	OFF
17	88 Hz	88 Hz	OFF
18	92 Hz	92 Hz	OFF
19	96 Hz	96 Hz	OFF
20	104 Hz	104 Hz	OFF
21	110 Hz	110 Hz	OFF
22	116 Hz	116 Hz	OFF
23	124 Hz	124 Hz	OFF
24	132 Hz	132 Hz	OFF
25	52 Hz	52 Hz	ON 1
26	62 Hz	62 Hz	ON 1
27	68 Hz	68 Hz	ON 1
28	74 Hz	74 Hz	ON 1
29	80 Hz	80 Hz	ON 1
30	88 Hz	88 Hz	ON 1
31	96 Hz	96 Hz	ON 1
32	104 Hz	104 Hz	ON 1
33	52 Hz	52 Hz	ON 2
34	62 Hz	62 Hz	ON 2
35	74 Hz	74 Hz	ON 2
36	88 Hz	88 Hz	ON 2
37	96 Hz	96 Hz	ON 2
38	52 Hz	52 Hz	ON 3
39	62 Hz	62 Hz	ON 3
40	74 Hz	74 Hz	ON 3
41	92 Hz	92 Hz	ON 3
42	104 Hz	104 Hz	ON 3
43	52 Hz	52 Hz	ON 4
44	62 Hz	62 Hz	ON 4
45	74 Hz	74 Hz	ON 4
46	96 Hz	96 Hz	ON 4
47	104 Hz	104 Hz	ON 4
	116 Hz		ON 4 ON 4
48		116 Hz	
49	124 Hz	124 Hz	ON 4
50	144 Hz	144 Hz	ON 4
51	158 Hz	158 Hz	ON 4
	166 Hz		
50		166 Hz	ON 4
52			
53	176 Hz	176 Hz	ON 4
			ON 4 ON 4
53	176 Hz	176 Hz	

STEP	Master	Slave	
No.	unit	unit	STD
-	INV	INV	055
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
	3 62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	70 Hz	70 Hz	OFF
6	74 Hz	74 Hz	OFF
7	80 Hz	80 Hz	OFF
8	88 Hz	88 Hz	OFF
9	96 Hz	96 Hz	OFF
10	104 Hz	104 Hz	OFF
11	110 Hz	110 Hz	OFF
12	116 Hz	116 Hz	OFF
13	124 Hz	124 Hz	OFF
14	132 Hz	132 Hz	OFF
15	144 Hz	144 Hz	OFF
16	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON 1
20	88 Hz	88 Hz	ON 1
21	96 Hz	96 Hz	ON 1
22	104 Hz	104 Hz	ON 1
23	116 Hz	116 Hz	ON 1
24	124 Hz	124 Hz	ON 1
25	132 Hz	132 Hz	ON 1
26	88 Hz	88 Hz	ON 2
27	96 Hz	96 Hz	ON 2
28	104 Hz	104 Hz	ON 2
29	124 Hz	124 Hz	ON 2
30	144 Hz	144 Hz	ON 2
31	92 Hz	96 Hz	ON 3
32	104 Hz	104 Hz	ON 3
33	116 Hz	116 Hz	ON 3
34	124 Hz	124 Hz	ON 3
35	144 Hz	144 Hz	ON 3
36	96 Hz	96 Hz	ON 4
37	104 Hz	104 Hz	ON 4
38	116 Hz	116 Hz	ON 4
39	124 Hz	124 Hz	ON 4
40	144 Hz	144 Hz	ON 4
41	158 Hz	158 Hz	ON 4
42	166 Hz	166 Hz	ON 4
43	176 Hz	176 Hz	ON 4
44	188 Hz	188 Hz	ON 4
45	202 Hz	202 Hz	ON 4

	(To decrease Step No.)						
	STEP Master Slave						
T	No.	unit	unit	STD			
	INU.	INV	INV				
	1	52 Hz	OFF	OFF			
	2	56 Hz	OFF	OFF			
	3	62 Hz	OFF	OFF			
	4	68 Hz	OFF	OFF			
	5	74 Hz	OFF	OFF			
	6	80 Hz	OFF	OFF			
	7	88 Hz	OFF	OFF			
	8	96 Hz	OFF	OFF			
	9	104 Hz	OFF	OFF			
	10	52 Hz	52 Hz	OFF			
	11	56 Hz	56 Hz	OFF			
	12	62 Hz	62 Hz	OFF			
	13	66 Hz	66 Hz	OFF			
	14	70 Hz	70 Hz	OFF			
	15	74 Hz	74 Hz	OFF			
	16	80 Hz	80 Hz	OFF			
	17	88 Hz	88 Hz	OFF			
	18	92 Hz	92 Hz	OFF			
	19	96 Hz	96 Hz	OFF			
	20	104 Hz	104 Hz	OFF			
	21	110 Hz	110 Hz	OFF			
	22	116 Hz	116 Hz	OFF			
	23	124 Hz	124 Hz	OFF			
	24	132 Hz	132 Hz	OFF			
	25	52 Hz	52 Hz	ON 1			
	26	62 Hz	62 Hz	ON 1			
	27	68 Hz	68 Hz	ON 1			
	28	74 Hz	74 Hz	ON 1			
	29	80 Hz	80 Hz	ON 1			
	30	88 Hz	88 Hz	ON 1			
	31	96 Hz	96 Hz	ON 1			
	32	104 Hz	104 Hz	ON 1			
	33	52 Hz	52 Hz	ON 2			
	34	62 Hz	62 Hz	ON 2			
	35	74 Hz	74 Hz	ON 2			
	36	88 Hz	88 Hz	ON 2			
	37	96 Hz	96 Hz	ON 2			
	38	52 Hz	52 Hz	ON 3			
	39	62 Hz	62 Hz	ON 3			
	40	74 Hz	74 Hz	ON 3			
	41	92 Hz	92 Hz	ON 3			
	42	104 Hz	104 Hz	ON 3			
	43	52 Hz	52 Hz	ON 4			
	44	62 Hz	62 Hz	ON 4			
	45	74 Hz	74 Hz	ON 4			
	46	96 Hz	96 Hz	ON 4			
	47	104 Hz	104 Hz	ON 4			
	48	116 Hz	116 Hz	ON 4			
	49	124 Hz	124 Hz	ON 4			
	50	144 Hz	144 Hz	ON 4			
	51	158 Hz	158 Hz	ON 4			
	52	166 Hz	166 Hz	ON 4			
	53	176 Hz	176 Hz	ON 4			
	54	188 Hz	188 Hz	ON 4			
	55	202 Hz	202 Hz	ON 4			

- 1. INV : Inverter compressor
 - STD : Standard compressor
 - Figures after ON represent the number of STD compressors in operation.
- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

represents the range in which "Hz" is not stepped up.

RXYQ38PAYL, PTL (8+12+18HP)

	(To inc	rease S	tep No.)	
TEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD
 1	52 Hz	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	66 Hz	OFF
5	68 Hz	68 Hz	68 Hz	OFF
6	70 Hz	70 Hz	70 Hz	OFF
7	74 Hz	74 Hz	74 Hz	OFF
8	80 Hz	80 Hz	80 Hz	OFF
9	88 Hz	88 Hz	88 Hz	OFF
10	96 Hz	96 Hz	96 Hz	OFF
11	104 Hz	104 Hz	104 Hz	OFF
12	110 Hz	110 Hz	110 Hz	OFF
13	116 Hz	116 Hz	116 Hz	OFF
14	124 Hz	124 Hz	124 Hz	OFF
15	80 Hz	80 Hz	80 Hz	ON 1
16	88 Hz	88 Hz	88 Hz	ON 1
17	96 Hz	96 Hz	96 Hz	ON 1
18	104 Hz	104 Hz	104 Hz	ON 1
19	116 Hz	116 Hz	116 Hz	ON 1
20	124 Hz	124 Hz	124 Hz	ON 1
21	132 Hz	132 Hz	132 Hz	ON 1
22	88 Hz	88 Hz	88 Hz	ON 2
23	96 Hz	96 Hz	96 Hz	ON 2
24	104 Hz	104 Hz	104 Hz	ON 2
25	124 Hz	124 Hz	124 Hz	ON 2
26	144 Hz	144 Hz	144 Hz	ON 2
27	92 Hz	92 Hz	92 Hz	ON 3
28	104 Hz	104 Hz	104 Hz	ON 3
29	116 Hz	116 Hz	116 Hz	ON 3
30	124 Hz	124 Hz	124 Hz	ON 3
31	144 Hz	144 Hz	144 Hz	ON 3
32	158 Hz	158 Hz	158 Hz	ON 3
33	166 Hz	166 Hz	166 Hz	ON 3
34	176 Hz	176 Hz	176 Hz	ON 3
35	188 Hz	188 Hz	188 Hz	ON 3
36	202 Hz	202 Hz	202 Hz	ON 3
37	210 Hz	210 Hz	202 Hz	ON 3
38	218 Hz	210 Hz	202 Hz	ON 3
39	232 Hz	210 Hz	202 Hz	ON 3
40	248 Hz	210 Hz	202 Hz	ON 3
41	266 Hz	210 Hz	202 Hz	ON 3

(To decrease Step No.)					
STEP	Master	Slave	Slave		
No.	unit	unit1	unit2	STD	
	INV	INV	INV	0.55	
1	52 Hz	OFF	OFF	OFF	
2	56 Hz	OFF OFF	OFF OFF	OFF OFF	
4	62 Hz	OFF OFF	OFF OFF	OFF OFF	
5	68 Hz 74 Hz	OFF	OFF	OFF	
6	80 Hz	OFF	OFF	OFF	
7	88 Hz	OFF	OFF	OFF	
8	96 Hz	OFF	OFF	OFF	
9	104 Hz	OFF	OFF	OFF	
10	52 Hz	52 Hz	OFF	OFF	
11	56 Hz	56 Hz	OFF	OFF	
12	62 Hz	62 Hz	OFF	OFF	
13	66 Hz	66 Hz	OFF	OFF	
14	70 Hz	70 Hz	OFF	OFF	
15	74 Hz	74 Hz	OFF	OFF	
16	52 Hz	52 Hz	52 Hz	OFF	
17	56 Hz	56 Hz	56 Hz	OFF	
18	62 Hz	62 Hz	62 Hz	OFF	
19	66 Hz	66 Hz	66 Hz	OFF	
20	68 Hz	68 Hz	68 Hz	OFF	
21	70 Hz	70 Hz	70 Hz	OFF	
22	74 Hz	74 Hz	74 Hz	OFF	
23	80 Hz	80 Hz	80 Hz	OFF	
24	88 Hz	88 Hz	88 Hz	OFF	
25	96 Hz	96 Hz	96 Hz	OFF	
26	52 Hz	52 Hz	52 Hz	ON 1	
27	62 Hz	62 Hz	62 Hz	ON 1	
28	68 Hz	68 Hz	68 Hz	ON 1	
29	74 Hz	74 Hz	74 Hz	ON 1	
<u>30</u> 31	80 Hz	80 Hz	80 Hz	ON 1 ON 1	
32	88 Hz 96 Hz	88 Hz 96 Hz	88 Hz 96 Hz	ON 1 ON 1	
33	104 Hz	104 Hz	104 Hz	ON 1	
34	52 Hz	52 Hz	52 Hz	ON 2	
35	62 Hz	62 Hz	62 Hz	ON 2	
36	74 Hz	74 Hz	74 Hz	ON 2	
37	88 Hz	88 Hz	88 Hz	ON 2	
38	96 Hz	96 Hz	96 Hz	ON 2	
39	52 Hz	52 Hz	52 Hz	ON 3	
40	62 Hz	62 Hz	62 Hz	ON 3	
41	74 Hz	74 Hz	74 Hz	ON 3	
42	92 Hz	92 Hz	92 Hz	ON 3	
43	104 Hz	104 Hz	104 Hz	ON 3	
44	116 Hz	116 Hz	116 Hz	ON 3	
45	124 Hz	124 Hz	124 Hz	ON 3	
46	144 Hz	144 Hz	144 Hz	ON 3	
47	158 Hz	158 Hz	158 Hz	ON 3	
48	166 Hz	166 Hz	166 Hz	ON 3	
49	176 Hz	176 Hz	176 Hz	ON 3	
50	188 Hz	188 Hz	188 Hz	ON 3	
51	202 Hz	202 Hz	202 Hz	ON 3	
52	210 Hz	210 Hz	202 Hz	ON 3	
53	218 Hz	210 Hz	202 Hz	ON 3	
54	232 Hz	210 Hz	202 Hz	ON 3	
55	248 Hz	210 Hz		ON 3	
56	266 Hz	210 Hz	202 Hz	ON 3	

NI - 3

		,	``	
	(To inc	rease S	tep No.)	
0750	Master	Slave	Slave	
STEP	unit	unit1	unit2	STD
No.	INV	INV	INV	010
1	52 Hz	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	56 Hz	OFF
			62 Hz	OFF
3			-	
	66 Hz	66 Hz	66 Hz	OFF
5	68 Hz	68 Hz	68 Hz	OFF
6	70 Hz	70 Hz	70 Hz	OFF
7	74 Hz	74 Hz	74 Hz	OFF
8	80 Hz	80 Hz	80 Hz	OFF
9	88 Hz	88 Hz	88 Hz	OFF
10	96 Hz	96 Hz	96 Hz	OFF
11	104 Hz	104 Hz	104 Hz	OFF
12	110 Hz	110 Hz	110 Hz	OFF
13	116 Hz	116 Hz	116 Hz	OFF
14	124 Hz	124 Hz	124 Hz	OFF
15	80 Hz	80 Hz	80 Hz	ON 1
16	88 Hz	88 Hz	88 Hz	ON 1
17	96 Hz	96 Hz	96 Hz	ON 1
18	104 Hz	104 Hz	104 Hz	ON 1
19	116 Hz	116 Hz	116 Hz	ON 1
20	124 Hz	124 Hz	124 Hz	ON 1
20	132 Hz	132 Hz	132 Hz	ON 1
22				
	88 Hz	88 Hz	88 Hz	<u>ON 2</u>
23	96 Hz	96 Hz	96 Hz	ON 2
24	104 Hz	104 Hz	104 Hz	ON 2
25	124 Hz	124 Hz	124 Hz	ON 2
26	144 Hz	144 Hz	144 Hz	ON 2
27	92 Hz	92 Hz	92 Hz	ON 3
28	104 Hz	104 Hz	104 Hz	ON 3
29	116 Hz	116 Hz	116 Hz	ON 3
30	124 Hz	124 Hz	124 Hz	ON 3
31	144 Hz	144 Hz	144 Hz	ON 3
32	96 Hz	96 Hz	96 Hz	ON 4
33	104 Hz	104 Hz	104 Hz	ON 4
34	116 Hz	116 Hz	116 Hz	ON 4
35	124 Hz	124 Hz	124 Hz	ON 4
36	144 Hz	144 Hz	144 Hz	ON 4
37	158 Hz	158 Hz	158 Hz	ON 4
38	166 Hz	166 Hz	166 Hz	ON 4
39	176 Hz	176 Hz	176 Hz	ON 4
40	188 Hz	188 Hz	188 Hz	ON 4
40	202 Hz	202 Hz	202 112	ON 4
			202 FIZ	-
42	210 Hz	210 Hz	202 Hz	
43	218 Hz	202 Hz	202 Hz	<u>ON 4</u>
44	232 Hz	202 Hz	202 Hz	<u>ON 4</u>
45	248 Hz	202 Hz	202 Hz	ON 4
46	266 Hz	202 Hz	202 Hz	ON 4

RXYQ40PAYL, PTL (8+16+16HP)

STEP No. Master Unit Unit UNV Slave Unit UNV Slave Unit UNV STD 1 52 Hz OFF OFF OFF OFF 2 56 Hz OFF OFF OFF OFF 3 62 Hz OFF OFF OFF OFF 4 68 Hz OFF OFF OFF OFF 5 74 Hz OFF OFF OFF OFF 7 88 Hz OFF OFF OFF OFF 9 104 Hz OFF OFF OFF OFF 10 52 Hz 52 Hz OFF OFF OFF 11 56 Hz 56 Hz OFF OFF OFF 12 66 Hz 66 Hz OFF OFF OFF 14 70 Hz 70 Hz OFF OFF OFF 15 74 Hz 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 52 Hz 0FF		(To de	crease S	Step No.)
No. Umit of the unity of the units of the u	STEP				
1 52 Hz OFF OFF OFF OFF 2 56 Hz OFF OFF OFF OFF OFF 3 66 Hz OFF OFF OFF OFF OFF 4 68 Hz OFF OFF OFF OFF OFF 5 74 Hz OFF OFF OFF OFF OFF 7 88 Hz OFF OFF OFF OFF OFF 9 104 Hz OFF OFF OFF OFF OFF 11 56 Hz 56 Hz OFF OFF OFF OFF 12 62 Hz 52 Hz 52 Hz 0FF OFF OFF 13 66 Hz 66 Hz 0FF OFF OFF OFF 0FF 14 70 Hz 70 Hz 70 Hz OFF OFF 0FF 0FF 16 52 Hz 52 Hz 52 Hz 0FF 0FF 0FF 0FF <td></td> <td></td> <td>unit1</td> <td></td> <td>STD</td>			unit1		STD
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1				OFF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
4 68 Hz OFF OFF OFF OFF 5 74 Hz OFF OFF OFF OFF OFF 5 74 Hz OFF OFF OFF OFF OFF 6 80 Hz OFF OFF OFF OFF OFF 7 88 Hz OFF OFF OFF OFF OFF 9 104 Hz OFF OFF OFF OFF I 10 52 Hz 52 Hz 0FF OFF OFF I 12 62 Hz 66 Hz 66 Hz OFF OFF I 14 70 Hz 70 Hz OFF OFF I					
7 88 Hz OFF OFF <td></td> <td></td> <td></td> <td></td> <td></td>					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7		OFF		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	96 Hz	OFF	OFF	OFF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9			OFF	OFF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		52 Hz	52 Hz		OFF
13 66 Hz OFF OFF OFF 14 70 Hz 70 Hz OFF OFF OFF 15 74 Hz 74 Hz OFF OFF OFF 15 74 Hz 74 Hz OFF OFF 16 52 Hz 52 Hz 52 Hz OFF 17 56 Hz 66 Hz 66 Hz OFF 18 62 Hz 62 Hz 62 Hz OFF 19 66 Hz 66 Hz 0FF OFF 20 68 Hz 68 Hz 68 Hz OFF 21 70 Hz 70 Hz 70 Hz OFF 23 80 Hz 80 Hz 80 Hz 0FF 24 88 Hz 80 Hz 0FF 0F 25 96 Hz 96 Hz 0FF 0F 26 52 Hz 52 Hz 52 Hz 0N 1 30 80 Hz 80 Hz 80 Hz 0N 1 31 88 Hz 80 Hz					
14 70 Hz 70 Hz OFF OFF 15 74 Hz 74 Hz OFF OFF 16 55 Hz 52 Hz 52 Hz 52 Hz 52 Hz 17 56 Hz 66 Hz 66 Hz 67 Hz OFF 18 62 Hz 62 Hz 62 Hz OFF 19 66 Hz 66 Hz 67 Hz OFF 20 68 Hz 68 Hz 0FF OFF 21 70 Hz 70 Hz 70 Hz OFF 22 74 Hz 74 Hz 74 Hz OFF 23 80 Hz 80 Hz 80 Hz 06 Hz 06 FF 24 88 Hz 88 Hz 88 Hz 08 Hz 07F 26 52 Hz 52 Hz 52 Hz 08 Hz 08 Hz 08 Hz 27 62 Hz 62 Hz 68 Hz 08 Hz 08 Hz 08 Hz 30 80 Hz 80 Hz 80 Hz 08 Hz 08 Hz 08 Hz					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					ON 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	62 Hz	62 Hz	62 Hz	ON 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			68 Hz		ON 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ON 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
37 88 Hz 88 Hz 96 Hz 96 Hz 96 Hz ON 2 38 96 Hz 96 Hz 96 Hz 96 Hz ON 2 39 52 Hz 52 Hz 52 Hz 52 Hz ON 3 40 62 Hz 62 Hz 62 Hz ON 3 41 74 Hz 74 Hz 74 Hz ON 3 42 92 Hz 92 Hz 92 Hz ON 3 43 104 Hz 104 Hz 104 Hz ON 4 45 62 Hz 62 Hz 62 Hz ON 4 46 74 Hz 74 Hz 74 Hz ON 4 46 74 Hz 74 Hz 74 Hz ON 4 47 96 Hz 96 Hz 96 Hz ON 4 48 104 Hz 104 Hz 104 Hz ON 4 49 116 Hz 116 Hz IN 4 50 Hz ON 4 50 124 Hz 124 Hz 124 Hz ON 4 52 158 Hz 158 Hz 158 Hz 0N 4<					
38 96 Hz 96 Hz 96 Hz 0N 2 39 52 Hz 52 Hz 52 Hz ON 3 40 62 Hz 62 Hz 62 Hz 62 Hz 62 Nz 41 74 Hz 74 Hz ON 3 41 74 Hz ON 3 42 92 Hz 92 Hz 92 Hz 92 Hz ON 3 43 104 Hz 104 Hz 104 Hz ON 3 44 52 Hz 52 Hz 52 Hz ON 4 45 62 Hz 62 Hz 62 Hz ON 4 46 74 Hz 74 Hz 74 Hz ON 4 47 96 Hz 96 Hz ON 4 0 48 104 Hz 104 Hz 104 Hz ON 4 50 124 Hz 124 Hz 124 Hz ON 4 51 144 Hz 144 Hz 104 Hz ON 4 53 166 Hz 166 Hz 166 Hz ON 4 53 188 Hz 188 Hz N4 55 <td></td> <td></td> <td></td> <td></td> <td></td>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
40 62 Hz 62 Hz 62 Hz 02 Hz 03 Hz 41 74 Hz 74 Hz 74 Hz 74 Hz 0N 3 42 92 Hz					
41 74 Hz 74 Hz 74 Hz ON 3 42 92 Hz 92 Hz 92 Hz 92 Hz ON 3 43 104 Hz 104 Hz I04 Hz I04 Hz ON 4 45 62 Hz 52 Hz 52 Hz S2 Hz ON 4 45 62 Hz 62 Hz 62 Hz ON 4 46 74 Hz 74 Hz ON 4 47 96 Hz 26 Hz ON 4 48 104 Hz 104 Hz ON 4 49 116 Hz 116 Hz ON 4 49 116 Hz 116 Hz ON 4 50 124 Hz 124 Hz 124 Hz ON 4 51 144 Hz 124 Hz 124 Hz ON 4 53 166 Hz 166 Hz 160 Hz ON 4 53 166 Hz 166 Hz 0N 4 5 54 176 Hz 176 Hz 176 Hz 0N 4 55 188 Hz 188 Hz 188 Hz 0N 4 <td></td> <td></td> <td></td> <td></td> <td></td>					
42 92 Hz 92 Hz 92 Hz 92 Hz 90 Hz 43 104 Hz 104 Hz 104 Hz 0N 3 44 52 Hz 52 Hz 52 Hz 52 Hz 0N 4 45 62 Hz 62 Hz 62 Hz 0N 4 46 74 Hz 74 Hz 74 Hz 0N 4 47 96 Hz 96 Hz 96 Hz 0N 4 48 104 Hz 104 Hz 104 Hz 0N 4 49 116 Hz 116 Hz 114 Hz 0N 4 50 124 Hz 124 Hz 124 Hz 0N 4 51 144 Hz 144 Hz 104 Hz 0N 4 52 158 Hz 158 Hz 158 Hz 0N 4 53 166 Hz 166 Hz 0N 4 55 188 Hz 188 Hz 0N 4 55 188 Hz 188 Hz 188 Hz 0N 4 56 202 Hz 0N 4 56 202 Hz 202 Hz 0N 4 57 10 Hz <					
43 104 Hz 104 Hz 104 Hz 0N 3 44 52 Hz 52 Hz 52 Hz 0N 4 45 62 Hz 62 Hz 62 Hz 0N 4 46 74 Hz 74 Hz 74 Hz 0N 4 47 96 Hz 96 Hz 96 Hz 0N 4 48 104 Hz 104 Hz 104 Hz 0N 4 49 116 Hz 116 Hz 116 Hz 0N 4 50 124 Hz 124 Hz 124 Hz 0N 4 51 144 Hz 144 Hz 144 Hz 0N 4 52 158 Hz 158 Hz 158 Hz 0N 4 53 166 Hz 166 Hz 160 Hz 0N 4 54 176 Hz 176 Hz 176 Hz 0N 4 55 188 Hz 188 Hz 188 Hz 0N 4 56 202 Hz 202 Hz 201 Hz 0N 4 56 202 Hz 202 Hz 201 Hz 0N 4 57 210 Hz			92 Hz		
44 52 Hz 52 Hz 52 Hz 50 Hz 45 62 Hz 62 Hz 62 Hz 0N 4 46 74 Hz 74 Hz 74 Hz 0N 4 47 96 Hz 96 Hz 96 Hz 0N 4 48 104 Hz 104 Hz 0N 4 49 116 Hz 116 Hz 116 Hz 0N 4 50 124 Hz 124 Hz 124 Hz 0N 4 50 124 Hz 124 Hz 124 Hz 0N 4 51 144 Hz 144 Hz 0N 4 52 158 Hz 158 Hz 0N 4 52 158 Hz 166 Hz 166 Hz 0N 4 54 176 Hz 0N 4 53 166 Hz 166 Hz 166 Hz 0N 4 56 202 Hz 0N 4 56 202 Hz 202 Hz 202 Hz 0N 4 57 210 Hz 210 Hz 201 Hz 0N 4 57 210 Hz 210 Hz 202 Hz 0N 4 59 232 Hz					ON 3
45 62 Hz 62 Hz 62 Hz 62 Hz 0N 4 46 74 Hz 74 Hz 74 Hz 0N 4 47 96 Hz 96 Hz 96 Hz 90 Hz 0N 4 48 104 Hz 104 Hz 104 Hz 0N 4 49 116 Hz 116 Hz 116 Hz 0N 4 50 124 Hz 124 Hz 124 Hz 0N 4 51 144 Hz 144 Hz 0N 4 51 144 Hz 0N 4 51 144 Hz 144 Hz 144 Hz 0N 4 53 166 Hz 166 Hz 164 Hz 0N 4 53 166 Hz 166 Hz 164 Hz 0N 4 55 188 Hz 188 Hz 0N 4 55 188 Hz 188 Hz 188 Hz 0N 4 56 202 Hz 0N 4 56 202 Hz 202 Hz 202 Hz 0N 4 57 210 Hz 202 Hz 0N 4 58 218 Hz 202 Hz 202 Hz 0N 4 59					ON 4
46 74 Hz 74 Hz 74 Hz ON 4 47 96 Hz 96 Hz 96 Hz 0N 4 48 104 Hz 104 Hz 104 Hz 0N 4 48 104 Hz 104 Hz 0N 4 49 116 Hz 116 Hz 114 Hz 0N 4 50 124 Hz 124 Hz 124 Hz 0N 4 51 144 Hz 144 Hz 144 Hz 0N 4 52 158 Hz 158 Hz 158 Hz 0N 4 53 166 Hz 166 Hz 106 Hz 0N 4 54 176 Hz 176 Hz 0N 4 55 188 Hz 188 Hz 188 Hz 0N 4 56 202 Hz 202 Hz 20N 4 57 210 Hz 210 Hz 201 Hz 0N 4 57 210 Hz 210 Hz 202 Hz 0N 4 58 218 Hz 202 Hz 202 Hz 0N 4 58 218 Hz 202 Hz 202 Hz 0N 4 59 232 Hz <td></td> <td>62 Hz</td> <td>62 Hz</td> <td>62 Hz</td> <td></td>		62 Hz	62 Hz	62 Hz	
47 96 Hz 96 Hz 96 Hz 0N 4 48 104 Hz 104 Hz 104 Hz 0N 4 49 116 Hz 116 Hz 116 Hz 116 Hz 50 124 Hz 124 Hz 124 Hz 0N 4 51 144 Hz 144 Hz 144 Hz 0N 4 52 158 Hz 158 Hz 158 Hz 0N 4 53 166 Hz 166 Hz 160 Hz 0N 4 54 176 Hz 176 Hz 176 Hz 0N 4 55 188 Hz 188 Hz 184 Hz 0N 4 56 202 Hz 202 Hz 20N 4 56 202 Hz 202 Hz 20N 4 57 210 Hz 210 Hz 201 Hz 0N 4 58 218 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 60 248 Hz 202 Hz 202 Hz 0N 4	46	74 Hz	74 Hz		ON 4
48 104 Hz 104 Hz 104 Hz 0N 4 49 116 Hz 116 Hz 0N 4 50 124 Hz 124 Hz 124 Hz 0N 4 51 144 Hz 144 Hz 144 Hz 0N 4 52 158 Hz 158 Hz 158 Hz 0N 4 53 166 Hz 166 Hz 0N 4 54 176 Hz 176 Hz 0N 4 55 188 Hz 186 Hz 0N 4 56 202 Hz 202 Hz 0N 4 56 202 Hz 202 Hz 200 Hz 0N 4 57 210 Hz 202 Hz 202 Hz 0N 4 58 218 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 60 248 Hz 202 Hz 202 Hz 0N 4		96 Hz	96 Hz	96 Hz	ON 4
50 124 Hz 124 Hz 124 Hz ON 4 51 144 Hz 144 Hz 144 Hz ON 4 52 158 Hz 158 Hz 158 Hz ON 4 53 166 Hz 166 Hz 166 Hz ON 4 53 166 Hz 166 Hz 166 Hz ON 4 54 176 Hz 176 Hz ON 4 55 188 Hz 188 Hz I84 Hz ON 4 56 202 Hz 202 Hz ON 4 S6 57 210 Hz 2102 Hz 202 Hz ON 4 58 218 Hz 202 Hz 202 Hz ON 4 59 232 Hz 202 Hz 202 Hz ON 4 59 232 Hz 202 Hz ON 4 S9 232 Hz ON 4 60 248 Hz 202 Hz ON 24 ON 4 S0 S0 S0					ON 4
51 144 Hz 144 Hz 144 Hz 0N 4 52 158 Hz 158 Hz 158 Hz 0N 4 53 166 Hz 166 Hz 164 Hz 0N 4 54 176 Hz 176 Hz 0N 4 55 188 Hz 188 Hz 188 Hz 0N 4 56 202 Hz 202 Hz 20 N 4 57 210 Hz 210 Hz 202 Hz 0N 4 57 210 Hz 210 Hz 202 Hz 0N 4 58 218 Hz 210 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 0N 4 50 248 Hz 202 Hz 0N 4 60 248 Hz 202 Hz 202 Hz 0N 4 60 248 Hz 0N 4					
52 158 Hz 158 Hz 158 Hz 0N 4 53 166 Hz 166 Hz 166 Hz 0N 4 54 176 Hz 176 Hz 176 Hz 0N 4 55 188 Hz 188 Hz 188 Hz 0N 4 56 202 Hz 202 Hz 202 Hz 0N 4 57 210 Hz 202 Hz 202 Hz 0N 4 58 218 Hz 188 Hz 188 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 60 248 Hz 202 Hz 202 Hz 0N 4					
53 166 Hz 166 Hz 166 Hz 0N 4 54 176 Hz 176 Hz 176 Hz 0N 4 55 188 Hz 188 Hz 0N 4 56 202 Hz 202 Hz 202 Hz 0N 4 57 210 Hz 210 Hz 202 Hz 0N 4 58 218 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 60 248 Hz 202 Hz 202 Hz 0N 4					
54 176 Hz 176 Hz 176 Hz 0N 4 55 188 Hz 188 Hz 188 Hz 0N 4 56 202 Hz 202 Hz 201 Hz 0N 4 57 210 Hz 210 Hz 202 Hz 0N 4 58 218 Hz 202 Hz 202 Hz 0N 4 59 232 Hz 202 Hz 202 Hz 0N 4 60 248 Hz 202 Hz 02 Hz 0N 4					
55 188 Hz 188 Hz 188 Hz ON 4 56 202 Hz 202 Hz 202 Hz ON 4 57 210 Hz 210 Hz 202 Hz ON 4 58 218 Hz 202 Hz OU 4 ON 4 59 232 Hz 202 Hz OU 4 ON 4 60 248 Hz 202 Hz OU 4 ON 4					
56 202 Hz 202 Hz 202 Hz ON 4 57 210 Hz 210 Hz 202 Hz ON 4 58 218 Hz 202 Hz 202 Hz ON 4 59 232 Hz 202 Hz 202 Hz ON 4 60 248 Hz 202 Hz 202 Hz ON 4					0
57 210 Hz 210 Hz 202 Hz ON 4 58 218 Hz 202 Hz 202 Hz ON 4 59 232 Hz 202 Hz 202 Hz ON 4 60 248 Hz 202 Hz 202 Hz ON 4					
58 218 Hz 202 Hz 202 Hz ON 4 59 232 Hz 202 Hz 202 Hz ON 4 60 248 Hz 202 Hz 202 Hz ON 4					
59 232 Hz 202 Hz 202 Hz ON 4 60 248 Hz 202 Hz 202 Hz ON 4					
60 248 Hz 202 Hz 202 Hz ON 4					
		1200112			U .1 1

- 1. INV : Inverter compressor
 - STD : Standard compressor
 - Figures after ON represent the number of STD compressors in operation.
- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

represents the range in which "Hz" is not stepped up.

RXYQ42PAYL, PTL (8+16+18HP)

(To increase Step No.)	
	٦.
	♣
No. UNIX UNIX INV	
INV INV INV	11
1 52 Hz 52 Hz 52 Hz OFF	11
2 56 Hz 56 Hz 56 Hz OFF	11
3 62 Hz 62 Hz 62 Hz OFF	- 1
4 66 Hz 66 Hz 66 Hz OFF	- 1
5 68 Hz 68 Hz 68 Hz OFF	- 1
6 70 Hz 70 Hz 70 Hz OFF	11
7 74 Hz 74 Hz 74 Hz OFF	- 1
8 80 Hz 80 Hz 80 Hz OFF	- 1
9 88 Hz 88 Hz 88 Hz OFF	11
10 96 Hz 96 Hz 96 Hz OFF	- 1
11 104 Hz 104 Hz 104 Hz OFF	11
12 110 Hz 110 Hz 110 Hz OFF	
13 116 Hz 116 Hz 116 Hz OFF	
14 124 Hz 124 Hz 124 Hz OFF	11
15 80 Hz 80 Hz 80 Hz ON 1	
16 88 Hz 88 Hz 88 Hz ON 1]
17 96 Hz 96 Hz 96 Hz ON 1	
18 104 Hz 104 Hz 104 Hz ON 1	
19 116 Hz 116 Hz 116 Hz ON 1]
20 124 Hz 124 Hz 124 Hz ON 1	11
21 132 Hz 132 Hz 132 Hz ON 1	11
22 88 Hz 88 Hz 88 Hz ON 2	11
23 96 Hz 96 Hz 96 Hz ON 2	11
24 104 Hz 104 Hz 104 Hz ON 2	11
25 124 Hz 124 Hz 124 Hz ON 2	11
26 144 Hz 144 Hz 144 Hz ON 2	11
27 92 Hz 92 Hz 92 Hz ON 3	11
28 104 Hz 104 Hz 104 Hz ON 3	
29 116 Hz 116 Hz 116 Hz ON 3	11
30 124 Hz 124 Hz 124 Hz ON 3	11
31 144 Hz 144 Hz 144 Hz ON 3	11
32 96 Hz 96 Hz 96 Hz ON 4	11
33 104 Hz 104 Hz 104 Hz ON 4	11
34 116 Hz 116 Hz 116 Hz 0N 4	11
35 124 Hz 124 Hz 124 Hz ON 4	11
36 144 Hz 144 Hz 144 Hz ON 4	11
37 158 Hz 158 Hz 158 Hz 0N 4	11
38 166 Hz 166 Hz 166 Hz 0N 4	11
39 176 Hz 176 Hz 176 Hz 0N 4	11
40 188 Hz 188 Hz 188 Hz 0N 4	11
41 202 Hz 202 Hz 202 Hz 0N 4	ŧ١.
41 202 HZ 202 HZ 202 HZ 0N 4 42 210 Hz 202 Hz 202 Hz 0N 4	ŧ١,
	11
43 218 Hz 202 Hz 202 Hz ON 4 44 232 Hz 202 Hz 202 Hz ON 4	41
	41
	ŧ١.
46 266 Hz 202 Hz 202 Hz ON 4	1

	(To de	crease S	Step No.)
STEP	Master	Slave	Slave	
No.	unit	unit1	unit2	STD
	INV	INV	INV	0.55
1 2	52 Hz	OFF	OFF	OFF
3	56 Hz 62 Hz	OFF OFF	OFF OFF	OFF OFF
4	68 Hz	OFF	OFF	OFF
5	74 Hz	OFF	OFF	OFF
6	80 Hz	OFF	OFF	OFF
7	88 Hz	OFF	OFF	OFF
8	96 Hz	OFF	OFF	OFF
9	104 Hz	OFF	OFF	OFF
10	52 Hz	52 Hz	OFF	OFF
11	56 Hz	56 Hz	OFF	OFF
12	62 Hz	62 Hz	OFF	OFF
13	66 Hz	66 Hz	OFF	OFF
14	70 Hz	70 Hz	OFF	OFF
15	74 Hz	74 Hz	OFF	OFF
16	52 Hz	52 Hz	52 Hz	OFF
17	56 Hz	56 Hz	56 Hz	OFF
18	62 Hz	62 Hz	62 Hz	OFF
19	66 Hz	66 Hz	66 Hz	OFF
20	68 Hz	68 Hz	68 Hz	
21 22	70 Hz	70 Hz 74 Hz	70 Hz	OFF
	74 Hz 80 Hz		74 Hz 80 Hz	OFF OFF
23 24	80 Hz 88 Hz	80 Hz 88 Hz	80 Hz 88 Hz	OFF
25	96 Hz	96 Hz	96 Hz	OFF
26	52 Hz	52 Hz	52 Hz	OFF ON 1
27	62 Hz	62 Hz	62 Hz	ON 1
28	68 Hz	68 Hz	68 Hz	ON 1
29	74 Hz	74 Hz	74 Hz	ON 1
30	80 Hz	80 Hz	80 Hz	ON 1
31	88 Hz	88 Hz	88 Hz	ON 1
32	96 Hz	96 Hz	96 Hz	ON 1
33	104 Hz	104 Hz	104 Hz	ON 1
34	52 Hz	52 Hz	52 Hz	ON 2
35	62 Hz	62 Hz	62 Hz	ON 2
36	74 Hz	74 Hz	74 Hz	ON 2
37	88 Hz	88 Hz	88 Hz	ON 2
38	96 Hz	96 Hz	96 Hz	ON 2
39	52 Hz	52 Hz	52 Hz	ON 3
40	62 Hz	62 Hz	62 Hz	ON 3
41	74 Hz	74 Hz	74 Hz	ON 3
42	92 Hz	92 Hz	92 Hz	ON 3
43	104 Hz	104 Hz	104 Hz	ON 3
44 45	52 Hz 62 Hz	52 Hz 62 Hz	52 Hz 62 Hz	ON 4 ON 4
45	62 Hz 74 Hz	62 HZ 74 Hz	62 HZ 74 Hz	ON 4 ON 4
46	74 HZ 96 Hz	74 HZ 96 Hz	74 HZ 96 HZ	ON 4 ON 4
47	104 Hz	104 Hz	104 Hz	ON 4
49	116 Hz	116 Hz	116 Hz	ON 4
50	124 Hz	124 Hz	124 Hz	ON 4
51	144 Hz	144 Hz	144 Hz	ON 4
52	158 Hz	158 Hz	158 Hz	ON 4
53	166 Hz	166 Hz	166 Hz	ON 4
54	176 Hz	176 Hz	176 Hz	ON 4
55	188 Hz	188 Hz	188 Hz	ON 4
56		202 Hz	202 Hz	ON 4
57	210 Hz	202 Hz	202 Hz	ON 4
58	218 Hz	202 Hz	202 Hz	ON 4
59			202 Hz	ON 4
60	248 Hz	202 Hz	202 Hz	ON 4
61	266 Hz	202 Hz	202 Hz	ON 4

RXY	RXYQ44PAYL, PTL (8+18+18HP)						
	(To inc	rease S	tep No.)				
STEP	Master	Slave	Slave			STEP	
No.	unit	unit1	unit2	STD	T	No.	
	INV	INV	INV			-	
1	52 Hz	52 Hz	52 Hz	OFF		1	
2	56 Hz	56 Hz	56 Hz	OFF		2	
3	62 Hz	62 Hz	62 Hz	OFF		3	
4	66 Hz	66 Hz	66 Hz	OFF		4	
5	68 Hz	68 Hz	68 Hz	OFF		5	
6	70 Hz	70 Hz	70 Hz	OFF		6	
7	74 Hz	74 Hz	74 Hz	OFF		7	
8	80 Hz	80 Hz	80 Hz	OFF		8	
9	88 Hz	88 Hz	88 Hz	OFF		9	
10	96 Hz	96 Hz	96 Hz	OFF		10	
11	104 Hz	104 Hz	104 Hz	OFF		11	
12	110 Hz	110 Hz	110 Hz	OFF		12	
13	116 Hz	116 Hz	116 Hz	OFF		13	
14	124 Hz	124 Hz	124 Hz	OFF		14	
15	80 Hz	80 Hz	80 Hz	ON 1		15	
16	88 Hz	88 Hz	88 Hz	ON 1		16	
17	96 Hz	96 Hz	96 Hz	ON 1		17	
18	104 Hz	104 Hz	104 Hz	ON 1		18	
19	116 Hz	116 Hz	116 Hz	ON 1		19	
20	124 Hz	124 Hz	124 Hz	ON 1		20 21	
21	132 Hz	132 Hz	132 Hz	ON 1		22	
22	88 Hz	88 Hz	88 Hz	ON 2		22	
23	96 Hz	96 Hz	96 Hz	ON 2		23	
24	104 Hz	104 Hz	104 Hz	ON 2		24	
25	124 Hz	124 Hz	124 Hz	ON 2			
26	144 Hz	144 Hz	144 Hz	ON 2		26 27	
27	92 Hz	92 Hz	92 Hz	ON 3		28	
28 29	104 Hz 116 Hz	<u>104 Hz</u> 116 Hz	104 Hz 116 Hz	ON 3 ON 3		29	
30	124 Hz	124 Hz	124 Hz	ON 3		30	
30	124 HZ	124 HZ	124 HZ	ON 3		31	
32	96 Hz	96 Hz	96 Hz	ON 3 ON 4		32	
33	104 Hz	104 Hz	104 Hz	ON 4		33	
33	116 Hz	116 Hz	116 Hz	ON 4		34	
35	124 Hz	124 Hz	124 Hz	ON 4 ON 4		35	
36	144 Hz	144 Hz	144 Hz	ON 4		36	
37	158 Hz	158 Hz	158 Hz	ON 4		37	
38	166 Hz	166 Hz	166 Hz	ON 4		38	
39	176 Hz	176 Hz	176 Hz	ON 4		39	
40	188 Hz	188 Hz	188 Hz	ON 4		40	
41	202 Hz	202 Hz	202 Hz	ON 4		41	
42	210 Hz	202 Hz	202 Hz	ON 4		42	
43	210 Hz	202 Hz	202 Hz	ON 4		43	
44	232 Hz		202 Hz	ON 4		44	
45			202 Hz	ON 4		45	
46	266 Hz	202 Hz		ON 4		46	
				21	'	47	
						48	
					- 1	10	

			crease S)
	STEP	Master	Slave	Slave	
Т	No.	unit	unit1	unit2	STD
	NO.	INV	INV	INV	
	1	52 Hz	OFF	OFF	OFF
	2	56 Hz	OFF	OFF	OFF
	3	62 Hz	OFF	OFF	OFF
	4	68 Hz	OFF	OFF	OFF
	5	74 Hz	OFF	OFF	OFF
	6	80 Hz	OFF	OFF	OFF
	7	88 Hz	OFF	OFF	OFF
	8	96 Hz	OFF	OFF	OFF
	9	104 Hz	OFF	OFF	OFF
				OFF	OFF
	10	52 Hz	52 Hz		
	11	56 Hz	56 Hz	OFF	OFF
	12	62 Hz	62 Hz	OFF	OFF
	13	66 Hz	66 Hz	OFF	OFF
	14	70 Hz	70 Hz	OFF	OFF
				OFF	OFF
	15				
	16	52 Hz	52 Hz	52 Hz	OFF
	17	56 Hz	56 Hz	56 Hz	OFF
1	18	62 Hz	62 Hz	62 Hz	OFF
	19	66 Hz	66 Hz	66 Hz	OFF
	20	68 Hz	68 Hz	68 Hz	OFF
1					
1	21	70 Hz	70 Hz	70 Hz	0.1
	22	74 Hz	74 Hz	74 Hz	OFF
	23	80 Hz	80 Hz	80 Hz	OFF
1	24	88 Hz	88 Hz	88 Hz	OFF
	25	96 Hz	96 Hz	96 Hz	OFF
	26	52 Hz	52 Hz	52 Hz	<u>ON 1</u>
	27	62 Hz	62 Hz	62 Hz	ON 1
	28	68 Hz	68 Hz	68 Hz	ON 1
	29	74 Hz	74 Hz	74 Hz	ON 1
	30	80 Hz	80 Hz	80 Hz	ON 1
	31	88 Hz	88 Hz	88 Hz	<u>ON 1</u>
	32	96 Hz	96 Hz	96 Hz	ON 1
	33	104 Hz	104 Hz	104 Hz	ON 1
	34	52 Hz	52 Hz	52 Hz	ON 2
	35	62 Hz	62 Hz	62 Hz	ON 2
	36	74 Hz			0110
	37	88 Hz	88 Hz	88 Hz	ON 2
	38	96 Hz	96 Hz	96 Hz	ON 2
	39	52 Hz	52 Hz	52 Hz	ON 3
	40	62 Hz	62 Hz	62 Hz	ON 3
	40				ON 3
1					
	42	92 Hz	92 Hz	92 Hz	ON 3
	43	104 Hz	104 Hz	104 Hz	ON 3
	44	52 Hz	52 Hz	52 Hz	ON 4
1	45	62 Hz	62 Hz	62 Hz	ON 4
1	46	74 Hz	74 Hz	74 Hz	ON 4
	47	96 Hz	96 Hz	96 Hz	ON 4
	48	104 Hz	104 Hz	104 Hz	<u>ON 4</u>
1	49	116 Hz	116 Hz	116 Hz	ON 4
	50	124 Hz	124 Hz	124 Hz	ON 4
1	51	144 Hz	144 Hz	144 Hz	ON 4
	52	158 Hz	158 Hz	158 Hz	ON 4
	53				
		166 Hz	166 Hz	166 Hz	0.1.1
	54	176 Hz	176 Hz	176 Hz	ON 4
	55	188 Hz	188 Hz	188 Hz	ON 4
	56	202 Hz	202 Hz	202 Hz	ON 4
1	57	210 Hz	202 Hz	202 Hz	ON 4
1					
	58	218 Hz	202 Hz	202 Hz	ON 4
- 1	59	232 Hz	202 Hz	202 Hz	ON 4
- J.	60	248 Hz	202 Hz	202 Hz	ON 4
	00				
	61	266 Hz	202 Hz	202 Hz	ON 4

- 1. INV : Inverter compressor
 - STD : Standard compressor
 - Figures after ON represent the number of STD compressors in operation.
- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ46/48PAYL, PTL (10/12+18+18HP)

(To decrease Step No.)

RXYQ50/52PAYL, PTL (14/16+18+18HP)

represents the range in which "Hz" is not stepped up.

(To increase Step No.) Slave unit1 Slave unit2 Maste STEP STD unit No. INV INV INV OF 2 Hz | 52 Hz | 52 Hz
 56 Hz
 56 Hz
 56 Hz

 62 Hz
 62 Hz
 62 Hz
 OFF OFF
 62
 Hz
 62
 Hz
 62
 Hz
 62
 Hz
 62
 Hz
 62
 Hz
 66
 Hz
 66
 Hz
 66
 Hz
 68
 Hz
 68
 Hz
 68
 Hz
 70
 Hz
 70
 Hz
 70
 Hz
 70
 Hz
 74
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 <th14</th>
 14
 14
 14</ OFF 8 80 Hz 80 Hz 80 Hz 88 Hz 88 Hz 88 Hz 88 HZ 88 HZ 88 HZ 96 HZ 96 HZ 96 HZ 104 HZ 104 HZ 104 HZ 110 HZ 110 HZ 110 HZ 116 HZ 116 HZ 116 HZ 10 OFF 11 12 13 OF 124 Hz 124 Hz 124 Hz 80 Hz 80 Hz 80 Hz 14 ON 1 15
 80 HZ
 80 HZ
 80 HZ
 ON HZ

 88 HZ
 88 HZ
 88 HZ
 0N 1

 96 HZ
 96 HZ
 96 HZ
 0N 1

 104 HZ
 104 HZ
 104 HZ
 0N 1

 116 HZ
 116 HZ
 104 HZ
 0N 1
 16 17 18 19 124 Hz 124 Hz 124 Hz ON 1 132 Hz 132 Hz 132 Hz ON 1 20
 102
 112
 102
 112
 103

 88
 HZ
 88
 HZ
 88
 HZ
 90

 96
 HZ
 96
 HZ
 96
 HZ
 0N
 2

 104
 HZ
 104
 HZ
 104
 HZ
 0N
 2

 124
 HZ
 124
 HZ
 124
 HZ
 0N
 2
 23 24 144 Hz 144 Hz 144 Hz ON 2 92 Hz 92 Hz 92 Hz ON 3 26 27 28 29 104 Hz 104 Hz 104 Hz ON 3 116 Hz 116 Hz 116 Hz ON 3 30 124 Hz 124 Hz 124 Hz ON 3 144 Hz 144 Hz 144 Hz ON 3 96 Hz 96 Hz 96 Hz ON 4 104 Hz 104 Hz 104 Hz ON 4 32 ON 4 33 116 Hz 116 Hz 116 Hz ON 4 124 Hz 124 Hz 124 Hz ON 4 35 144 Hz 144 Hz 144 Hz 101 H 96 Hz 96 Hz 96 Hz 0N 5 104 Hz 104 Hz 104 Hz 0N 4 116 Hz 116 Hz 116 Hz 0N 5 124 Hz 124 Hz 124 Hz 0N 5 124 Hz 124 Hz 124 Hz 0N 5 144 Hz 144 Hz 144 Hz 0N 5 158 Hz 158 Hz 0N 5 36 53 54 55 56 158 Hz 158 Hz 158 Hz ON 5 166 Hz 166 Hz 166 Hz ON 5 176 Hz 176 Hz 176 Hz ON 5 188 Hz 188 Hz 188 Hz ON 5 202 Hz 202 Hz 202 Hz ON 5 58 59 60 210 Hz 202 Hz 202 Hz ON 5

	(To decrease Step No.)						
OTED	Master	Slave	Slave				
STEP	unit	unit1	unit2	STD			
No.	INV	INV	INV	0.0			
1	52 Hz	OFF	OFF	OFF			
2							
-	56 Hz	OFF	OFF	OFF			
3	62 Hz	OFF	OFF	OFF			
4	68 Hz	OFF	OFF	OFF			
5	74 Hz	OFF	OFF	OFF			
6	80 Hz	OFF	OFF	OFF			
7	88 Hz	OFF	OFF	OFF			
8	96 Hz	OFF					
9	104 Hz	OFF	OFF	OFF			
10	52 Hz	52 Hz	OFF	OFF			
11	56 Hz	56 Hz	OFF	OFF			
12	62 Hz	62 Hz	OFF	OFF			
13	66 Hz	66 Hz	OFF	OFF			
14	70 Hz	70 Hz	OFF	OFF			
				OFF			
15	74 Hz	74 Hz					
16	52 Hz	52 Hz	52 Hz	OFF			
17	56 Hz	56 Hz	56 Hz	OFF			
18	62 Hz	62 Hz	62 Hz	OFF			
19	66 Hz	66 Hz	66 Hz	OFF			
20	68 Hz		68 Hz	OFF			
		68 Hz					
21	70 Hz	70 Hz	70 Hz	OFF			
22	74 Hz	74 Hz	74 Hz	OFF			
23	80 Hz	80 Hz	80 Hz	OFF			
24	88 Hz	88 Hz	88 Hz	OFF			
25	96 Hz	96 Hz	96 Hz	OFF			
20			52 Hz	ON 1			
26	52 Hz						
27	62 Hz	62 Hz	62 Hz	ON 1			
28	68 Hz	68 Hz	68 Hz	ON 1			
29	74 Hz	74 Hz	74 Hz	ON 1			
30	80 Hz	80 Hz	80 Hz	ON 1			
31	88 Hz	88 Hz	88 Hz	ON 1			
32	96 Hz						
	90 HZ						
33	104 Hz	104 Hz	104 Hz	ON 1			
34	52 Hz	52 Hz	52 Hz	ON 2			
35	62 Hz	62 Hz	62 Hz	ON 2			
36	74 Hz	74 Hz	74 Hz	ON 2			
37	88 Hz	88 Hz	88 Hz	ON 2			
38	96 Hz	96 Hz	96 Hz	ON 2			
39							
	52 Hz	52 Hz	52 Hz	ON 3			
40	62 Hz	62 Hz	62 Hz	ON 3			
41	74 Hz	74 Hz	74 Hz	ON 3			
42	92 Hz	92 Hz	92 Hz	ON 3			
43	104 Hz	104 Hz	104 Hz	ON 3			
44	52 Hz	52 Hz	52 Hz	ON 4			
45	62 Hz	62 Hz	62 Hz	ON 4			
46	74 Hz	74 Hz	74 Hz	ON 4			
47	96 Hz	96 Hz	96 Hz	ON 4			
48	104 Hz	104 Hz	104 Hz	ON 4			
49	52 Hz	52 Hz	52 Hz	ON 5			
50	68 Hz	68 Hz	68 Hz	ON 5			
51	80 Hz	80 Hz	80 Hz	ON 5			
52							
	96 Hz	96 Hz	96 Hz	ON 5			
53	104 Hz	104 Hz	104 Hz	ON 5			
54	116 Hz	116 Hz	116 Hz	ON 5			
55	124 Hz	124 Hz	124 Hz	ON 5			
56	144 Hz	144 Hz	144 Hz	ON 5			
57	158 Hz	158 Hz	158 Hz	ON 5			
58	166 Hz	166 Hz	166 Hz	ON 5			
59	176 Hz	176 Hz	176 Hz	ON 5			
60	188 Hz	188 Hz	188 Hz	ON 5			
61	202 Hz	202 Hz	202 Hz	ON 5			
62	210 Hz	202 Hz	202 Hz	ON 5			
		12		2			

	(To inc	rease S	tep No.)				(To de	crease S	Step No.
STEP	Master	Slave	Slave			STEP	Master	Slave	Slave
	unit	unit1	unit2	STD	IT.	No.	unit	unit1	unit2
No.	INV	INV	INV			INO.	INV	INV	INV
1	52 Hz	52 Hz	52 Hz	OFF		1	52 Hz	OFF	OFF
2	56 Hz	56 Hz	56 Hz	OFF		2	56 Hz	OFF	OFF
3	62 Hz	62 Hz	62 Hz	OFF		3	62 Hz	OFF	ÔFF
4	66 Hz	66 Hz	66 Hz	OFF		4	68 Hz	OFF	OFF
5	68 Hz	68 Hz	68 Hz	OFF		5	74 Hz	OFF	OFF
6	70 Hz	70 Hz	70 Hz	OFF		6	80 Hz	OFF	OFF
7	74 Hz	74 Hz	74 Hz	OFF		7	88 Hz	OFF	OFF
8	80 Hz	80 Hz	80 Hz	OFF		8	96 Hz	OFF	OFF
9	88 Hz	88 Hz	88 Hz	OFF		9	104 Hz	OFF	OFF
10	96 Hz	96 Hz	96 Hz	OFF		10	52 Hz	52 Hz	OFF
11	104 Hz			-		11	56 Hz	56 Hz	OFF
		104 Hz	104 Hz	OFF		12	62 Hz	62 Hz	OFF
12	110 Hz	110 Hz	110 Hz	OFF		-	-		
13	116 Hz	116 Hz	116 Hz	OFF		13	66 Hz	66 Hz	OFF
14	124 Hz	124 Hz	124 Hz	OFF		14	70 Hz	70 Hz	OFF
15	80 Hz	80 Hz	80 Hz	ON 1		15	74 Hz	74 Hz	OFF
16	88 Hz	88 Hz	88 Hz	ON 1		16	52 Hz	52 Hz	52 Hz
17	96 Hz	96 Hz	96 Hz	ON 1		17	56 Hz	56 Hz	56 Hz
18	104 Hz	104 Hz	104 Hz	ON 1		18	62 Hz	62 Hz	62 Hz
19	116 Hz		116 Hz	ON 1		19	66 Hz	66 Hz	66 Hz
20	124 Hz	124 Hz	124 Hz	ON 1		20	68 Hz	68 Hz	68 Hz
21	132 Hz	132 Hz	132 Hz	ON 1		21	70 Hz	70 Hz	70 Hz
22	88 Hz	88 Hz	88 Hz	ON 2		22	74 Hz	74 Hz	74 Hz
23	96 Hz	96 Hz	96 Hz	ON 2		23	80 Hz	80 Hz	80 Hz
24	104 Hz	104 Hz	104 Hz	ON 2		24	88 Hz	88 Hz	88 Hz
25	124 Hz	124 Hz	124 Hz	ON 2		25	96 Hz	96 Hz	96 Hz
26	144 Hz	144 Hz	144 Hz	ON 2		26	52 Hz	52 Hz	52 Hz
27	92 Hz	92 Hz	92 Hz	ON 3		27	62 Hz	62 Hz	62 Hz
28	104 Hz	104 Hz	104 Hz	ON 3		28	68 Hz	68 Hz	68 Hz
29	116 Hz		116 Hz	ON 3		29	74 Hz	74 Hz	74 Hz
30	124 Hz	124 Hz	124 Hz	ON 3		30	80 Hz	80 Hz	80 Hz
31	144 Hz	144 Hz	144 Hz	ON 3		31	88 Hz	88 Hz	88 Hz
32	96 Hz	96 Hz	96 Hz	ON 4		32	96 Hz	96 Hz	96 Hz
33	104 Hz	104 Hz	104 Hz	ON 4		33	104 Hz	104 Hz	104 Hz
34	116 Hz		116 Hz	ON 4		34	52 Hz	52 Hz	52 Hz
35	124 Hz	124 Hz	124 Hz	ON 4		35	62 Hz	62 Hz	62 Hz
36	124 HZ	144 Hz	144 Hz	ON 4		36	74 Hz	74 Hz	74 Hz
37	96 Hz	96 Hz	96 Hz	ON 4 ON 5		37	88 Hz	88 Hz	88 Hz
38				ON 5		38	96 Hz	96 Hz	96 Hz
	104 Hz	104 Hz	104 Hz	~ ~			52 Hz		
39	116 Hz	116 Hz	116 Hz	ON 5		39	-	52 Hz	52 Hz
40	124 Hz	124 Hz	124 Hz	ON 5		40	62 Hz	62 Hz	62 Hz
41	144 Hz	144 Hz	144 Hz	ON 5		41	74 Hz	74 Hz	74 Hz
42	96 Hz	96 Hz	96 Hz	ON 6		42	92 Hz	92 Hz	92 Hz
43	104 Hz	104 Hz	104 Hz	ON 6		43	104 Hz	104 Hz	104 Hz
44	116 Hz	116 Hz	116 Hz	ON 6		44	52 Hz	52 Hz	52 Hz
45	124 Hz	124 Hz	124 Hz	ON 6		45	62 Hz	62 Hz	62 Hz
46	144 Hz	144 Hz	144 Hz	ON 6		46	74 Hz	74 Hz	74 Hz
47	158 Hz	158 Hz	158 Hz	ON 6		47	96 Hz	96 Hz	96 Hz
48	166 Hz	166 Hz	166 Hz	ON 6		48	104 Hz	104 Hz	104 Hz
49	176 Hz	176 Hz	176 Hz	ON 6		49	52 Hz	52 Hz	52 Hz
50	188 Hz	188 Hz	188 Hz	ON 6		50	68 Hz	68 Hz	68 Hz
51	202 Hz	202 Hz	202 Hz	ON 6		51	80 Hz	80 Hz	80 Hz
					1	52	96 Hz	96 Hz	96 Hz
						53	104 Hz	104 Hz	104 Hz

		Magtar	Slave	Slava	
L.	STEP	Master	Slave	Slave	0TD
	No.	unit	unit1	unit2	STD
	110.	INV	INV	INV	
	1	52 Hz	OFF	OFF	OFF
				_	
	2	56 Hz	OFF	OFF	OFF
	3	62 Hz	OFF	OFF	OFF
	4	68 Hz	OFF	OFF	OFF
	5	74 Hz	OFF	OFF	OFF
	6	80 Hz	OFF	OFF	OFF
		60 HZ		0.1	0.1
	7	88 Hz	OFF	OFF	OFF
	8	96 Hz	OFF	OFF	OFF
			OFF		OFF
	9	104 Hz		OFF	
	10	52 Hz	52 Hz	OFF	OFF
	11	56 Hz	56 Hz	OFF	OFF
		00112	00112		
	12	62 Hz	62 Hz	OFF	OFF
	13	66 Hz	66 Hz	OFF	OFF
	14	70 Hz	70 Hz	OFF	OFF
				OFF	
	15	74 Hz	74 Hz	OFF	OFF
	16	52 Hz	52 Hz	52 Hz	OFF
		52 112			
	17	56 Hz	56 Hz	56 Hz	OFF
	18	62 Hz	62 Hz	62 Hz	OFF
	19	66 Hz			OFF
				66 Hz	
	20	68 Hz	68 Hz	68 Hz	OFF
	21	70 Hz	70 Hz	70 Hz	OFF
					000
	22	74 Hz	74 Hz	74 Hz	OFF
	23	80 Hz	80 Hz	80 Hz	OFF
	24	88 Hz	88 Hz	88 Hz	OFF
	25	96 Hz	96 Hz	96 Hz	OFF
	26	52 Hz	52 Hz	52 Hz	ON 1
		02112	02112	02112	
	27	62 Hz	62 Hz	62 Hz	ON 1
	28	68 Hz	68 Hz	68 Hz	ON 1
	29	74 Hz	74 Hz	74 Hz	ON 1
	30	80 Hz	80 Hz	80 Hz	ON 1
	31	88 Hz	88 Hz	88 Hz	ON 1
	32	96 Hz	96 Hz	96 Hz	ON 1
	33	104 Hz	104 Hz	104 Hz	ON 1
	34	52 Hz	52 Hz	52 Hz	ON 2
	35	62 Hz	62 Hz	62 Hz	ON 2
	36	74 Hz	74 Hz	74 Hz	ON 2
	37	88 Hz	88 Hz	88 Hz	ON 2
	38	96 Hz	96 Hz	96 Hz	
	39	52 Hz	52 Hz	52 Hz	ON 3
	40	62 Hz	62 Hz	62 Hz	ON 3
					011 3
	41	74 Hz	74 Hz	74 Hz	ON 3
	42	92 Hz	92 Hz	92 Hz	ON 3
	43	104 Hz	104 Hz	104 Hz	ON 3
					0110
	44	52 Hz	52 Hz	52 Hz	ON 4
	45	62 Hz	62 Hz	62 Hz	ON 4
	46	74 Hz	74 Hz	74 Hz	ON 4
	47	96 Hz	96 Hz	96 Hz	ON 4 ON 4
	48	104 Hz	104 Hz	104 Hz	ON A
			10411Z		
	49	52 Hz	52 Hz	52 Hz	ON 5
	50	68 Hz	68 Hz	68 Hz	ON 5
	51	80 Hz	80 Hz	80 Hz	ON 5
	51				
	52	96 Hz	96 Hz	96 Hz	ON 5
	53	104 Hz	104 Hz	104 Hz	ON 5
	54	52 Hz	52 Hz	52 Hz	ON 6
	55	68 Hz	68 Hz	68 Hz	ON 6
	56	80 Hz	80 Hz	80 Hz	ON 6
				06112	
	57	96 Hz	96 Hz	96 Hz	ON 6
	58	104 Hz	104 Hz	104 Hz	ON 6
	59		116 Hz	116 Hz	ON 6
		116 Hz			
	60	124 Hz	124 Hz	124 Hz	ON 6
	61	144 Hz	144 Hz	144 Hz	ON 6
		15011	150.11	150.11	
	62	158 Hz	158 Hz	158 Hz	ON 6
	63	166 Hz	166 Hz	166 Hz	ON 6
	64		176 -	176 Hz	ONE
			176 Hz		ON 6
	65	188 Hz	188 Hz	188 Hz	ON 6
	66	202 Hz	202 Hz	202 Hz	ON 6

- 1. INV : Inverter compressor
 - STD : Standard compressor
 - Figures after ON represent the number of STD compressors in operation.
- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ54PAYL, PTL (18+18+18HP)

STEP	Master	Slave	Slave		1
No.	unit	unit1	unit2	STD	
-	INV	INV	INV		
1	52 Hz	52 Hz	52 Hz	OFF	
2	56 Hz	56 Hz	56 Hz	OFF	
3	62 Hz	62 Hz	62 Hz	OFF	
4	66 Hz	66 Hz	66 Hz	OFF	
5	68 Hz	68 Hz	68 Hz	OFF	
6	70 Hz	70 Hz	70 Hz	OFF	
7	74 Hz	74 Hz	74 Hz	OFF	
8	80 Hz	80 Hz	80 Hz	OFF	
9	88 Hz	88 Hz	88 Hz	OFF	
10	96 Hz	96 Hz	96 Hz	OFF	
11	104 Hz	104 Hz	104 Hz	OFF	
12	110 Hz	110 Hz	110 Hz	OFF	
13	116 Hz	116 Hz	116 Hz	OFF	
14	124 Hz	124 Hz	124 Hz	OFF	
15	80 Hz	80 Hz	80 Hz	ON 1	
16	88 Hz	88 Hz	88 Hz	ON 1	
17	96 Hz	96 Hz	96 Hz	ON 1	
18	104 Hz	104 Hz	104 Hz	ON 1	
19	116 Hz	116 Hz	116 Hz	ON 1	
20	124 Hz	124 Hz	124 Hz	ON 1	
21	132 Hz	132 Hz	132 Hz	ON 1	
22	88 Hz	88 Hz	88 Hz	ON 2	
23	96 Hz	96 Hz	96 Hz	ON 2	
24	104 Hz	104 Hz	104 Hz	ON 2	
25	124 Hz	124 Hz	124 Hz	ON 2	
26	144 Hz	144 Hz	144 Hz	ON 2	
27	92 Hz	92 Hz	92 Hz	ON 3	
28	104 Hz	104 Hz	104 Hz	ON 3	
29	116 Hz	116 Hz	116 Hz	ON 3	
30	124 Hz	124 Hz	124 Hz	ON 3	
31	144 Hz	144 Hz	144 Hz	ON 3	
32	96 Hz	96 Hz	96 Hz	ON 4	
33	104 Hz	104 Hz	104 Hz	ON 4	
34	116 Hz	116 Hz	116 Hz	ON 4	
35	124 Hz	124 Hz	124 Hz	ON 4	
36	144 Hz	144 Hz	144 Hz	ON 4	
37	96 Hz	96 Hz	96 Hz	ON 5	
38	104 Hz	104 Hz	104 Hz	ON 5	
39	116 Hz	116 Hz	116 Hz	ON 5	
40	124 Hz	124 Hz	124 Hz	ON 5	
41	144 Hz	144 Hz	144 Hz	ON 5	
42	96 Hz	96 Hz	96 Hz	ON 6	
43	104 Hz	104 Hz	104 Hz	ON 6	
44	116 Hz	116 Hz	116 Hz	ON 6	
45	124 Hz	124 Hz	124 Hz	ON 6	
46	144 Hz	144 Hz	144 Hz	ON 6	
47	158 Hz	158 Hz	158 Hz	ON 6	
48	166 Hz	166 Hz	166 Hz	ON 6	
49	176 Hz	176 Hz	176 Hz	ON 6	
50	188 Hz	188 Hz	188 Hz	ON 6	
51	202 Hz	202 Hz	202 Hz	ON 6	

	(To de	crease S	Step No.)
	Master	Slave	Slave	
STEP	unit	unit1	unit2	STD
No.	INV	INV	INV	010
1	52 Hz	OFF	ÖFF	OFF
2	56 Hz	OFF	OFF	OFF
3	62 Hz	OFF	OFF	OFF
4	68 Hz	OFF	OFF	OFF
5	74 Hz	OFF	OFF	OFF
6	80 Hz	OFF	OFF	OFF
7	88 Hz	OFF	OFF	OFF
8	96 Hz	OFF	OFF	OFF
9	104 Hz	OFF	OFF	OFF
10	52 Hz	52 Hz	OFF	OFF
11	56 Hz	56 Hz	OFF	OFF
12	62 Hz	62 Hz	OFF	OFF
13	66 Hz	66 Hz	OFF	OFF
14	70 Hz	70 Hz	OFF	OFF
15	74 Hz	74 Hz	OFF	OFF
16	52 Hz	52 Hz	52 Hz	OFF
17	56 Hz	56 Hz	56 Hz	OFF
18	62 Hz	62 Hz	62 Hz	OFF
19	66 Hz	66 Hz	66 Hz	OFF
20	68 Hz	68 Hz	68 Hz	OFF
21	70 Hz	70 Hz	70 Hz	OFF
22	74 Hz	74 Hz	74 Hz	OFF
23	80 Hz	80 Hz	80 Hz	OFF
24	88 Hz	88 Hz	88 Hz	OFF
25	96 Hz	96 Hz	96 Hz	
26	52 Hz	52 Hz	52 Hz	0114
27	62 Hz	62 Hz	52 Hz 62 Hz	ON 1 ON 1
28	68 Hz	68 Hz	68 Hz	ON 1
29	74 Hz	74 Hz	74 Hz	ON 1
30	80 Hz	80 Hz	80 Hz	ON 1
31	88 Hz	88 Hz	88 Hz	ON 1
32	96 Hz	96 Hz	96 Hz	ON 1
33	104 Hz	104 Hz	104 Hz	ON 1
34	52 Hz	52 Hz	52 Hz	ON 2
35	62 Hz	62 Hz	62 Hz	ON 2
36	74 Hz	74 Hz	74 Hz	ON 2
37	88 Hz	88 Hz	88 Hz	ON 2
38	96 Hz	96 Hz	96 Hz	
39	52 Hz	52 Hz	52 Hz	ON 3
40	62 Hz	62 Hz	62 Hz	ON 3
41	74 Hz	74 Hz	74 Hz	ON 3
42	92 Hz	92 Hz	92 Hz	ON 3
43	104 Hz	104 Hz	104 Hz	ON 3
44	52 Hz	52 Hz	52 Hz	ON 4
45	62 Hz	62 Hz	62 Hz	ON 4
46	74 Hz	74 Hz	74 Hz	ON 4
47	96 Hz	96 Hz	96 Hz	ON 4
48	104 Hz	104 Hz	104 Hz	ON 4
49	52 Hz	52 Hz	52 Hz	ON 5
50	68 Hz	68 Hz	68 Hz	ON 5
51	80 Hz	80 Hz	80 Hz	ON 5
52	96 Hz	96 Hz	96 Hz	ON 5
53	104 Hz	104 Hz	104 Hz	ON 5
54	52 Hz	52 Hz	52 Hz	ON 6
55	68 Hz	68 Hz	68 Hz	ON 6
56	80 Hz	80 Hz	80 Hz	ON 6
57	96 Hz	96 Hz	96 Hz	ON 6
58	104 Hz	104 Hz	104 Hz	ON 6
59	116 Hz	116 Hz	116 Hz	ON 6
60	124 Hz	124 Hz	124 Hz	ON 6
61	144 Hz	144 Hz	144 Hz	ON 6
62	158 Hz	158 Hz	158 Hz	ON 6
63	166 Hz	166 Hz	166 Hz	ON 6
64	176 Hz	176 Hz	176 Hz	ON 6
65	188 Hz	188 Hz	188 Hz	ON 6
66	202 Hz	202 Hz	202 Hz	ON 6

Notes:

1. INV : Inverter compressor

STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

50Hz, 60Hz High COP type

Two-unit multi system

RXYQ16PAHY1 (8+8HP) RXYQ16PAHYL RXYQ16PHTL

(To increase Step No.)						
STEP No.	Master unit INV	Slave unit INV				
1	52 Hz	52 Hz				
2	56 Hz	56 Hz				
3	62 Hz	62 Hz				
4	66 Hz	66 Hz				
5	74 Hz	74 Hz				
6	80 Hz	80 Hz				
7	88 Hz	88 Hz				
8	96 Hz	96 Hz				
9	104 Hz	104 Hz				
10	110 Hz	110 Hz				
11	116 Hz	116 Hz				
12	124 Hz	124 Hz				
13	132 Hz	132 Hz				
14	144 Hz	144 Hz				
15	158 Hz	158 Hz				
17	166 Hz	166 Hz				
18	176 Hz	176 Hz				
19	188 Hz	188 Hz				
20	202 Hz	202 Hz				
21	210 Hz	210 Hz				
22	218 Hz	218 Hz				
23	232 Hz	232 Hz				
24	248 Hz	248 Hz				
25	266 Hz	266 Hz				

▲ STEP No. Master unit Slave unit 1 52 Hz OFF 2 56 Hz OFF 3 62 Hz OFF 4 68 Hz OFF 5 74 Hz OFF 6 80 Hz OFF 7 88 Hz OFF 9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz OFF 12 62 Hz 62 Hz 13 66 Hz 70 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 138 Hz 27 176 Hz 17		(To decrease Step No.)							
No. unit INO. unit INV unit INV unit INV 1 52 Hz OFF 2 56 Hz OFF 3 62 Hz OFF 4 68 Hz OFF 5 74 Hz OFF 6 80 Hz OFF 7 88 Hz OFF 8 96 Hz OFF 9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz 56 Hz 12 62 Hz 62 Hz 13 66 Hz 70 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 118 Hz 23 124 Hz 128 Hz 24 132 Hz		STED Master Slave							
NO. INV INV 1 52 Hz OFF 2 56 Hz OFF 3 62 Hz OFF 4 68 Hz OFF 5 74 Hz OFF 6 80 Hz OFF 7 88 Hz OFF 7 88 Hz OFF 9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz 66 Hz 12 62 Hz 66 Hz 13 66 Hz 74 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 18 92 Hz 96 Hz 19 96 Hz 106 Hz 20 104 Hz 104 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 138 Hz 25 144 Hz 144 Hz	Ť								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NO.		INV					
3 62 Hz OFF 4 68 Hz OFF 5 74 Hz OFF 6 80 Hz OFF 7 88 Hz OFF 9 104 Hz OFF 10 52 Hz 56 Hz 11 56 Hz 66 Hz 12 62 Hz 66 Hz 13 66 Hz 66 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 80 Hz 18 92 Hz 96 Hz 19 96 Hz 96 Hz 20 104 Hz 110 Hz 21 110 Hz 110 Hz 23 124 Hz 132 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 176 Hz 27 76 Hz 176 Hz 28 188 Hz 188 Hz <t< td=""><td></td><td></td><td>52 Hz</td><td>OFF</td></t<>			52 Hz	OFF					
4 68 Hz OFF 5 74 Hz OFF 6 80 Hz OFF 7 88 Hz OFF 9 104 Hz OFF 9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz 56 Hz 12 62 Hz 62 Hz 13 66 Hz 66 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 80 Hz 18 92 Hz 96 Hz 19 96 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 176 Hz 28 186 Hz 188 Hz			56 Hz	OFF					
5 74 Hz OFF 6 80 Hz OFF 7 88 Hz OFF 9 104 Hz OFF 9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz 56 Hz 12 62 Hz 62 Hz 13 66 Hz 80 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 18 92 Hz 96 Hz 19 96 Hz 96 Hz 20 104 Hz 110 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 124 Hz 26 158 Hz 176 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz <td></td> <td>3</td> <td>62 Hz</td> <td>OFF</td>		3	62 Hz	OFF					
6 80 Hz OFF 7 88 Hz OFF 8 96 Hz OFF 9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz 66 Hz 12 62 Hz 66 Hz 13 66 Hz 70 Hz 14 70 Hz 70 Hz 15 74 Hz 80 Hz 16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 19 96 Hz 110 Hz 20 104 Hz 110 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 132 Hz 24 132 Hz 132 Hz 25 144 Hz 146 Hz 26 158 Hz 176 Hz 27 76 Hz 176 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz <		4	68 Hz	OFF					
7 88 Hz OFF 8 96 Hz OFF 9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz 66 Hz 12 62 Hz 62 Hz 13 66 Hz 66 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 20 104 Hz 104 Hz 21 10 Hz 110 Hz 22 116 Hz 110 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 138 Hz 26 158 Hz 138 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz		5	74 Hz	OFF					
8 96 Hz OFF 9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz 56 Hz 12 62 Hz 62 Hz 13 66 Hz 66 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 18 92 Hz 96 Hz 20 104 Hz 106 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 142 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248		6	80 Hz	OFF					
9 104 Hz OFF 10 52 Hz 52 Hz 11 56 Hz 56 Hz 12 62 Hz 62 Hz 13 66 Hz 66 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 19 96 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 176 Hz 27 77 Hz 176 Hz 176 Hz 28 188 Hz 178 Hz 20 Hz 29 202 Hz 202 Hz 204 Hz 30 210 Hz 210 Hz 31 218 Hz 33 248 Hz 248 Hz 248 Hz		7	88 Hz	OFF					
10 52 Hz 52 Hz 11 56 Hz 56 Hz 12 62 Hz 62 Hz 13 66 Hz 66 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 20 104 Hz 100 Hz 21 110 Hz 110 Hz 22 116 Hz 110 Hz 23 124 Hz 132 Hz 25 144 Hz 132 Hz 26 158 Hz 138 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		8	96 Hz	OFF					
11 56 Hz 56 Hz 12 62 Hz 62 Hz 62 Hz 13 66 Hz 66 Hz 61 Hz 14 70 Hz 70 Hz 70 Hz 15 74 Hz 74 Hz 74 Hz 16 80 Hz 80 Hz 80 Hz 18 92 Hz 96 Hz 96 Hz 19 96 Hz 104 Hz 104 Hz 21 110 Hz 110 Hz 122 116 Hz 116 Hz 132 Hz 96 Hz 22 116 Hz 116 Hz 123 23 124 Hz 132 Hz 132 Hz 25 144 Hz 132 Hz 132 Hz 26 158 Hz 132 Hz 138 Hz 29 202 Hz 202 Hz 202 Hz 30 210 Hz 210 Hz 31 31 218 Hz 218 Hz 133 32 232 Hz 232 Hz 232 Hz		9	104 Hz	OFF					
12 62 Hz 62 Hz 13 66 Hz 66 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 88 Hz 17 88 Hz 88 Hz 19 96 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 116 Hz 23 124 Hz 114 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 24 132 Hz 138 Hz 26 158 Hz 176 Hz 28 186 Hz 120 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz		10	52 Hz	52 Hz					
13 66 Hz 66 Hz 14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 19 96 Hz 104 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 110 Hz 23 124 Hz 132 Hz 25 144 Hz 132 Hz 26 158 Hz 135 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		11	56 Hz	56 Hz					
14 70 Hz 70 Hz 15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 80 Hz 18 92 Hz 96 Hz 19 96 Hz 96 Hz 101 Hz 100 Hz 100 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 132 Hz 25 144 Hz 132 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 33 248 Hz 248 Hz		12	62 Hz	62 Hz					
15 74 Hz 74 Hz 16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 19 96 Hz 104 Hz 20 104 Hz 100 Hz 21 110 Hz 110 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		13	66 Hz	66 Hz					
16 80 Hz 80 Hz 17 88 Hz 88 Hz 18 92 Hz 96 Hz 19 96 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 132 Hz 26 158 Hz 138 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		14	70 Hz	70 Hz					
17 88 Hz 88 Hz 18 92 Hz 96 Hz 19 96 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 176 Hz 27 176 Hz 176 Hz 28 188 Hz 176 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 33 248 Hz 248 Hz		15	74 Hz	74 Hz					
18 92 Hz 96 Hz 19 96 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 158 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		16	80 Hz	80 Hz					
19 96 Hz 96 Hz 20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 110 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 132 Hz 26 158 Hz 176 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		17	88 Hz	88 Hz					
20 104 Hz 104 Hz 21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 178 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		18	92 Hz	96 Hz					
21 110 Hz 110 Hz 22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 158 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		19	96 Hz	96 Hz					
22 116 Hz 116 Hz 23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		20	104 Hz	104 Hz					
23 124 Hz 124 Hz 24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		21	110 Hz	110 Hz					
24 132 Hz 132 Hz 25 144 Hz 144 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		22	116 Hz	116 Hz					
25 144 Hz 144 Hz 26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		23	124 Hz	124 Hz					
26 158 Hz 158 Hz 27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		24	132 Hz	132 Hz					
27 176 Hz 176 Hz 28 188 Hz 188 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		25	144 Hz	144 Hz					
28 188 Hz 188 Hz 128 Hz 29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		26	158 Hz	158 Hz					
29 202 Hz 202 Hz 30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		27	176 Hz	176 Hz					
30 210 Hz 210 Hz 31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz									
31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz									
31 218 Hz 218 Hz 32 232 Hz 232 Hz 33 248 Hz 248 Hz		30	210 Hz	210 Hz					
32 232 Hz 232 Hz 33 248 Hz 248 Hz		31	218 Hz	218 Hz					
33 248 Hz 248 Hz			232 Hz	232 Hz					
			248 Hz	248 Hz					
				266 Hz					

represents the range in which "Hz" is not stepped up.

RXYQ18PAHY1 (8+10HP) RXYQ18PAHYL RXYQ18PHTL

(To increase Step No.)

STEP No.	Master unit INV	Slave unit INV	STD
1	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	OFF
5	74 Hz	74 Hz	OFF
6	80 Hz	80 Hz	OFF
7	88 Hz	88 Hz	OFF
8	96 Hz	96 Hz	OFF
9	104 Hz	104 Hz	OFF
10	110 Hz	110 Hz	OFF
11	116 Hz	116 Hz	OFF
12	124 Hz	124 Hz	OFF
13	132 Hz	132 Hz	OFF
14	144 Hz	144 Hz	OFF
15	158 Hz	158 Hz	OFF
17	166 Hz	166 Hz	OFF
18	176 Hz	176 Hz	OFF
19	80 Hz	80 Hz	ON
20	88 Hz	88 Hz	ON
21	96 Hz	96 Hz	ON
22	104 Hz	104 Hz	ON
23	116 Hz	116 Hz	ON
24	124 Hz	124 Hz	ON
25	132 Hz	132 Hz	ON
26	144 Hz	144 Hz	ON
27	158 Hz	158 Hz	ON
28	176 Hz	176 Hz	ON
29	188 Hz	188 Hz	ON
30	202 Hz	202 Hz	ON
31	210 Hz	210 Hz	ON
32	218 Hz	210 Hz	ON
33	232 Hz	210 Hz	ON
34	248 Hz	210 Hz	ON
35	266 Hz	210 Hz	ON

	(To decrea	se Step N	lo.)
¥	STEP No.	Master unit	Slave unit	STD
		INV	INV	0.55
	1	52 Hz	OFF	OFF
	2	56 Hz	OFF	OFF
	3	62 Hz	OFF	OFF
L	4	68 Hz	OFF	OFF
	5	74 Hz	OFF	OFF
H	6	80 Hz	OFF	OFF
H	7	88 Hz	OFF	OFF
	8	96 Hz	OFF	OFF
	9	104 Hz	OFF	OFF
	10	52 Hz	52 Hz	OFF
	11	56 Hz	56 Hz	OFF
	12	62 Hz	62 Hz	OFF
	13	66 Hz	66 Hz	OFF
	14	70 Hz	70 Hz	OFF
	15	74 Hz	74 Hz	OFF
	16	80 Hz	80 Hz	OFF
L	17	88 Hz	88 Hz	OFF
L	18	92 Hz	96 Hz	OFF
	19	96 Hz	96 Hz	OFF
H	20	104 Hz	104 Hz	OFF
L	21	110 Hz	110 Hz	OFF
	22	116 Hz	116 Hz	OFF
H	23	124 Hz	124 Hz	OFF
	24	132 Hz	132 Hz	OFF
	25	52 Hz	52 Hz	ON
	26	62 Hz	62 Hz	ON
	27	68 Hz	68 Hz	ON
	28	74 Hz	74 Hz	ON
	29	80 Hz	80 Hz	ON
	30	88 Hz	88 Hz	ON
	31	96 Hz	96 Hz	ON
	32	104 Hz	104 Hz	ON
	33	116 Hz	116 Hz	ON
	34	124 Hz	124 Hz	ON
	35	132 Hz	132 Hz	ON
	36	144 Hz	144 Hz	ON
	37	158 Hz	158 Hz	ON
	38	176 Hz	176 Hz	ON
	39	188 Hz	188 Hz	ON
	40	202 Hz	202 Hz	ON
	41	210 Hz	210 Hz	ON
	42	218 Hz	210 Hz	ON
	43	232 Hz	210 Hz	ON
	44	248 Hz	210 Hz	ON
	45	266 Hz	210 Hz	ON

Notes:

- 1. INV : Inverter compressor
 - STD : Standard compressor
 - Figures after ON represent the number of STD compressors in operation.
- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

Three-unit multi system

RXYQ24PAHY1 (8+8+8HP) RXYQ24PAHYL RXYQ24PHTL

STEP No. Master unit INV Slave unit INV Slave unit INV 1 52 Hz 52 Hz 52 Hz 2 56 Hz 56 Hz 56 Hz 3 62 Hz 62 Hz 62 Hz
2 56 Hz 56 Hz 56 Hz 3 62 Hz 62 Hz 62 Hz
3 62 Hz 62 Hz 62 Hz
4 66 Hz 66 Hz 66 Hz
5 68 Hz 68 Hz 68 Hz
6 70 Hz 70 Hz 70 Hz
7 74 Hz 74 Hz 74 Hz
8 80 Hz 80 Hz 80 Hz
9 88 Hz 88 Hz 88 Hz
10 96 Hz 96 Hz 96 Hz
11 104 Hz 104 Hz 104 Hz
12 110 Hz 110 Hz 110 Hz
13 116 Hz 116 Hz 116 Hz
14 124 Hz 124 Hz 124 Hz
15 132 Hz 132 Hz 132 Hz
16 138 Hz 138 Hz 138 Hz
17 144 Hz 144 Hz 144 Hz
18 158 Hz 158 Hz 158 Hz
19 166 Hz 166 Hz 166 Hz
20 176 Hz 176 Hz 176 Hz
21 188 Hz 188 Hz 188 Hz
22 202 Hz 202 Hz 202 Hz
23 210 Hz 210 Hz 210 Hz
24 218 Hz 218 Hz 218 Hz
25 232 Hz 232 Hz 232 Hz
26 248 Hz 248 Hz 248 Hz
27 266 Hz 266 Hz 266 Hz

(To decrease Step No.)						
STEP	Master	Slave	Slave			
	unit	unit1	unit2			
No.	INV	INV	INV			
1	52 Hz	OFF	OFF			
2	56 Hz	OFF	OFF			
3	62 Hz	OFF	OFF			
4	68 Hz	OFF	OFF			
5	74 Hz	OFF	OFF			
6	80 Hz	OFF	OFF			
7	88 Hz	OFF	OFF			
8	96 Hz	OFF	OFF			
9	104 Hz	OFF	OFF			
10	52 Hz	52 Hz	OFF			
11	56 Hz	56 Hz	OFF			
12	62 Hz	62 Hz	OFF			
13	66 Hz	66 Hz	OFF			
14	70 Hz	70 Hz	OFF			
15	74 Hz	74 Hz	OFF			
16	52 Hz	52 Hz	52 Hz			
17	56 Hz	56 Hz	56 Hz			
18	62 Hz	62 Hz	62 Hz			
19	66 Hz	66 Hz	66 Hz			
20	68 Hz	68 Hz	68 Hz			
21	70 Hz	70 Hz	70 Hz			
22	74 Hz	74 Hz	74 Hz			
23	80 Hz	80 Hz	80 Hz			
24	88 Hz	88 Hz	88 Hz			
25	96 Hz	96 Hz	96 Hz			
26	104 Hz	104 Hz	104 Hz			
27	116 Hz	116 Hz	116 Hz			
28	124 Hz	124 Hz	124 Hz			
29	132 Hz	132 Hz	132 Hz			
30	138 Hz	138 Hz	138 Hz			
31	144 Hz	144 Hz	144 Hz			
32	158 Hz	158 Hz	158 Hz			
33	166 Hz	166 Hz	166 Hz			
34	176 Hz	176 Hz	176 Hz			
35	188 Hz	188 Hz	188 Hz			
36	202 Hz	202 Hz	202 Hz			
37	210 Hz	210 Hz	210 Hz			
38	218 Hz	218 Hz	218 Hz			

represents the range in which "Hz" is not stepped up.

RXYQ26PAHY1 (8+8+10HP) RXYQ26PAHYL

RXYQ26PHTL

RAT	RXYQ26PHIL						
(To increase Step No.)							
STEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD			
1	52 Hz	52 Hz	52 Hz	OFF			
2	56 Hz	56 Hz	56 Hz	OFF			
3	62 Hz	62 Hz	62 Hz	OFF			
4	66 Hz	66 Hz	66 Hz	OFF			
5	68 Hz	68 Hz	68 Hz	OFF			
6	70 Hz	70 Hz	70 Hz	OFF			
7	74 Hz	74 Hz	74 Hz	OFF			
8	80 Hz	80 Hz	80 Hz	OFF			
9	88 Hz	88 Hz	88 Hz	OFF			
10	96 Hz	96 Hz	96 Hz	OFF			
11	104 Hz	104 Hz	104 Hz	OFF			
12	110 Hz	110 Hz	110 Hz	OFF			
13	116 Hz	116 Hz	116 Hz	OFF			
14	124 Hz	124 Hz	124 Hz	OFF			
15	80 Hz	80 Hz	80 Hz	ON 1			
16	88 Hz	88 Hz	88 Hz	ON 1			
17	96 Hz	96 Hz	96 Hz	ON 1			
18	104 Hz	104 Hz	104 Hz	ON 1			
19	116 Hz	116 Hz	116 Hz	ON 1			
20	124 Hz	124 Hz	124 Hz	ON 1			
21	132 Hz	132 Hz	132 Hz	ON 1			
22	144 Hz	144 Hz	144 Hz	ON 1			
23	158 Hz	158 Hz	158 Hz	ON 1			
24	166 Hz	166 Hz	166 Hz	ON 1			
25	176 Hz	176 Hz	176 Hz	ON 1			
26	188 Hz	188 Hz	188 Hz	ON 1			
27	202 Hz	202 Hz	202 Hz	ON 1			
28	210 Hz	210 Hz	210 Hz	ON 1			
29	218 Hz	218 Hz	210 Hz	ON 1			
30	232 Hz	232 Hz	210 Hz	ON 1			
31	248 Hz	248 Hz	210 Hz	ON 1			
32	266 Hz	266 Hz	210 Hz	ON 1			

		(To de	crease S	Step No.)
♠	STEP	Master unit	Slave unit1	Slave unit2	STD
	No.	INV	INV	INV	010
	1	52 Hz	OFF	OFF	OFF
	2	56 Hz	OFF	OFF	OFF
	3	62 Hz	OFF	OFF	OFF
	4	68 Hz	OFF	OFF	OFF
	5	74 Hz	OFF	OFF	OFF
	6	80 Hz	OFF	OFF	OFF
	7	88 Hz	OFF	OFF	OFF
	8	96 Hz	OFF	OFF	OFF
	9	104 Hz	OFF	OFF	OFF
	10	52 Hz	52 Hz	OFF	OFF
	11	56 Hz	56 Hz	OFF	OFF
	12	62 Hz	62 Hz	OFF	OFF
	13	66 Hz	66 Hz	OFF	OFF
	14	70 Hz	70 Hz	OFF	OFF
	15	74 Hz	74 Hz	OFF	OFF
	16	52 Hz	52 Hz	52 Hz	OFF
	17	56 Hz	56 Hz	56 Hz	OFF
	18	62 Hz	62 Hz	62 Hz	OFF
	19	66 Hz	66 Hz	66 Hz	OFF
11	20	68 Hz	68 Hz	68 Hz	OFF
11		70 Hz	70 Hz	70 Hz	OFF
	22	74 Hz	74 Hz	74 Hz	OFF
11	23	80 Hz	80 Hz	80 Hz	OFF
11	24	88 Hz	88 Hz	88 Hz	OFF
11	25	96 Hz	96 Hz	96 Hz	OFF
11	26	52 Hz 62 Hz	52 Hz 62 Hz	52 Hz 62 Hz	ON 1 ON 1
11	27	62 Hz 68 Hz	62 Hz 68 Hz	0.00	ON 1 ON 1
11	29	74 Hz	74 Hz	68 Hz 74 Hz	ON 1
11	30	80 Hz	80 Hz	80 Hz	ON 1
11	31	88 Hz	88 Hz	88 Hz	ON 1
11	32	96 Hz	96 Hz	96 Hz	ON 1
1	33	104 Hz	104 Hz	104 Hz	ON 1
- 1	34	116 Hz	116 Hz	116 Hz	ON 1
- 1	35	124 Hz	124 Hz	124 Hz	ON 1
- 1	36	144 Hz	144 112	144 Hz	ON 1
- 1	37	158 Hz	159 Hz	159 Hz	ON 1
- 1	38	166 Hz	166 Hz	166 Hz	ON 1
	39	176 Hz	176 Hz	176 Hz	ON 1
	40	188 Hz	188 Hz	188 Hz	ON 1
	40	202 Hz	202 Hz	202 Hz	ON 1
- 1	42	210 Hz	210 Hz	210 Hz	ON 1
	43	218 Hz	218 Hz	210 Hz	ON 1
	44	232 Hz	232 Hz	210 Hz	ON 1
	45	248 Hz	248 Hz	210 Hz	ON 1
	46	266 Hz	2 2 2 1 1	210 Hz	ON 1
- 1	_ 10	200112	200112	-10112	5111

Notes:

- 1. INV : Inverter compressor
 - STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ28PHTL

represents the range in which "Hz" is not stepped up.

RXYQ30PAHY1 (8+10+12HP) RXYQ30PAHYL RXYQ30PHTL

	(To inc		tep No.)			
STEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD		STEP No.
1	52 Hz	52 Hz	52 Hz	OFF		1
2	56 Hz	56 Hz	56 Hz	OFF	11	2
3	62 Hz	62 Hz	62 Hz	OFF		3
4	66 Hz	66 Hz	66 Hz	OFF		4
5	68 Hz	68 Hz	68 Hz	OFF		5
6	70 Hz	70 Hz	70 Hz	OFF		6
7	74 Hz	74 Hz	74 Hz	OFF		7
8	80 Hz	80 Hz	80 Hz	OFF		8
9	88 Hz	88 Hz	88 Hz	OFF		9
10	96 Hz	96 Hz	96 Hz	OFF		10
11	104 Hz	104 Hz	104 Hz	OFF		11
12	110 Hz	110 Hz	110 Hz	OFF		12
13	116 Hz	116 Hz	116 Hz	OFF		13
14	124 Hz	124 Hz	124 Hz	OFF		14
15	80 Hz	80 Hz	80 Hz	ON 1		15
16	88 Hz	88 Hz	88 Hz	ON 1		16
17	96 Hz	96 Hz	96 Hz	ON 1		17
18	104 Hz	104 Hz	104 Hz	ON 1		18
19	116 Hz	116 Hz	116 Hz	ON 1		19
20	124 Hz	124 Hz	124 Hz	ON 1		20
21	132 Hz	132 Hz	132 Hz	ON 1		21
22	144 Hz	144 Hz	144 Hz	ON 1		22
23	158 Hz	158 Hz	158 Hz	ON 1		23
24	166 Hz	166 Hz	166 Hz	ON 1		24
25	176 Hz	176 Hz	176 Hz	ON 1		25
26	188 Hz	188 Hz	188 Hz	ON 1		26
27	202 Hz	202 Hz	202 Hz	ON 1		27
28	210 Hz	210 Hz	210 Hz	ON 1		28
29	218 Hz	218 Hz	210 Hz	ON 1		29
30	232 Hz	232 Hz	210 Hz	ON 1	11	30
31	248 Hz	248 Hz	210 Hz	ON 1		31
32	266 Hz	266 Hz	210 Hz	ON 1	11	32
					1	33
						34

RXYQ28PAHY1 (8+8+12HP) RXYQ28PAHYL

(To decrease Step No.)						
STEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD		
1	52 Hz	OFF	OFF	OFF		
2	56 Hz	OFF	OFF	OFF		
3	62 Hz	OFF	OFF	OFF		
4	68 Hz	OFF	OFF	OFF		
5	74 Hz	OFF	OFF	OFF		
6	80 Hz	OFF	OFF	OFF		
7	88 Hz	OFF	OFF	OFF		
8	96 Hz	OFF	OFF	OFF		
9	104 Hz	OFF	OFF	OFF		
10	52 Hz	52 Hz	OFF	OFF		
11	56 Hz	56 Hz	OFF	OFF		
12	62 Hz	62 Hz	OFF	OFF		
13	66 Hz	66 Hz	OFF	OFF		
14	70 Hz	70 Hz	OFF	OFF		
15	74 Hz	74 Hz	OFF	OFF		
16	52 Hz	52 Hz	52 Hz	OFF		
17	56 Hz	56 Hz	56 Hz	OFF		
18	62 Hz	62 Hz	62 Hz	OFF		
19	66 Hz	66 Hz	66 Hz	OFF		
20	68 Hz	68 Hz	68 Hz	OFF		
21	70 Hz	70 Hz	70 Hz	OFF		
22	74 Hz	74 Hz	74 Hz	OFF		
23	80 Hz	80 Hz	80 Hz	OFF		
24	88 Hz	88 Hz	88 Hz	OFF		
25	96 Hz	96 Hz	96 Hz	OFF		
26	52 Hz	52 Hz	52 Hz	ON 1		
27	62 Hz	62 Hz	62 Hz	ON 1		
28	68 Hz	68 Hz	68 Hz	ON 1		
29	74 Hz	74 Hz	74 Hz	ON 1		
30	80 Hz	80 Hz	80 Hz	ON 1		
31	88 Hz	88 Hz	88 Hz	ON 1		
32	96 Hz	96 Hz	96 Hz	ON 1		
33	104 Hz	104 Hz	104 Hz	ON 1		
34	116 Hz	116 Hz	116 Hz	ON 1		
35	124 Hz	124 Hz	124 Hz	ON 1		
36	144 Hz	144 Hz	144 Hz	ON 1	1	
37	158 Hz	158 Hz	158 Hz	ON 1		
38	166 Hz	166 Hz	166 Hz	ON 1		
39	176 Hz	176 Hz	176 Hz	ON 1		
40	188 Hz	188 Hz	188 Hz	ON 1		
41	202 Hz	202 Hz	202 Hz	ON 1		
42	210 Hz	210 Hz	210 Hz	ON 1		
43	218 Hz	218 Hz	210 Hz	ON 1		
44	232 Hz	232 Hz	210 Hz	ON 1		
45	248 Hz	248 Hz	E TO TIL	ON 1		
46	266 Hz	266 Hz		ON 1		
-10	200112	200112	LIVIZ	0.11		

STEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD
1	52 Hz	52 Hz	52 Hz	OFF
2	56 Hz	56 Hz	56 Hz	OFF
3	62 Hz	62 Hz	62 Hz	OFF
4	66 Hz	66 Hz	66 Hz	OFF
5	68 Hz	68 Hz	68 Hz	OFF
6	70 Hz	70 Hz	70 Hz	OFF
7	74 Hz	74 Hz	74 Hz	OFF
8	80 Hz	80 Hz	80 Hz	OFF
9	88 Hz	88 Hz	88 Hz	OFF
10	96 Hz	96 Hz	96 Hz	OFF
11	104 Hz	104 Hz	104 Hz	OFF
12	110 Hz	110 Hz	110 Hz	OFF
13	116 Hz	116 Hz	116 Hz	OFF
14	124 Hz	124 Hz	124 Hz	OFF
15	80 Hz	80 Hz	80 Hz	ON 1
16	88 Hz	88 Hz	88 Hz	ON 1
17	96 Hz	96 Hz	96 Hz	ON 1
18	104 Hz	104 Hz	104 Hz	ON 1
19	116 Hz	116 Hz	116 Hz	ON 1
20	124 Hz	124 Hz	124 Hz	ON 1
21	132 Hz	132 Hz	132 Hz	ON 1
22	88 Hz	88 Hz	88 Hz	ON 2
23	96 Hz	96 Hz	96 Hz	ON 2
24	104 Hz	104 Hz	104 Hz	ON 2
25	124 Hz	124 Hz	124 Hz	ON 2
26	144 Hz	144 Hz	144 Hz	ON 2
27	158 Hz	158 Hz	158 Hz	ON 2
28	166 Hz	166 Hz	166 Hz	ON 2
29	176 Hz	176 Hz	176 Hz	ON 2
30	188 Hz	188 Hz	188 Hz	ON 2
31	202 Hz	202 Hz	202 Hz	ON 2
32	210 Hz	210 Hz	210 Hz	ON 2
33	218 Hz	210 Hz	210 Hz	ON 2
34	232 Hz	210 Hz	210 Hz	ON 2
35	248 Hz	210 Hz	210 Hz	ON 2
36	266 Hz	210 Hz	210 Hz	ON 2

_	(To decrease Step No.)						
1		STEP	Master	Slave	Slave		
	T	No.	unit INV	unit1 INV	unit2 INV	STD	
1		1	52 Hz	OFF	OFF	OFF	
1		2	56 Hz	OFF	OFF	OFF	
1		3	62 Hz	OFF	OFF	OFF	
1		4	68 Hz	OFF	OFF	OFF	
1		5	74 Hz	OFF	OFF	OFF	
1		6	80 Hz	OFF	OFF	OFF	
1		7	88 Hz	OFF	OFF	OFF	
1		8	96 Hz	OFF	OFF	OFF	
1		9	104 Hz	OFF	OFF	OFF	
1		10	52 Hz	52 Hz	OFF	OFF	
1		11	56 Hz	56 Hz	OFF	OFF	
1		12	62 Hz	62 Hz	OFF	OFF	
1		13	66 Hz	66 Hz	OFF	OFF	
1		14	70 Hz	70 Hz	OFF	OFF	
1		15	74 Hz	74 Hz	OFF	OFF	
1		16	52 Hz	52 Hz	52 Hz	OFF	
t		17	56 Hz	56 Hz	56 Hz	OFF	
ſ		18	62 Hz	62 Hz	62 Hz	OFF	
f		19	66 Hz	66 Hz	66 Hz	OFF	
t		20	68 Hz	68 Hz	68 Hz	OFF	
ł		21	70 Hz	70 Hz	70 Hz	OFF	
ł		22	74 Hz	74 Hz	74 Hz	OFF	
ł		23	80 Hz	80 Hz	80 Hz	OFF	
ł		23	88 Hz	88 Hz	88 Hz	OFF	
ł		25	96 Hz	96 Hz	96 Hz	OFF	
ł		26	52 Hz	52 Hz	52 Hz	ON 1	
ł		27	62 Hz	62 Hz	62 Hz	ON 1	
ł		28	68 Hz	68 Hz	68 Hz	ON 1	
ł		29	74 Hz	74 Hz	74 Hz	ON 1	
ł		30	80 Hz	80 Hz	80 Hz	ON 1	
ł		31	88 Hz	88 Hz	88 Hz	ON 1	
ł		32	96 Hz	96 Hz	96 Hz	ON 1	
ł		33	104 Hz	104 Hz	104 Hz	ON 1	
ł		34	52 Hz	52 Hz	52 Hz	ON 2	
ł		35	62 Hz	62 Hz	62 Hz	ON 2	
ł		36	74 Hz	74 Hz	74 Hz	ON 2	
1		30	88 Hz	88 Hz	74 HZ 88 Hz	ON 2	
		38	96 Hz	96 Hz	96 Hz	ON 2	
		39	104 Hz	104 Hz	104 Hz	ON 2	
		40	116 Hz	116 Hz	116 Hz	ON 2	
		40	124 Hz	124 Hz	124 Hz	ON 2	
		41	144 Hz	124 HZ	124 HZ	ON 2	
		42	158 Hz	158 Hz	158 Hz	ON 2	
		43	166 Hz	166 Hz	166 Hz	ON 2	
		44	176 Hz	176 Hz	176 Hz	ON 2	
		45	188 Hz	188 Hz	188 Hz	ON 2	
		40			202 Hz	ON 2	
		47			202 HZ 210 Hz	ON 2	
		49				ON 2	
		50		210 Hz		ON 2	
		51		210 Hz		ON 2	
		52	266 Hz	210 Hz	210 Hz	ON 2	

Notes:

- 1. INV : Inverter compressor
 - STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ32PAHY1 (8+12+12HP) RXYQ32PAHYL RXYQ32PHTL

	(To inc		tep No.)		
STEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD	'
1	52 Hz	52 Hz	52 Hz	OFF	
2	56 Hz	56 Hz	56 Hz	OFF	
3	62 Hz	62 Hz	62 Hz	OFF	
4	66 Hz	66 Hz	66 Hz	OFF	
5	68 Hz	68 Hz	68 Hz	OFF	
6	70 Hz	70 Hz	70 Hz	OFF	
7	74 Hz	74 Hz	74 Hz	OFF	
8	80 Hz	80 Hz	80 Hz	OFF	
9	88 Hz	88 Hz	88 Hz	OFF	
10	96 Hz	96 Hz	96 Hz	OFF	
11	104 Hz	104 Hz	104 Hz	OFF	
12	110 Hz	110 Hz	110 Hz	OFF	
13	116 Hz	116 Hz	116 Hz	OFF	
14	124 Hz	124 Hz	124 Hz	OFF	
15	80 Hz	80 Hz	80 Hz	ON 1	
16	88 Hz	88 Hz	88 Hz	ON 1	
17	96 Hz	96 Hz	96 Hz	ON 1	
18	104 Hz	104 Hz	104 Hz	ON 1	
19	116 Hz	116 Hz	116 Hz	ON 1	
20	124 Hz	124 Hz	124 Hz	ON 1	
21	132 Hz	132 Hz	132 Hz	ON 1	
22	88 Hz	88 Hz	88 Hz	ON 2	
23	96 Hz	96 Hz	96 Hz	ON 2	
24	104 Hz	104 Hz	104 Hz	ON 2	
25	124 Hz	124 Hz	124 Hz	ON 2	
26	144 Hz	144 Hz	144 Hz	ON 2	
27	158 Hz	158 Hz	158 Hz	ON 2	
28	166 Hz	166 Hz	166 Hz	ON 2	
29	176 Hz	176 Hz	176 Hz	ON 2	
30	188 Hz	188 Hz	188 Hz	ON 2	
31	202 Hz	202 Hz	202 Hz	ON 2	
32	210 Hz	210 Hz	210 Hz	ON 2	
33	218 Hz	210 Hz	210 Hz	ON 2	
34	232 Hz	210 Hz	210 Hz	ON 2	
35	248 Hz	210 Hz	210 Hz	ON 2	
36	266 Hz	210 Hz	210 Hz	ON 2	

				,
	<u>`</u>		Step No.)
STEP	Master unit	Slave unit1	Slave unit2	STD
No.	INV	INV	INV	
1	52 Hz	OFF	OFF	OFF
2	56 Hz 62 Hz	OFF	OFF	OFF
4	62 HZ	OFF OFF	OFF OFF	OFF
5	74 Hz	OFF	OFF	OFF
6	80 Hz	OFF	OFF	OFF
7	88 Hz	OFF	OFF	OFF
8	96 Hz	OFF	OFF	OFF
9	104 Hz	OFF	OFF	OFF
10	52 Hz	52 Hz	OFF	OFF
11	56 Hz	56 Hz	OFF	OFF
12	62 Hz	62 Hz	OFF	OFF
13	66 Hz	66 Hz	OFF	OFF
14	70 Hz	70 Hz 74 Hz	OFF OFF	OFF
15 16	74 Hz 52 Hz	74 Hz 52 Hz	52 Hz	OFF
17	56 Hz	56 Hz	56 Hz	OFF
18	62 Hz	62 Hz	62 Hz	OFF
19	66 Hz	66 Hz	66 Hz	OFF
20	68 Hz	68 Hz	68 Hz	OFF
21	70 Hz	70 Hz	70 Hz	OFF
22 23	74 Hz	74 Hz	74 Hz	OFF
23	80 Hz	80 Hz	80 Hz	OFF
24	88 Hz	88 Hz	88 Hz	OFF
25	96 Hz	96 Hz	96 Hz	OFF
26	52 Hz	52 Hz	52 Hz	ON 1
27 28	62 Hz	62 Hz	62 Hz	ON 1
28	68 Hz	68 Hz 74 Hz	68 Hz	ON 1 ON 1
30	74 Hz 80 Hz	74 Hz 80 Hz	74 Hz 80 Hz	ON 1
31	88 Hz	88 Hz	88 Hz	ON 1
32	96 Hz	96 Hz	96 Hz	ON 1
33	104 Hz	104 Hz	104 Hz	ON 1
34	52 Hz	52 Hz	52 Hz	
35	62 Hz	62 Hz	62 Hz	ON 2 ON 2
36	74 Hz	74 Hz	74 Hz	ON 2
37	88 Hz	88 Hz	88 Hz	ON 2
38	96 Hz	96 Hz	96 Hz	ON 2
39	104 Hz	104 Hz	104 Hz	ON 2
40	116 Hz	116 Hz	116 Hz 124 Hz	ON 2 ON 2
41	124 Hz	124 Hz	1	ON2
42 43	144 Hz 158 Hz	144 Hz 158 Hz	144 Hz 158 Hz	ONIO
43	166 Hz	166 Hz	166 Hz	ON 2
45	176 Hz	176 Hz	176 Hz	ON 2
46	188 Hz	188 Hz	188 Hz	ON 2
47	202 Hz	202 Hz	202 Hz	ON 2
48	210 Hz		210 Hz	ON 2
49	218 Hz	210 Hz		ON 2
50	232 Hz		210 Hz	ON 2
51		210 Hz		ON 2
52	266 Hz	210 Hz	210 Hz	ON 2

		•			•					
				, 36P			10/12-	+12+1	2HP)	ļ
				36PH		-				
	INA IN							(To do		~
		· · · · · · · · · · · · · · · · · · ·		tep No.)					crease S	51
L	STEP	Master	Slave	Slave	STD	▲	STEP	Master	Slave	ľ
L	No.	l unit INV	unit1 INV	unit2	SID		No.	Unit INV	unit1 INV	
L	1	52 Hz	52 Hz	52 Hz	OFF		1	52 Hz	OFF	F
L	2	56 Hz	56 Hz	56 Hz	OFF		2	56 Hz	OFF	F
L	3	62 Hz	62 Hz	62 Hz	OFF		3	62 Hz	OFF	F
L	4	66 Hz	66 Hz	66 Hz	OFF		4	68 Hz	OFF	Γ
L	5	68 Hz	68 Hz	68 Hz	OFF		5	74 Hz	OFF	
L	6	70 Hz	70 Hz	70 Hz	OFF		6	80 Hz	OFF	L
L	7	74 Hz	74 Hz	74 Hz	OFF		7	88 Hz	OFF	L
L	8	80 Hz	80 Hz	80 Hz	OFF		8	96 Hz	OFF	⊢
L		88 Hz 96 Hz	88 Hz 96 Hz	88 Hz 96 Hz	OFF OFF			104 Hz 52 Hz	OFF	┝
L	10	96 Hz 104 Hz	96 Hz 104 Hz	96 Hz 104 Hz	OFF		10 11	56 Hz	52 Hz 56 Hz	┝
L	12	110 Hz	110 Hz	110 Hz	OFF		12	62 Hz	62 Hz	┝
L	13	116 Hz	116 Hz	116 Hz	OFF		13	66 Hz	66 Hz	F
L	14	124 Hz	124 Hz	124 Hz	OFF		14	70 Hz	70 Hz	F
L	15	80 Hz	80 Hz	80 Hz	ON 1		15	74 Hz	74 Hz	F
L	16	88 Hz	88 Hz	88 Hz	ON 1		16	52 Hz	52 Hz	h
L	17	96 Hz	96 Hz	96 Hz	ON 1		17	56 Hz	56 Hz	1
L	18	104 Hz	104 Hz	104 Hz	ON 1		18	62 Hz	62 Hz	1
L	19	116 Hz	116 Hz	116 Hz	ON 1		19	66 Hz	66 Hz	1
L	20	124 Hz	124 Hz	124 Hz	ON 1		20	68 Hz	68 Hz	1
L	21	132 Hz	132 Hz	132 Hz	ON 1		21	70 Hz	70 Hz	Ľ
L	22	88 Hz	88 Hz	88 Hz	ON 2		22	74 Hz	74 Hz	
L	23 24	96 Hz 104 Hz	96 Hz	96 Hz 104 Hz	ON 2 ON 2		23 24	80 Hz 88 Hz	80 Hz 88 Hz	
L	24	104 Hz	104 Hz	104 Hz	ON 2		24	88 Hz 96 Hz	88 Hz 96 Hz	Ľ
L	25	144 Hz	144 112	144 Hz	ON 2		25	52 Hz	52 Hz	H
L	27	92 Hz	92 Hz	92 Hz	ON 3		27	62 Hz	62 Hz	H
L	28	104 Hz	104 Hz	104 Hz	ON 3		28	68 Hz	68 Hz	H
L	29	116 Hz	116 Hz	116 Hz	ON 3		29	74 Hz	74 Hz	F
L	30	124 Hz	124 Hz	124 Hz	ON 3		30	80 Hz	80 Hz	T
L	31	144 Hz	144 Hz	144 Hz	ON 3		31	88 Hz	88 Hz	1
L	32	158 Hz	158 Hz	158 Hz	ON 3		32	96 Hz	96 Hz	1
L	33	166 Hz	166 Hz	166 Hz	ON 3		33	104 Hz	104 Hz	1
L	34	176 Hz	176 Hz	176 Hz	ON 3		34	52 Hz	52 Hz	Ľ
L	35	188 Hz	188 Hz	188 Hz	ON 3		35	62 Hz	62 Hz	1
Ļ	36	202 Hz	202 Hz	202 Hz	ON 3		36	74 Hz	74 Hz	Ľ
ľ	37	210 Hz	210 Hz	210 Hz	ON 3		37	88 Hz	88 Hz	Ľ
							38 39	96 Hz	96 Hz	E
							40	52 Hz 62 Hz	52 Hz 62 Hz	ł
						- 11	40	UZ FIZ	02 FIZ	1

		(To de	crease S	Step No.)
]†	STEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD
11	1	52 Hz	ÖFF	ÖFF	OFF
11	2	56 Hz	OFF	OFF	OFF
	3	62 Hz	OFF	OFF	OFF
ונ	4	68 Hz	OFF	OFF	OFF
	5	74 Hz	OFF	OFF	OFF
11	6	80 Hz	OFF	OFF	OFF
41	7	88 Hz	OFF	OFF	OFF
41	8	96 Hz	OFF	OFF	OFF
- 1	9	104 Hz	OFF	OFF	OFF
41	10	52 Hz	52 Hz	OFF	OFF
- 1	11	56 Hz	56 Hz	OFF	OFF
- 1	12 13	62 Hz 66 Hz	62 Hz 66 Hz	OFF	OFF
- 1	14	70 Hz	70 Hz	OFF	OFF
- 1	14	70 HZ 74 HZ	70 HZ 74 Hz	OFF	OFF
- 1	16	52 Hz	52 Hz	52 Hz	OFF
- 1	17	56 Hz	56 Hz	56 Hz	OFF
11	18	62 Hz	62 Hz	62 Hz	OFF
11	19	66 Hz	66 Hz	66 Hz	OFF
11	20	68 Hz	68 Hz	68 Hz	OFF
11	21	70 Hz	70 Hz	70 Hz	OFF
11	22	74 Hz	74 Hz	74 Hz	OFF
11	23	80 Hz	80 Hz	80 Hz	OFF
11	24	88 Hz	88 Hz	88 Hz	OFF
11	25	96 Hz	96 Hz	96 Hz	OFF
11	26	52 Hz	52 Hz	52 Hz	ON 1
11	27	62 Hz	62 Hz	62 Hz	ON 1
	28	68 Hz	68 Hz	68 Hz	ON 1
ונ	29	74 Hz	74 Hz	74 Hz	ON 1
	30	80 Hz	80 Hz	80 Hz	ON 1
	31	88 Hz	88 Hz	88 Hz	ON 1
	32	96 Hz	96 Hz	96 Hz	ON 1
11	33	104 Hz	104 Hz	104 Hz	ON 1
41	34	52 Hz	52 Hz	52 Hz	ON 2
41	35	62 Hz	62 Hz	62 Hz	ON 2
41	36	74 Hz	74 Hz	74 Hz	ON 2
11	37	88 Hz	88 Hz	88 Hz	ON 2
- 1	38	96 Hz	96 Hz	96 Hz	ON 2
- 1	39	52 Hz	52 Hz	52 Hz	ON 3 ON 3
- 1	40	62 Hz	62 Hz	62 Hz	0110
- 1	41 42	74 Hz 92 Hz	74 Hz 92 Hz	74 Hz 92 Hz	ON 3 ON 3
- 1	42	92 Hz 104 Hz	104 Hz	92 Hz 104 Hz	
- 1	43	116 Hz	116 Hz	116 Hz	ON 3 ON 3
1	44	124 Hz	124 Hz	124 Hz	ON 3
1	45	144 Hz	144 Hz	144 Hz	ON 3
1	40	158 Hz	158 Hz	158 Hz	ON 3
1	48	166 Hz	166 Hz	166 Hz	ON 3
1	49	176 Hz	176 Hz	176 Hz	ON 3
1	50	188 Hz	188 Hz	188 Hz	ON 3
1	51	202 Hz		202 Hz	ON 3
1	52	210 Hz	210 Hz	210 Hz	ON 3
				_ · • · 12	

represents the range in which "Hz" is not stepped up.

Notes:

- 1. INV : Inverter compressor
 - STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

RXYQ38PAHY1, 40PAHY1 (12+12+14/16HP) RXYQ38PAHYL, 40PAHYL RXYQ38PHTL, 40PHTL

~ 1	accor		ш,	101	•••	•
	(To in	creas	se S	ten N	lo)	

	(10 inc	rease S	tep ino.)			
STEP	Master	Slave	Slave			STEP
No.	unit	unit1	unit2	STD	Ī	No.
	INV	INV	INV			
1	52 Hz	52 Hz	52 Hz	OFF		1
2	56 Hz	56 Hz	56 Hz	OFF		2
3	62 Hz	62 Hz	62 Hz	OFF		3
4	66 Hz	66 Hz	66 Hz	OFF		4
5	68 Hz	68 Hz	68 Hz	OFF		5
6	70 Hz	70 Hz	70 Hz	OFF		6
7	74 Hz	74 Hz	74 Hz	OFF		7
8	80 Hz	80 Hz	80 Hz	OFF		8
9	88 Hz	88 Hz	88 Hz	OFF		9
10	96 Hz	96 Hz	96 Hz	OFF		10
11	104 Hz	104 Hz	104 Hz	OFF		11
12	110 Hz	110 Hz	110 Hz	OFF		12
13	116 Hz	116 Hz	116 Hz	OFF		13
14	124 Hz	124 Hz	124 Hz	OFF		14
15	80 Hz	80 Hz	80 Hz	ON 1		15
16	88 Hz	88 Hz	88 Hz	ON 1		16
17	96 Hz	96 Hz	96 Hz	ON 1		17
18	104 Hz	104 Hz	104 Hz	ON 1		18
19	116 Hz	116 Hz	116 Hz	ON 1		19
20	124 Hz	124 Hz	124 Hz	ON 1		20
21	132 Hz	132 Hz	132 Hz	ON 1		21
22	88 Hz	88 Hz	88 Hz	ON 2		22
23	96 Hz	96 Hz	96 Hz	ON 2		23
24	104 Hz	104 Hz	104 Hz	ON 2		24
25	124 Hz	124 Hz	124 Hz	ON 2		25
26	144 Hz	144 Hz	144 Hz	ON 2		26
27	92 Hz	92 Hz	92 Hz	ON 3		27
28	104 Hz	104 Hz	104 Hz	ON 3		28
29	116 Hz	116 Hz	116 Hz	ON 3		29
30	124 Hz	124 Hz	124 Hz	ON 3		30
31	144 Hz	144 Hz	144 Hz	ON 3		31
32	96 Hz	96 Hz	96 Hz	ON 4		32
33	104 Hz	104 Hz	104 Hz	ON 4		33
34	116 Hz	116 Hz	116 Hz	ON 4		34
35	124 Hz	124 Hz	124 Hz	ON 4		35
36	144 Hz	144 Hz	144 Hz	ON 4		36
37	158 Hz	158 Hz	158 Hz	ON 4		37
38	166 Hz	166 Hz	166 Hz	ON 4		38
39	176 Hz	176 Hz	176 Hz	ON 4		39
40	188 Hz	188 Hz	188 Hz	ON 4		40
41	202 Hz	202 Hz		ON 4		41
42	210 Hz	210 Hz	210 Hz	ON 4		42
						43
					- 1	44

		(To de	crease S	Step No.)
ł	STEP No.	Master unit	Slave unit1	Slave unit2	STD
l	1	INV 52 Hz	OFF	INV OFF	OFF
	2	56 Hz	OFF	OFF	OFF
	3	62 Hz	OFF	OFF	OFF
	4	68 Hz	OFF	OFF	OFF
	5	74 Hz	OFF	OFF	OFF
	6	80 Hz	OFF	OFF	OFF
	7	88 Hz	OFF	OFF	OFF
	8	96 Hz	OFF	OFF	OFF
	9	104 Hz	OFF	OFF	OFF
	10	52 Hz	52 Hz	OFF OFF	OFF
	11 12	56 Hz 62 Hz	56 Hz 62 Hz	OFF	OFF
	13	66 Hz	66 Hz	OFF	OFF
	14	70 Hz	70 Hz	OFF	OFF
	15	74 Hz	74 Hz	OFF	OFF
	16	52 Hz	52 Hz	52 Hz	OFF
	17	56 Hz	56 Hz	56 Hz	OFF
	18	62 Hz	62 Hz	62 Hz	OFF
	19	66 Hz	66 Hz	66 Hz	OFF
	20	68 Hz	68 Hz	68 Hz	OFF
	21	70 Hz	70 Hz	70 Hz	OFF
	22	74 Hz	74 Hz	74 Hz	OFF
	23 24	80 Hz	80 Hz	80 Hz	OFF
	24	88 Hz	88 Hz	88 Hz	OFF OFF
	20	96 Hz 52 Hz	96 Hz 52 Hz	96 Hz 52 Hz	ON 1
	26 27	52 Hz 62 Hz	52 Hz 62 Hz	52 Hz 62 Hz	ON 1
	28	68 Hz	68 Hz	68 Hz	ON 1
	29	74 Hz	74 Hz	74 Hz	ON 1
	30	80 Hz	80 Hz	80 Hz	ON 1
	31	88 Hz	88 Hz	88 Hz	ON 1
	32	96 Hz	96 Hz	96 Hz	ON 1
	33	104 Hz	104 Hz	104 Hz	ON 1
	34	52 Hz	52 Hz	52 Hz	ON 2
	35	62 Hz	62 Hz	62 Hz	ON 2
	36	74 Hz	74 Hz	74 Hz	ON 2
	37	88 Hz	88 Hz	88 Hz	ON 2
	38 39	96 Hz 52 Hz	96 Hz 52 Hz	96 Hz 52 Hz	ON 2 ON 3
	40	62 Hz	52 Hz 62 Hz	52 Hz 62 Hz	ON 3
	40	74 Hz	74 Hz	74 Hz	ON 3
	42	92 Hz	92 Hz	92 Hz	ON 3
	43	104 Hz	104 Hz	104 Hz	ON 3
	44	52 Hz	52 Hz	52 Hz	ON 4
	45	62 Hz	62 Hz	62 Hz	ON 4
	46	74 Hz	74 Hz	74 Hz	ON 4
	47	96 Hz	96 Hz	96 Hz	ON 4
1	48	104 Hz		104 Hz	ON 4
	49	116 Hz		116 Hz	ON 4
1	50	124 Hz		124 Hz	ON 4
1	51 52	144 Hz	144 Hz 158 Hz	144 Hz 158 Hz	ON 4 ON 4
	52	158 Hz 166 Hz	158 Hz 166 Hz	158 Hz 166 Hz	ON 4 ON 4
1	53	176 Hz		176 Hz	ON 4
1	55	188 Hz		188 Hz	ON 4
1	56			202 Hz	ON 4
1	57		210 Hz		ON 4
	0.	1210112	210112	210112	5

STEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD	
1	52 Hz	52 Hz	52 Hz	OFF	1
2	56 Hz	56 Hz	56 Hz	OFF	
	62 Hz	62 Hz	62 Hz	OFF	
4	66 Hz	66 Hz	66 Hz	OFF	1
5 6	68 Hz 70 Hz	68 Hz 70 Hz	68 Hz 70 Hz	OFF OFF	ł
7	70 HZ	70 HZ	70 HZ	OFF	ł
8	80 Hz	80 Hz	80 Hz	OFF	ł
9	88 Hz	88 Hz	88 Hz	OFF	
10	96 Hz	96 Hz	96 Hz	OFF	1
11	104 Hz	104 Hz	104 Hz	OFF	1
12		110 Hz		OFF	1
13		116 Hz		OFF	
14			124 Hz	OFF	ł
15	80 Hz	80 Hz	80 Hz	ON 1 ON 1	ł
16 17	88 Hz 96 Hz	88 Hz 96 Hz	88 Hz 96 Hz	ON 1	ł
18		104 Hz		ON 1	ł
19		116 Hz		ON 1	1
20	124 Hz	124 Hz	124 Hz	ON 1	1
21 22	132 Hz	132 Hz	132 Hz	ON 1	1
22	88 Hz	88 Hz	88 Hz	ON 2]
23	96 Hz	96 Hz	96 Hz	ON 2	
24		104 Hz		ON 2	ł
25 26		124 Hz 144 Hz		ON 2 ON 2	ł
20	92 Hz	92 Hz	92 Hz	ON 3	ł
28		104 Hz		ON 3	1
29	116 Hz	116 Hz	116 Hz	ON 3	1
30		124 Hz		ON 3	
31		144 Hz		ON 3	ł
32	96 Hz	96 Hz	96 Hz	ON 4	ł
33		104 Hz		ON 4	ł
<u>34</u> 35		116 Hz 124 Hz		ON 4 ON 4	
36		144 Hz		ON 4	
37		158 Hz		ON 4	1
38		166 Hz		ON 4	1
39		176 Hz		ON 4	
40		188 Hz		ON 4	
41	202 Hz	202 Hz	202 Hz	ON 4	
42		210 Hz		ON 4	
<u>43</u> 44	210 Hz 210 Hz	210 Hz 210 Hz	232 HZ	ON 4 ON 4	
44	210 HZ	210 HZ 210 HZ	248 Hz	ON 4	
46			266 Hz	ON 4	1
-10	-10112	210112	200112	5114	1

RXYQ42PAHY1 (12+12+18HP)

			(To de	crease S	Step No.)
		OTED	Master	Slave	Slave	
)	ĺ₽.	STEP	unit	unit1	unit2	STD
1		No.	INV			010
-		-		INV	INV	OFF
		1	52 Hz	OFF	OFF	OFF
-		2	56 Hz	OFF	OFF	OFF
		3	62 Hz	OFF	OFF	OFF
		4	68 Hz	OFF	OFF	OFF
		5	74 Hz	OFF	OFF	OFF
		6	80 Hz	OFF	OFF	OFF
-		7	88 Hz	OFF	OFF	OFF
:		8	96 Hz	OFF	OFF	OFF
-						
-		9	104 Hz	OFF	OFF	OFF
		10	52 Hz	52 Hz	OFF	OFF
		11	56 Hz	56 Hz	OFF	OFF
		12	62 Hz	62 Hz	OFF	OFF
-		10		02112		
		13	66 Hz	66 Hz	OFF	OFF
-		14	70 Hz	70 Hz	OFF	OFF
1		15	74 Hz	74 Hz	OFF	OFF
1		16	52 Hz	52 Hz	52 Hz	OFF
		17	56 Hz	56 Hz	30 HZ	OFF
1		18	62 Hz	62 Hz	62 Hz	OFF
Π		19	66 Hz	66 Hz	66 Hz	OFF
		20	68 Hz	68 Hz	68 Hz	OFF
Η		21	70 Hz			OFF
				70 Hz	70 Hz	
		22	74 Hz	74 Hz	74 Hz	OFF
2		23	80 Hz	80 Hz	80 Hz	OFF
5		24	88 Hz	88 Hz	88 Hz	OFF
		25			96 Hz	OFF
2		25	96 Hz	96 Hz		
2		26	52 Hz	52 Hz	52 Hz	ON 1
3		27	62 Hz	62 Hz	62 Hz	ON 1
۲		28	68 Hz	68 Hz	68 Hz	ON 1
ŝ		29	74 Hz	74 Hz	74 Hz	ON 1
2						
3		30	80 Hz	80 Hz	80 Hz	ON 1
3		31	88 Hz	88 Hz	88 Hz	ON 1
F		32	96 Hz	96 Hz	96 Hz	ON 1
i l		33	104 Hz	104 Hz	104 Hz	ON 1
i l						
		34	52 Hz	52 Hz	52 Hz	ON 2
Ł		35 36	62 Hz	62 Hz	62 Hz	ON 2
F		36	74 Hz	74 Hz	74 Hz	ON 2
ī		37	88 Hz	88 Hz	88 Hz	ON 2
ŀ		38	96 Hz	96 Hz	96 Hz	ON 2
÷		39	52 Hz	52 Hz	52 Hz	ON 3
		40	62 Hz	62 Hz	62 Hz	ON 3 ON 3
		41	74 Hz	74 Hz	74 Hz	ON 3
		42	92 Hz	92 Hz	92 Hz	ON 3
		43	104 Hz	104 Hz	104 Hz	ON 3
		44	52 Hz	52 Hz	52 Hz	ON 4
ŀ		45	62 Hz	62 Hz	62 Hz	ON 4
ŀ		46	74 Hz	74 Hz	74 Hz	ON 4
	1	47	96 Hz	96 Hz	96 Hz	ON 4
		48	104 Hz	104 Hz	104 Hz	ON 4
		49	116 Hz	116 Hz	116 Hz	ON 4
		50	124 Hz	124 Hz	124 Hz	ON 4
		51	144 Hz	144 Hz	144 Hz	ON 4
		52		158 Hz	158 Hz	ON 4
		53	166 Hz	166 Hz	166 Hz	ON 4
		54	176 Hz	176 Hz	176 Hz	ON 4
		55	188 Hz		188 Hz	ON 4
		56			202 Hz	ON 4
		57	210 Hz	210 Hz	210 Hz	ON 4
		58	210 Hz	210 Hz	218 Hz	ON 4
			210 Hz	210 Hz	232 Hz	
		59	210 Hz	210 Hz	218 Hz 232 Hz	ON 4
			210 Hz 210 Hz	210 Hz 210 Hz 210 Hz	248 Hz	ON 4 ON 4 ON 4

represents the range in which "Hz" is not stepped up.

Notes:

- 1. INV : Inverter compressor
 - STD : Standard compressor

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

STEP No.

STD

OFF

represents the range in which "Hz" is not stepped up.

STEP No.

1

 (To decrease Step No.)

 P
 Master unit INV
 Slave unit INV
 Slave unit INV
 Slave unit INV

 52 Hz
 OFF
 OFF
 OFF

 56 Hz
 OFF
 OFF
 OFF

 68 Hz
 OFF
 OFF
 OFF

 74 Hz
 OFF
 OFF
 OFF

 80 Hz
 OFF
 OFF
 OFF

 96 Hz
 OFF
 OFF
 OFF

 80 Hz
 OFF
 OFF
 OFF

 96 Hz
 OFF
 OFF
 OFF

 66 Hz
 66 Hz
 OFF
 OFF

 70 Hz
 70 Hz
 OFF
 OFF

 74 Hz
 56 Hz
 56 Hz
 SE Hz
 OFF

 70 Hz
 70 Hz
 OFF
 74 Hz
 OFF
 74 Hz
 OFF

 74 Hz
 56 Hz
 56 Hz
 56 Hz
 56 Hz
 66 Hz
 <td

166 Hz 100 Hz 100 Hz 176 Hz 176 Hz 176 Hz 188 Hz 188 Hz 188 Hz 202 Hz 202 Hz 202 Hz 210 Hz 210 Hz 210 Hz 210 Hz 210 Hz 218 H 210 Hz 210 Hz 228 H

210 Hz

(To decrease Step No.)

RXYQ44PAHY1 (12+16+16HP) RXYQ44PAHYL RXYQ44PHTL

1/1 0/4411		
(To incr		
orren Master	Slave	Slave

unit INV 52 Hz 52 Hz 56 Hz 56 Hz 62 Hz 62 Hz

66 Hz 68 Hz 70 Hz 74 Hz

88 Hz 8 96 Hz

80 Hz 80

132 Hz 88 Hz 96 Hz 104 Hz 124 Hz 144 Hz

116 Hz 96 Hz 104 Hz 116 Hz 124 Hz 144 H 96 Hz 104 Hz 116 Hz 144 158 Hz 15 166 Hz 16

unit1 INV

ep No.)				(To de	crease S	Step No.)	
Slave unit2	STD	ł	STEP No.	Master unit	Slave unit1	Slave unit2	STD	
INV 52 Hz	OFF		1	INV 52 Hz	INV OFF	INV OFF	OFF	
56 Hz	OFF		2	56 Hz	OFF	OFF	OFF	
62 Hz	OFF		3	62 Hz	OFF	OFF	OFF	
66 Hz	OFF		4	68 Hz	OFF	OFF	OFF	
68 Hz	OFF		5	74 Hz	OFF	OFF	OFF OFF	
<u>70 Hz</u> 74 Hz	OFF OFF		6	80 Hz 88 Hz	OFF OFF	OFF OFF	OFF	
80 Hz	OFF		8	96 Hz	OFF	OFF	OFF	
88 Hz	OFF		9	104 Hz	OFF	OFF	OFF	
96 Hz	OFF		10	52 Hz	52 Hz	OFF	OFF	
104 Hz	OFF		11	56 Hz	56 Hz	OFF	OFF	
1 <u>10 Hz</u> 116 Hz	OFF OFF		12 13	62 Hz	62 Hz	OFF OFF	OFF OFF	
124 Hz	OFF		13	66 Hz 70 Hz	66 Hz 70 Hz	OFF	OFF	
80 Hz	ON 1		15	74 Hz	74 Hz	OFF	OFF	
88 Hz	ON 1		16	52 Hz	52 Hz	52 Hz	OFF	
96 Hz	ON 1		17	56 Hz	56 Hz	56 Hz	OFF	
104 Hz	ON 1		18	62 Hz	62 Hz	62 Hz	OFF	
116 Hz	ON 1		19	66 Hz	66 Hz	66 Hz	OFF	
124 Hz 132 Hz	ON 1 ON 1		20	68 Hz 70 Hz	68 Hz 70 Hz	68 Hz 70 Hz	OFF OFF	
88 Hz	ON 2		22	74 Hz	74 Hz	74 Hz	OFF	
96 Hz	ON 2		23	80 Hz	80 Hz	80 Hz	OFF	
104 Hz	ON 2		24	88 Hz	88 Hz	88 Hz	OFF	
124 Hz	ON 2		25	96 Hz	96 Hz	96 Hz	OFF	
144 Hz	ON 2		26 27	52 Hz	52 Hz	52 Hz	ON 1	
<u>92 Hz</u> 104 Hz	ON 3 ON 3		27	62 Hz 68 Hz	62 Hz 68 Hz	62 Hz 68 Hz	ON 1 ON 1	
116 Hz	ON 3		29	74 Hz	74 Hz	74 Hz	ON 1	
124 Hz	ON 3		30	80 Hz	80 Hz	80 Hz	ON 1	
144 Hz	ON 3		31	88 Hz	88 Hz	88 Hz	ON 1	
96 Hz	ON 4		32	96 Hz	96 Hz	96 Hz	ON 1	
104 Hz	ON 4		33	104 Hz	104 Hz	104 Hz	ON 1	
1 <u>16 Hz</u> 124 Hz	ON 4 ON 4		34 35	52 Hz 62 Hz	52 Hz 62 Hz	52 Hz 62 Hz	ON 2 ON 2	
144 Hz	ON 4		36	74 Hz	74 Hz	74 Hz	ON 2	
96 Hz	ON 5		37	88 Hz	88 Hz	88 Hz	ON 2	
104 Hz	ON 5		38	96 Hz	96 Hz	96 Hz	ON 2	
116 Hz	ON 5		39	52 Hz	52 Hz	52 Hz	ON 3	
124 Hz	ON 5		40	62 Hz 74 Hz	62 Hz 74 Hz	62 Hz	ON 3 ON 3	
144 Hz 158 Hz	ON 5 ON 5		41 42	92 Hz	92 Hz	74 Hz 92 Hz	ON 3	
166 Hz	ON 5		43	104 Hz		104 Hz	ON 3	
176 Hz	ON 5		44	52 Hz	52 Hz	52 Hz	ON 4	
188 Hz	ON 5		45	62 Hz	62 Hz	62 Hz	ON 4	
202 Hz	ON 5		46	74 Hz	74 Hz	74 Hz	ON 4	
210 Hz	ON 5		47 48	96 Hz 104 Hz	96 Hz 104 Hz	96 Hz 104 Hz	ON 4 ON 4	
			40	52 Hz	52 Hz	52 Hz	ON 5	
			50	68 Hz	68 Hz	68 Hz	ON 5	
			51	80 Hz	80 Hz	80 Hz	ON 5	Y
			52	96 Hz	96 Hz	96 Hz	ON 5	
			53		104 Hz	104 Hz	ON 5	
			54		116 Hz		ON 5	
			55 56		124 Hz 144 Hz	124 Hz 144 Hz	ON 5 ON 5	
			57		158 Hz	158 Hz	ON 5	
			58		166 Hz		ON 5	
			59		176 Hz		ON 5	
			60	188 Hz	188 Hz	188 Hz	ON 5	

	RXYQ46PHTL							
		(To inc	rease S	tep No.)				
	STEP No.	Master unit INV	Slave unit1 INV	Slave unit2 INV	STD	ł		
	1	52 Hz	52 Hz	52 Hz	OFF			
11	2	56 Hz	56 Hz	56 Hz	OFF			
	3	62 Hz	62 Hz	62 Hz	OFF			
	4	66 Hz	66 Hz	66 Hz	OFF			
	5	68 Hz	68 Hz	68 Hz	OFF			
	6	70 Hz	70 Hz	70 Hz	OFF			
	7	74 Hz	74 Hz	74 Hz	OFF			
	8	80 Hz	80 Hz	80 Hz	OFF			
	9	88 Hz	88 Hz	88 Hz	OFF OFF			
	10 11	96 Hz 104 Hz	96 Hz 104 Hz	96 Hz 104 Hz	OFF	1		
	12		1104 HZ		OFF	1		
	13		116 Hz		OFF	1		
	14				OFF			
	15	80 Hz	80 Hz	80 Hz	ON 1			
	16	88 Hz	88 Hz	88 Hz	ON 1			
	17	96 Hz	96 Hz	96 Hz	ON 1			
	18		104 Hz		ON 1			
	19	116 Hz	116 Hz	116 Hz	ON 1			
11	20	124 Hz	124 Hz	124 Hz	ON 1			
	20 21	132 Hz	132 Hz	132 Hz	ON 1			
	22	88 Hz	88 Hz	88 Hz	ON 2			
	23	96 Hz	96 Hz	96 Hz	ON 2			
	24		104 Hz		ON 2			
	25		124 Hz		ON 2			
	26		144 Hz		ON 2			
	27	92 Hz	92 Hz	92 Hz	ON 3			
	28	104 Hz	104 Hz	104 Hz	ON 3			
	29		116 Hz		ON 3			
	30 31		124 Hz 144 Hz		ON 3 ON 3	1		
	32	96 Hz	96 Hz	96 Hz	ON 3 ON 4			
	33	104 Hz	104 Hz		ON 4			
	34		116 Hz		ON 4			
	35		124 Hz		ON 4			
	36		144 Hz		ON 4			
11	52	96 Hz	96 Hz	96 Hz	ON 5			
11	53		104 Hz		ON 5			
	54		116 Hz		ON 5			
	55		124 Hz		ON 5			
	56	144 Hz	144 Hz	144 Hz	ON 5			
	57		158 Hz		ON 5			
	58		166 Hz		ON 5			
	59	176 Hz	176 Hz	176 Hz	ON 5			
	60	188 Hz	188 Hz	188 Hz				
	61	202 Hz	202 Hz 210 Hz	202 Hz	ON 5			
	62	210 HZ	210 HZ	210 HZ	ON 5			
	63 64		210 Hz		ON 5 ON 5			
	65	210 112	210 Hz 210 Hz	232 HZ 248 Hz	ON 5 ON 5			
*	66	210 Hz	210 Hz	266 Hz	ON 5			
'	00				CNO	1		

RXYQ46PAHY1 (12+16+18HP)

RXYQ46PAHYL

- 1. INV : Inverter compressor
 - STD : Standard compressor

Figures after ON represent the number of STD compressors in operation.

202 Hz 202 Hz 202 Hz 210 Hz 210 Hz 210 Hz

- 2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.
- 3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

represents the range in which "Hz" is not stepped up.

RXYQ50PAHY1 (16+16+18HP)

RXYQ50PAHYL

RXYQ50PHTL

STD

OFF

RXYQ48PAHY1 (16+16+16HP) RXYQ48PAHYL RXYQ48PHTL

	(To inc	rease S	tep No.)				(To de	crease S	Step No.)
	Master	Slave	Slave		1		Master	Slave	Slave	
STEP	unit	unit1	unit2	STD	♠	STEP	unit	unit1	unit2	
No.				310		No.				
4	INV	INV	INV	055			INV	INV	INV	-
1	52 Hz	<u>52 Hz</u>	52 Hz	OFF		1	52 Hz	OFF	OFF	-
2	56 Hz	56 Hz	56 Hz	OFF		2	56 Hz	OFF	OFF	
3	62 Hz	62 Hz	62 Hz	OFF		3	62 Hz	OFF	OFF	
4	66 Hz	66 Hz	66 Hz	OFF		4	68 Hz	OFF	OFF	
5	68 Hz	68 Hz	68 Hz	OFF		5	74 Hz	OFF	OFF	Γ
6	70 Hz	70 Hz	70 Hz	OFF		6	80 Hz	OFF	OFF	
7	74 Hz	74 Hz	74 Hz	OFF		7	88 Hz	OFF	OFF	
8	80 Hz	80 Hz	80 Hz	OFF		8	96 Hz	OFF	OFF	
9	88 Hz	88 Hz	88 Hz	OFF		9	104 Hz	OFF	OFF	H
10	96 Hz	96 Hz	96 Hz	OFF		10	52 Hz	52 Hz	OFF	H
11	104 Hz	104 Hz	104 Hz	OFF		11	56 Hz	56 Hz	OFF	⊢
12				OFF		12	62 Hz		OFF	-
	110 Hz	110 Hz	110 Hz					62 Hz		-
13	116 Hz	116 Hz	116 Hz	OFF		13	66 Hz	66 Hz	OFF	-
14	124 Hz	124 Hz	124 Hz	OFF		14	70 Hz	70 Hz	OFF	-
15	80 Hz	80 Hz	80 Hz	ON 1		15	74 Hz	74 Hz	OFF	
16	88 Hz	88 Hz	88 Hz	ON 1		16	52 Hz	52 Hz	52 Hz	
17	96 Hz	96 Hz	96 Hz	ON 1		17	56 Hz	56 Hz	56 Hz	
18	104 Hz	104 Hz	104 Hz	ON 1		18	62 Hz	62 Hz	62 Hz	
19	116 Hz	116 Hz	116 Hz	ON 1		19	66 Hz	66 Hz	66 Hz	Г
20	124 Hz	124 Hz	124 Hz	ON 1		20	68 Hz	68 Hz	68 Hz	Г
21	132 Hz	132 Hz	132 Hz	ON 1		21	70 Hz	70 Hz	70 Hz	
22	88 Hz	88 Hz	88 Hz	ON 2		22	74 Hz	74 Hz	74 Hz	
23	96 Hz	96 Hz	96 Hz	ON 2		23	80 Hz	80 Hz	80 Hz	F
24	104 Hz	104 Hz	104 Hz	ON 2		24	88 Hz	88 Hz	88 Hz	H
25	124 Hz	124 Hz	124 Hz	ON 2		25	96 Hz	96 Hz	96 Hz	⊢
26				ON 2		26				h
	144 Hz	144 Hz	144 Hz				52 Hz	52 Hz	52 Hz	H
27	92 Hz	92 Hz	92 Hz	ON 3		27	62 Hz	62 Hz	62 Hz	Ľ
28	104 Hz	104 Hz	104 Hz	ON 3		28	68 Hz	<u>68 Hz</u>	<u>68 Hz</u>	-
29	116 Hz	116 Hz	116 Hz	ON 3		29	74 Hz	74 Hz	74 Hz	-
30	124 Hz	124 Hz	124 Hz	ON 3		30	80 Hz	80 Hz	80 Hz	
31	144 Hz	144 Hz	144 Hz	ON 3		31	88 Hz	88 Hz	88 Hz	
32	96 Hz	96 Hz	96 Hz	ON 4		32	96 Hz	96 Hz	96 Hz	1
33	104 Hz	104 Hz	104 Hz	ON 4		33	104 Hz	104 Hz	104 Hz	1
34	116 Hz	116 Hz	116 Hz	ON 4		34	52 Hz	52 Hz	52 Hz	1
35	124 Hz	124 Hz	124 Hz	ON 4		35	62 Hz	62 Hz	62 Hz	1
36	144 Hz	144 Hz	144 Hz	ON 4		36	74 Hz	74 Hz	74 Hz	
37	96 Hz	96 Hz	96 Hz	ON 5		37	88 Hz	88 Hz	88 Hz	
38	104 Hz	104 Hz	104 Hz	ON 5		38	96 Hz	96 Hz	96 Hz	
39	116 Hz	116 Hz	116 Hz	ON 5		39	52 Hz	52 Hz	52 Hz	
40	124 Hz	124 Hz	124 Hz	ON 5		40	62 Hz	62 Hz	62 Hz	H
41	144 Hz	144 Hz	144 Hz	ON 5		41	74 Hz	74 Hz	74 Hz	H
42	96 Hz	96 Hz	96 Hz	ON 6		42	92 Hz	92 Hz	92 Hz	H
42	104 Hz	104 Hz	104 Hz	ON 6		42	104 Hz	104 Hz	104 Hz	H
				ON 6						H
44	116 Hz	116 Hz	116 Hz	OND		44	52 Hz	52 Hz	52 Hz	Ľ
45	124 Hz	124 Hz	124 Hz	ON 6		45	62 Hz	62 Hz	62 Hz	-
46		144 Hz	144 Hz	ON 6		46	74 Hz	74 Hz	74 Hz	-
47	158 Hz	158 Hz	158 Hz	ON 6		47	96 Hz	96 Hz	96 Hz	
48	166 Hz	166 Hz	166 Hz	ON 6		48	104 Hz	104 Hz	104 Hz	1
49	176 Hz	176 Hz	176 Hz	ON 6		49	52 Hz	52 Hz	52 Hz	
50	188 Hz	188 Hz	188 Hz	ON 6		50	68 Hz	68 Hz	68 Hz	
51	202 Hz	202 Hz	202 Hz	ON 6		51	80 Hz	80 Hz	80 Hz	1
52	210 Hz	210 Hz	210 Hz	ON 6		52	96 Hz	96 Hz	96 Hz	1
					1	53	104 Hz	104 Hz	104 Hz	
						54	52 Hz	52 Hz	52 Hz	
					1	55	68 Hz	68 Hz	68 Hz	Π
						56	80 Hz	80 Hz	80 Hz	H
					- 1	- 50	00112	00112	00112	H

		RAT	JOUP					
					tep No.)			
		STEP	Master	Slave	Slave	OTD	4	STEP
		No.	unit INV	unit1 INV	unit2 INV	STD		No.
1		1	52 Hz	52 Hz	52 Hz	OFF		1
1			56 Hz	56 Hz	56 Hz	OFF		2
		2	62 Hz	62 Hz	62 Hz	OFF		3
		4	66 Hz	66 Hz	66 Hz	OFF		4
		5	68 Hz	68 Hz	68 Hz	OFF		5
		6	70 Hz 74 Hz	70 Hz 74 Hz	70 Hz 74 Hz	OFF OFF		6
		8	80 Hz	80 Hz	74 HZ 80 HZ	OFF		8
		9	88 Hz	88 Hz	88 Hz	OFF		9
1		10	96 Hz	96 Hz	96 Hz	OFF		10
1		11		104 Hz		OFF		11
		12			110 Hz	OFF		12
		13			116 Hz	OFF		13
		14	124 Hz	124 Hz	124 Hz	OFF ON 1		14
		15	80 Hz 88 Hz	80 Hz 88 Hz	80 Hz 88 Hz	ON 1 ON 1		15
		16	96 Hz	96 Hz	96 Hz	ON 1		16 17
1		18	104 Hz	104 Hz	104 Hz	ON 1		18
1		19	116 Hz	116 Hz	116 Hz	ON 1		40
		19 20 21	124 Hz	124 Hz	124 Hz	ON 1		20 21
		21	132 Hz	132 Hz	132 Hz	ON 1		21
		22 23	88 Hz	88 Hz	88 Hz	ON 2 ON 2 ON 2 ON 2 ON 2 ON 2		22
		23	96 Hz 104 Hz	96 Hz 104 Hz	96 Hz 104 Hz	ON 2 ON 2		23 24
		24	124 Hz	124 Hz	124 Hz	ON 2		24
1		26	144 Hz	144 Hz	144 11-	ON 2		26
1		27	92 Hz	92 Hz	92 Hz			27
		28	104 Hz	104 Hz	104 HZ	ON 3		28
		29	116 Hz	116 Hz	116 Hz	ON 3		29
		30	124 Hz	124 Hz	124 Hz	ON 3 ON 3		30
		31 32	144 Hz	144 Hz 96 Hz	144 Hz 96 Hz	ON 3 ON 4		30 31 32
		33	96 Hz 104 Hz		104 Hz	ON 4		33
1		24	116 Hz	116 Hz	116 Hz	ON 4		24
1		25	124 Hz	124 Hz	124 Hz	ON 4		25
		36		144 Hz	144 Hz	ON 4		
			96 Hz	96 Hz	96 Hz			
		37	104 Hz	104 Hz	104 Hz	ON 5 ON 5 ON 5		1 28
		39			116 Hz	ON 5		39
		40	124 Hz 144 Hz	124 Hz 144 Hz	124 Hz 144 Hz	ON 5 ON 5		40
		41	96 Hz	96 Hz	96 Hz	ON 6		41
1		43		104 Hz	104 Hz	ON 6		43
		44		116 Hz	116 Hz	ON 6		44
1		45	124 Hz	124 Hz	124 Hz	ON 6		45
1		46		144 Hz	144 Hz	ON 6		46
		47	158 Hz	158 Hz		ON 6		47
		48 49	166 Hz 176 Hz	166 Hz	166 Hz	ON 6 ON 6		48 49
		50	40011-	10011-	176 Hz 188 Hz	ON 6		50
		50 51	202 Hz	202 Hz	202 Hz	ON 6		50 51
j		52	210 Hz	210 Hz	210 Hz	ON 6		52
]		53	188 Hz 202 Hz 210 Hz 210 Hz 210 Hz 210 Hz 210 Hz	210 Hz	218 Hz	ON 6		53
ļ		54	210 Hz	210 Hz	232 Hz	ON 6		54
ļ	Ť	55	210 Hz	210 Hz	248 Hz	ON 6		55 56 57
		56	210 HZ	210 HZ	266 HZ	ON 6		56
								57 58 59
								59
1								60
J								61
1								62 63
								63
ļ								64
								65
ł								66 67
								68
								69
							- 1	70

Notes:

1. INV : Inverter compressor

STD : Standard compressor

Figures after ON represent the number of STD compressors in operation.

2. "Master unit", and "slave unit" in this section are the names for control, and they will be transferred according to the priority of rotation system.

3. Depending on the operating conditions of compressors, the compressors may run in patterns other than those aforementioned.

OFF	OFF	
OFF	OFF	
OFF	OFF	

STD OFF

OFF

(To decrease Step No.)

 Master
 Slave
 slave

 unit
 unit1
 unit1
 unit2

 INV
 INV
 INV
 INV

 52 Hz
 OFF
 OFF
 OFF

 56 Hz
 OFF
 OFF
 OFF
 OFF

 62 Hz
 OFF
 OFF
 OFF
 OFF

 64 Hz
 OFF
 OFF
 OFF
 OFF

 62
 Hz
 62
 Hz
 66
 Hz
 66
 Hz
 66
 Hz
 66
 Hz
 66
 Hz
 68
 Hz
 52
 Hz<

 74
 Hz
 74
 Hz
 74
 Hz
 74

 80
 Hz
 80
 Hz
 80
 Hz
 01

 88
 Hz
 96
 Hz
 96
 Hz
 96
 Hz
 96
 Hz
 96
 Hz
 96
 Hz
 92
 Hz
 92
 Hz
 92
 Hz</t

92 Hz 92 Hz 92 Hz 104 Hz 104 Hz 104 Hz 52 Hz 52 Hz 52 Hz

52 Hz 52 Hz 52 Hz 62 Hz 62 Hz 62 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 104 Hz 104 Hz 104 Hz 152 Hz 52 Hz 52 Hz 80 Hz 80 Hz 80 Hz 80 Hz 80 Hz 80 Hz 96 Hz 96 Hz 96 Hz 104 Hz

104 Hz 104 Hz 104 Hz 52 Hz 52 Hz 52 Hz 68 Hz 68 Hz 68 Hz 80 Hz 80 Hz 80 Hz 96 Hz 96 Hz 96 Hz 104 Hz 104 Hz 104 Hz 116 Hz 116 Hz 116 Hz 124 Hz 124 Hz 124 Hz 148 Hz 158 Hz 158 Hz 156 Hz 166 Hz 166 Hz 166 Hz 166 Hz 176 Hz 176 Hz 176 Hz

176 Hz 176 Hz 176 Hz 188 Hz 188 Hz 188 Hz 202 Hz 202 Hz 202 Hz 210 Hz 210 Hz 210 Hz

210 Hz 210 Hz 248 Hz 210 Hz 210 Hz 266 Hz

210 Hz 210 Hz 210 Hz 210 Hz

70

 80 Hz
 OFF

 88 Hz
 OFF

 96 Hz
 OFF

 104 Hz
 OFF

 52 Hz
 52 Hz

 66 Hz
 66 Hz

 66 Hz
 66 Hz

 70 Hz
 70 Hz

 74 Hz
 52 Hz

 56 Hz
 56 Hz

 56 Hz
 56 Hz

 52 Hz
 52 Hz

 66 Hz
 66 Hz

 52 Hz
 52 Hz

 56 Hz
 56 Hz

 56 Hz
 56 Hz

 56 Hz
 56 Hz

 56 Hz
 56 Hz

 62 Hz
 62 Hz

2.3 Electronic Expansion Valve PI Control

Main Motorized Valve EV1 Control

Carries out the motorized valve (Y1E) PI control to maintain the evaporator outlet superheated degree (SH) at constant during heating operation to make maximum use of the outdoor unit heat exchanger (evaporator).

SH = Ts1 - Te

- SH: Evaporator outlet superheated degree (°C)
- Ts1: Suction pipe temperature detected by thermistor R6T (R7T) (°C)
- Te : Low pressure equivalent saturation temperature (°C)

The optimum initial value of the evaporator outlet superheated degree is 5°C, but varies depending on the discharge pipe superheated degree of inverter compressor.

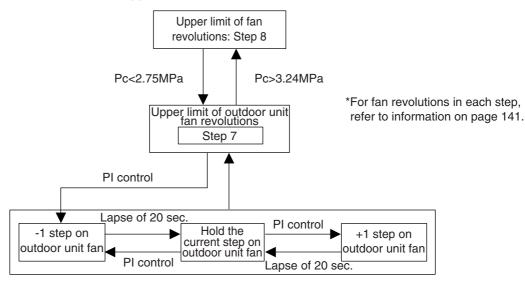
Subcooling Motorized Valve EV2 Control

Makes PI control of the motorized valve (Y2E) to keep the superheated degree of the outlet gas pipe on the evaporator side for the full use of the subcooling heat exchanger.

SH = Tsh -Te

- SH: Outlet superheated degree of evaporator (°C)
- Tsh : Suction pipe temperature detected with the thermistor R5T (°C)
- Te : Low pressure equivalent saturation temperature (°C)

2.4 Step Control of Outdoor Unit Fans


Used to control the revolutions of outdoor unit fans in the steps listed in table below, according to condition changes.

		Fan revolutions (rpm)								
STEP No.	RXYQ5P(A)	RXYQ8P(A)	RXYQ10P(A)		12P(A) 14P(A)	RXYQ	16P(A)	RXYQ	18P(A)	
				FAN1	FAN2	FAN1	FAN2	FAN1	FAN2	
0	0	0	0	0	0	0	0	0	0	
1	285	350	350	230	0	230	0	395	0	
2	315	370	370	380	0	380	0	460	0	
3	360	400	400	290	260	290	260	570	0	
4	450	450	460	375	345	375	345	385	355	
5	570	540	560	570	540	570	540	550	520	
6	710	670	680	720	690	720	690	800	770	
7	Cooling: 951 Heating: 941	760	Cooling: 821 Heating: 800	1091	1061	1091	1061	1136	1106	
8	Cooling: 951 Heating: 941	Cooling: 796 Heating: 780	Cooling: 821 Heating: 800	1136	1106	1136	1106	1166	1136	

* Figures listed above are all those controlled while in standard mode, which vary when the system is set to high static pressure or capacity precedence mode.

2.5 Outdoor Unit Fan Control in Cooling Operation

While in cooling operation, if the outdoor temperature is low, this mode provides high-pressure control using the outdoor unit fan to retain appropriate liquid pressure, thus ensuring refrigerant circulation rate to be supplied to indoor units.

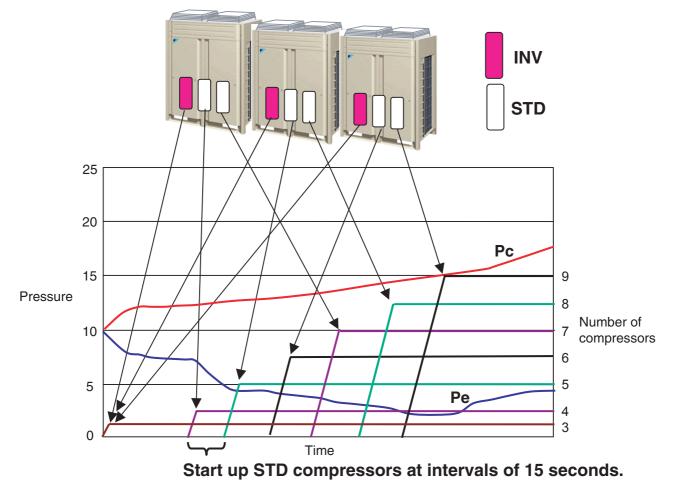
3. Special Control

3.1 Startup Control

This control is used to equalize the pressure in the front and back of the compressor prior to the startup of the compressor, thus reducing startup loads. Furthermore, the inverter is turned ON to charge the capacitor. In addition, to avoid stresses to the compressor due to oil return or else after the startup, the following control is made and the position of the four way valve is also determined. To position the four way valve, the master and slave units simultaneously start up.

3.1.1 Startup Control in Cooling Operation

\ \	/				
	Pressure equalization	Startup control			
	control prior to startup	STEP1	STEP2		
Compressor	0 Hz	52 Hz + OFF + OFF	124 Hz + OFF + OFF +2 steps/20 sec. (until Pc - Pe>0.39MPa is achieved)		
Outdoor unit fan	STEP4	Ta<20°C: OFF Ta≥20°C: STEP4	+1 step/15 sec. (when Pc>2.16MPa) -1 step/15 sec. (when Pc<1.77MPa)		
Four way valve (20S1)	Holds	OFF	OFF		
Main motorized valve (EV1)	0 pls	480 pls	480 pls		
Subcooling motorized valve (EV2) (RXYQ8~)	0 pls	0 pls	0 pls		
Hot gas bypass valve (SVP)	OFF	OFF	OFF		
Accumulator oil return valve (SVO)	OFF	OFF	OFF		
Injection (SVT) (RXYQ5P model)	OFF	OFF	OFF		
Ending conditions	A lapse of one minute	A lapse of 10 sec.	OR • A lapse of 130 sec. • Pc - Pe>0.39MPa		


Thermostat ON

3.1.2 Startup Control in Heating Operation

	I hermostat ON	NC			
	Pressure equalization	Startup control			
	control prior to startup	STEP1	STEP2		
Compressor	0 Hz	52 Hz + OFF + OFF	124 Hz + OFF + OFF +2 steps/20 sec. (until Pc - Pe>0.39MPa is achieved)		
Outdoor unit fan	STEP4	STEP8	STEP8		
Four way valve	Holds	ON	ON		
Main motorized valve (EV1)	0 pls	0 pls	0 pls		
Subcooling motorized valve (EV2) (RXYQ8~)	0 pls	0 pls	0 pls		
Hot gas bypass valve (SVP)	OFF	OFF	OFF		
Accumulator oil return valve (SVO)	OFF	OFF	OFF		
Injection (SVT) (RXYQ5P model)	OFF	OFF	OFF		
Ending conditions	A lapse of one minute	A lapse of 10 sec.	OR • A lapse of 130 sec. • Pc>2.70MPa • Pc-Pe>0.39MPa		

3.2 Large Capacity Start Up Control (Heating)

For startup, oil return operation, or setup after defrosting, start up multiple compressors at a high speed according to the conditions of indoor units with thermostat ON, thus maximizing the equipment capacity.

3.3 Oil Return Operation

In order to prevent the compressor from running out of oil, the oil return operation is conducted to recover oil flown out from the compressor to the system side.

3.3.1 Oil Return Operation in Cooling Operation

[Start conditions]

Referring to the set conditions for the following items, start the oil return operation in cooling.

• Cumulative oil feed rate

• Timer setting (Make this setting so as to start the oil return operation when the initial cumulative operating time reaches two hours after power supply is turned ON and then every eight hours.)

Furthermore, the cumulative oil feed rate is computed from Tc, Te, and compressor loads.

Outdoor unit actuator	Oil return preparation operation	Oil return operation	Post-oil-return operation	
Compressor	Take the current step as the upper limit.	5 HP: 52 Hz (→ Low pressure constant control) Other model: 52 Hz + ON + ON (→ Low pressure constant control) ↓ Maintain number of compressors in oil return preparation operation ON	Same as the "oil return operation" mode.	
Outdoor unit fan	Fan control (Normal cooling)	Fan control (Normal cooling)	Fan control (Normal cooling)	
Four way valve	OFF	OFF	OFF	
Main motorized valve (EV1)	480 pls	480 pls	480 pls	
Subcooling motorized valve (EV2)	SH control	0 pls	0 pls	
Hot gas bypass valve (SVP)	OFF	OFF	OFF	
Accumulator oil return valve (SVO) ON		ON	ON	
Ending conditions	20 sec.	or • 3 min. • Ts - Te<5°C	or 9 min. • Pe<0.6MPa • HTdi>110°C	

* In the case of multi-outdoor-unit system,

Master unit: Performs the operations listed in the table above.

Slave units: Operating units perform the operations listed in the table above.

Non-operating units perform the operations listed in the table above from the oil return operation. (Non-operating unit stops during "oil return preparation operation".)

In	door unit actuator	Cooling oil return operation	
Fan	Thermostat ON unit	Remote controller setting	
	Stopping unit	OFF	
	Thermostat OFF unit	Remote controller setting	
	Thermostat ON unit	Normal opening	
Electronic expansion valve	Stopping unit	224 pls	
	Thermostat OFF unit	Normal opening with forced thermostat ON	

3.3.2 Oil Return Operation in Heating Operation

-	-			
Outdoor Unit Actuator	Oil return preparation operation	Oil return operation	Post-oil-return operation	
Compressor	Upper limit control	176 Hz + ON + ON	124 Hz + OFF + OFF 2-steps increase/20sec. till Pc - Pe>0.4 MPa	
Outdoor unit fan	STEP7 or OFF STEP8		STEP8	
Four way valve	ON	OFF	ON	
Main motorized valve (EV1)	SH control \rightarrow 480 pls 480 pls		55 pls	
Subcooling motorized valve (EV2)	SH control	0 pls	0 pls	
Hot gas bypass valve (SVP)	OFF	OFF	OFF	
Accumulator oil return valve (SVO)	ON	ON	ON	
Injection (SVT) (RXYQ5P model only)	OFF	OFF	OFF	
Ending conditions	170 sec.	or • 4 min. • Ts - Te<5°C	or • 10 sec. • Pc - Pe>0.4MPa	

* In the case of multi-outdoor-unit system,

Master unit: Performs the operations listed in the table above.

Slave units: Operating units perform the operations listed in the table above.

Non-operating units perform the operations listed in the table above from the oil return operation. (Non-operating unit stops during "oil return preparation operation".)

Ind	door unit actuator	Heating oil return operation	
Fan	Thermostat ON unit	OFF	
	Stopping unit	OFF	
	Thermostat OFF unit	OFF	
	Thermostat ON unit	Oil return EV opening degree	
Electronic expansion valve	Stopping unit	256 pls	
	Thermostat OFF unit	Oil return EV opening degree	

3.4 **Defrosting Operation**

To defrost the outdoor unit heat exchanger while in Evaporator, the defrost operation is conducted to recover the heating capacity.

[Start conditions]

Referring to the set conditions for the following items, start the defrosting operation.

- Heat transfer coefficient of the outdoor unit heat exchanger
- Heat exchange temperature (Tb)
- Timer (Set to two hours at minimum.)

Furthermore, the heat transfer coefficient of the outdoor unit Evaporator is computed from Tc, Te, and compressor loads.

Outdoor unit actuator	Defrost preparation operation	Defrost operation	Post Defrost operation	
Compressor	Upper limit control	176 Hz + ON + ON	124 Hz + OFF + OFF 2-steps increase/20sec. till Pc - Pe>0.4 MPa	
Outdoor unit fan	STEP7 or STEP8	OFF	STEP8	
Four way valve	ON	OFF	ON	
Main motorized valve (EV1)	SH control \rightarrow 480 pls	480 pls	55 pls	
Subcooling motorized valve (EV2)	0 pls	0 pls	0 pls	
Hot gas bypass valve (SVP)	OFF	OFF	OFF	
Accumulator oil return valve (SVO)	ON	ON	ON	
Injection (SVT) (RXYQ5P model only)	OFF	OFF	OFF	
Ending conditions	170 sec.	or • 10 min. • Tb>11°C	or • 10 sec. • Pc - Pe>0.4MPa	

* In the case of multi-outdoor-unit system,

Master unit: Performs the operations listed in the table above.

Slave units: Operating units perform the operations listed in the table above.

Non-operating units perform the operations listed in the table above from the Defrost operation.

(Non-operating unit stops during "Defrost preparation operation".)

Indoor unit actuator		During defrost	
Fan	Thermostat ON unit	OFF	
	Stopping unit	OFF	
	Thermostat OFF unit	OFF	
	Thermostat ON unit	Defrost EV opening degree	
Electronic expansion valve	Stopping unit	256 pls	
	Thermostat OFF unit	Defrost EV opening degree	

3.5 **Pump-down Residual Operation**

3.5.1 Pump-down Residual Operation in Cooling Operation

If the liquid refrigerant stays in the Evaporator at the startup of a compressor, this liquid refrigerant enters the compressor, thus resulting in diluted oil in the compressor and then degraded lubrication performance. Consequently, in order to recover the refrigerant in the Evaporator while the compressor stops, the pump-down residual operation is conducted.

Actuator	Master unit operation	Slave unit operation
Compressor	124 Hz + OFF + OFF	OFF
Outdoor unit fan	Fan control	OFF
Four way valve	OFF	OFF
Main motorized valve (EV1)	480 pls	0 pls
Subcooling motorized valve (EV2)	0 pls	0 pls
Hot gas bypass valve (SVP)	OFF	OFF
Accumulator oil return valve (SVO)	ON	ON
Ending conditions	or $egin{array}{c} \bullet 5 & \mbox{min.} \\ \bullet & \mbox{Master Unit Pe<0.49 MPa} \\ \bullet & \mbox{Master Unit Td>110°C} \\ \bullet & \mbox{Master Unit Pc>2.94 MPa} \end{array}$	

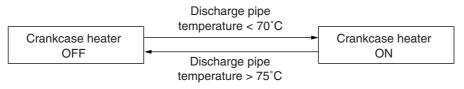
* Actuators are based on RXYQ14~18P(A).

3.5.2 Pump-down Residual Operation in Heating Operation

-		
Actuator	Master unit operation	Slave unit operation
Compressor	124 Hz + OFF + OFF	OFF
Outdoor unit fan	STEP7	STEP4
Four way valve	ON	ON
Main motorized valve (EV1)	0 pls	0 pls
Subcooling motorized valve (EV2)	0 pls	0 pls
Hot gas bypass valve (SVP)	OFF	OFF
Accumulator oil return valve (SVO)	ON	ON
Ending conditions	or • 3 min. • Master Unit Pe<0.25 MPa • Master Unit Td>110°C • Master Unit Pc>2.94 MPa	

3.6 Standby

3.6.1 Restart Standby


Used to forcedly stop the compressor for a period of 3 minutes, in order to prevent the frequent ON/OFF of the compressor and equalize the pressure within the refrigerant system.

Actuator	Operation
Compressor	OFF
Outdoor unit fan	Ta>30°C: STEP4 Ta≤30°C: OFF
Four way valve	Holds
Main motorized valve (EV1)	0 pls
Subcooling motorized (EV2)	0 pls
Hot gas bypass valve (SVP)	OFF
Accumulator oil return valve (SVO)	OFF
Injection (SVT) (RXYQ5P(A) model)	OFF
Ending conditions	2 min.

* Actuators are based on RXYQ14~18P(A).

3.6.2 Crankcase Heater Control

In order to prevent the refrigerant from melting in the compressor oil in the stopped mode, this mode is used to control the crankcase heater.

3.7 Stopping Operation

3.7.1 When System is in Stop Mode (Normal operation stop)

This mode is used to define actuator operations when the system stops.

Actuator	Operation
Compressor	OFF
Outdoor unit fan	OFF
Four way valve	Holds
Main motorized valve (EV1)	0 pls
Subcooling motorized valve (EV2)	0 pls
Hot gas bypass valve (SVP)	OFF
Accumulator oil return valve (SVO)	OFF
Injection (SVT) (RXYQ5P(A) model only)	OFF
Ending conditions	Indoor unit thermostat is turned ON.

* Actuators are based on RXYQ14~18P(A).

3.7.2 Stop due to Malfunction

In order to protect compressors, if any of the following items has an abnormal value, the system will make "stop with thermostat OFF" and the malfunction will be determined according to the number of retry times.

Item	Judgment Criteria	Malfunction Code
1. Abnormal low pressure level	0.07MPa	E4
2. Abnormal high pressure level	4.0MPa	E3
3. Abnormal discharge pipe temperature level	135°C	F3
4. Abnormal power supply voltage	Reverse-phase power supply	U1
5. Abnormal inverter current level	16.1A: 260 sec.	L8
6. Abnormal radiator fin temperature level	93°C	L4

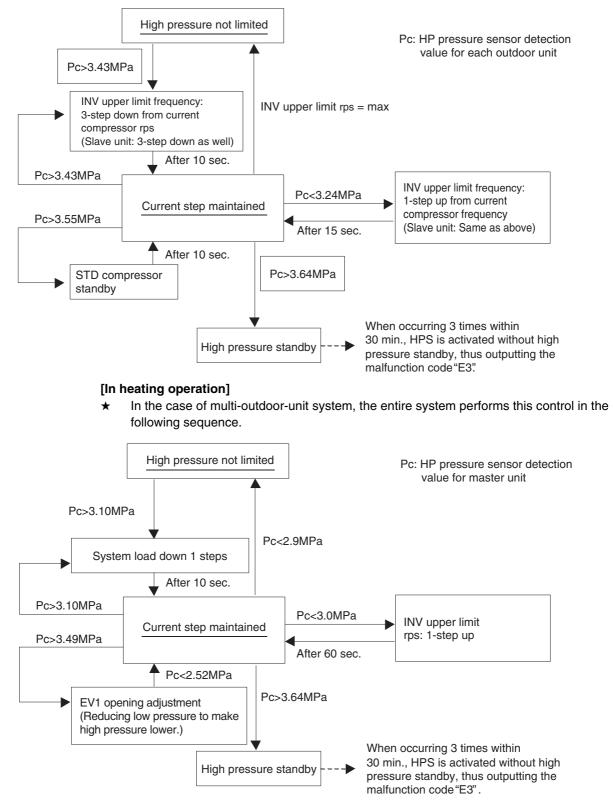
3.7.3 Stopping Operation of Slave Units During Master Unit is in Operation with Multi-Outdoor-Unit System

While the master unit is in operation, this mode is used to set the refrigerant flow rate to a required level using a slave unit in the stopped mode.

In cooling operation: Same as that of normal operation stop.

In heating operation: The system operates with following mode.

Actuator	Operation
Compressor	OFF
Outdoor unit fan	OFF
Four way valve	ON
Main motorized valve (EV1)	0 pls
Subcooling motorized valve (EV2)	0 pls
Hot gas bypass valve (SVP)	OFF
Accumulator oil return valve (SVO)	OFF
Injection valve (SVT 5HP only)	OFF
Ending conditions	Slave units are required to operate.

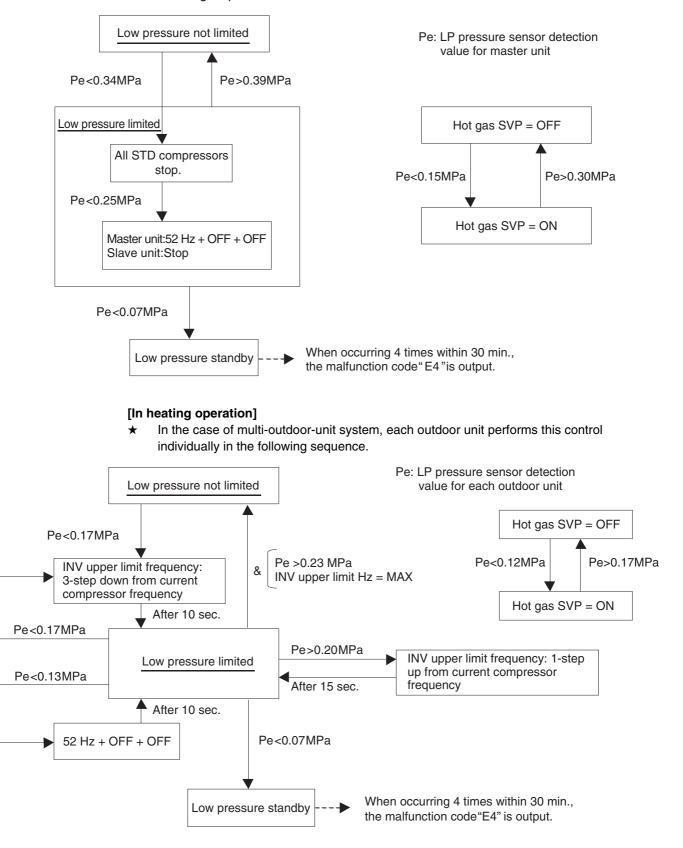

4. Protection Control

4.1 High Pressure Protection Control

This high pressure protection control is used to prevent the activation of protection devices due to abnormal increase of high pressure and to protect compressors against the transient increase of high pressure.

[In cooling operation]

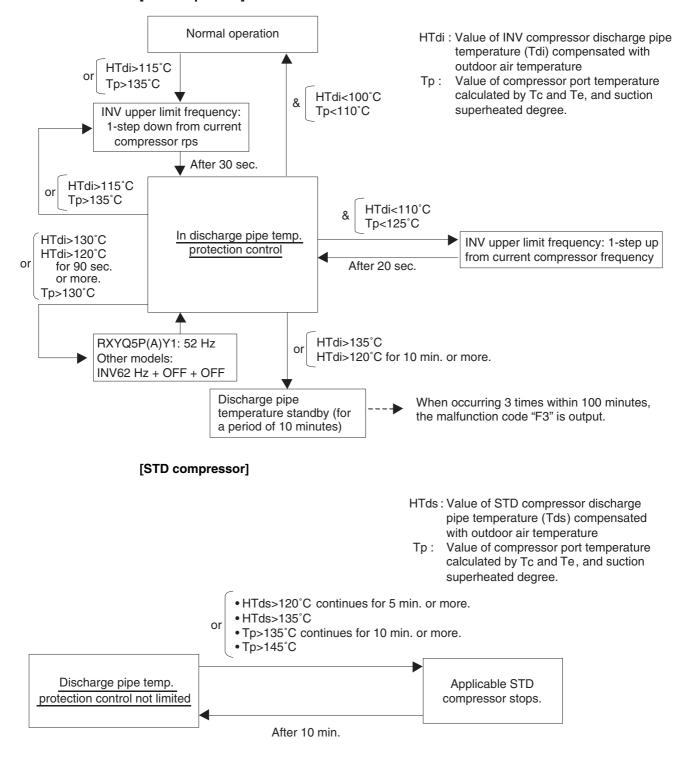
★ In the case of multi-outdoor-unit system, each outdoor unit performs this control individually in the following sequence.



4.2 Low Pressure Protection Control

This low pressure protection control is used to protect compressors against the transient decrease of low pressure.

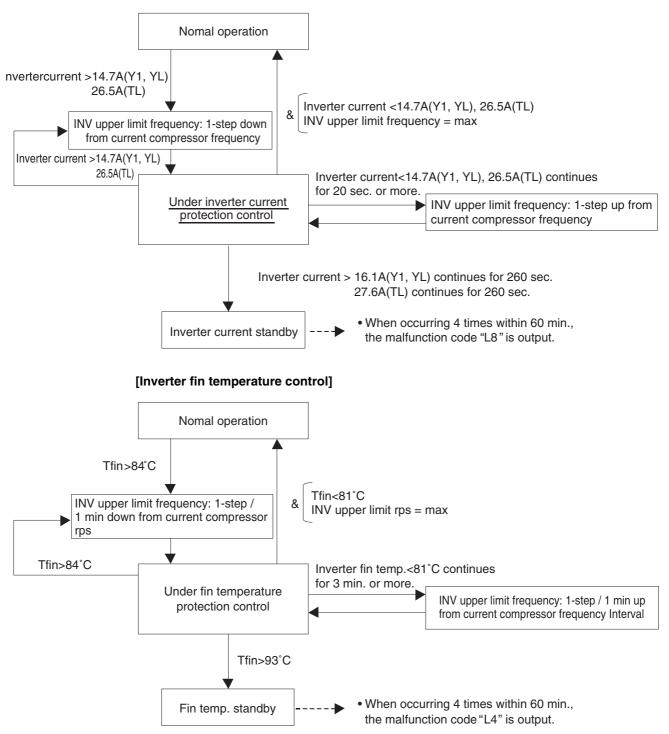
[In cooling operation]


★ In the case of multi-outdoor-unit system, the entire system performs this control in the following sequence.

4.3 Discharge Pipe Protection Control

This discharge pipe protection control is used to protect the compressor internal temperature against a malfunction or transient increase of discharge pipe temperature.

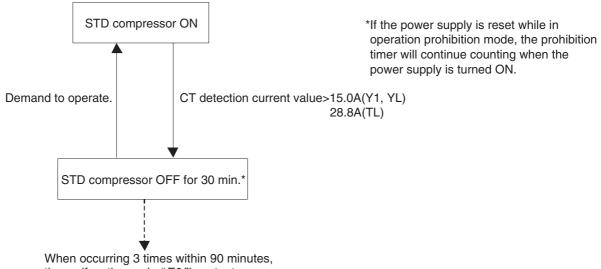
★ Each compressor performs the discharge pipe temperature protection control individually in the following sequence.



[INV compressor]

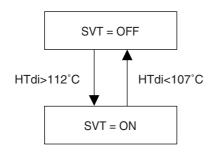
4.4 Inverter Protection Control

Inverter current protection control and inverter fin temperature control are performed to prevent tripping due to a malfunction, or transient inverter overcurrent, and fin temperature increase.


★ In the case of multi-outdoor-unit system, each INV compressor performs these controls in the following sequence.

[Inverter overcurrent protection control]

4.5 STD Compressor Overload Protection


This control is used to prevent abnormal heating due to overcurrent to the compressor resulting from failures of STD compressor such as locking.

the malfunction code "E6 "is output.

4.6 Injection Control (only for RXYQ5P(A))

For transitional rise in discharge pipe temperature, have the liquid refrigerant flow into the suction side to reduce the discharge pipe temperature for the compressor protection.

HTdi: Correction value of the discharge pipe temperature on the INV compressor.

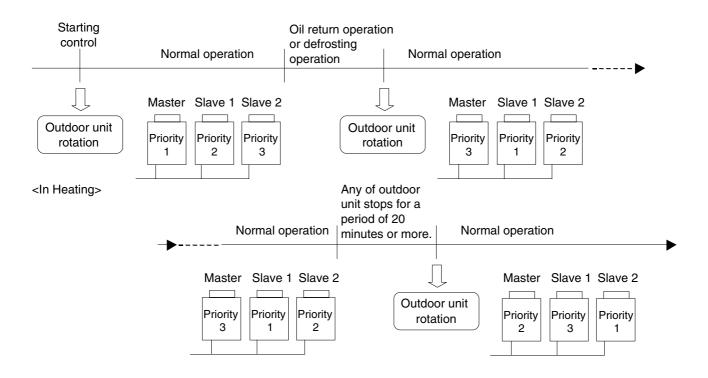
5. Other Control

5.1 Outdoor Unit Rotation

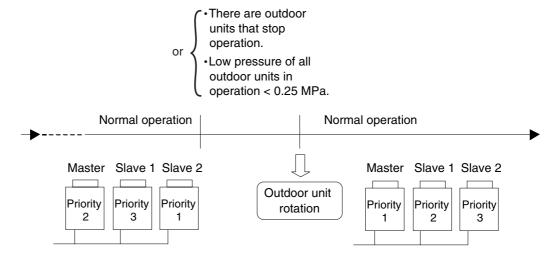
or

In the case of multi-outdoor-unit system, this outdoor unit rotation is used to prevent the compressor from burning out due to unbalanced oil level between outdoor units.

[Details of outdoor unit rotation]


In the case of multi-outdoor-unit system, each outdoor unit is given an operating priority for the control.

Outdoor unit rotation makes it possible to change the operating priority of outdoor units. Thus, the system becomes free of compressors that stop over an extended period of time at the time of partial loading, preventing unbalanced oil level.


[Timing of outdoor unit rotation]

- After oil return operation
- After defrosting operation
- At the beginning of the starting control
- When any of outdoor unit stops for a period of 20 minutes or more (in heating)
- There are outdoor units that stop operation (in cooling).
- Low pressure of all outdoor units in operation is less than 0.25 MPa (in cooling).

Example) The following diagram shows outdoor unit rotation in combination of 3 outdoor units. (in heating) (in cooling)

<In Cooling>

* "Master unit", "slave unit 1" and "slave unit 2" in this section are the names for installation. They are determined in installation work, and not changed thereafter. (These names are different from "master unit" and "slave unit" for control.)

The outdoor unit connected the control wires (F1 and F2) for the indoor unit should be designated as main unit.

Consequently, The LED display on the main PC board for "master unit", "slave unit 1" and "slave unit 2" do not change. (Refer to the page 161.)

5.2 **Emergency Operation**

If the compressor cannot operate, this control inhibits any applicable compressor or outdoor unit from operating to perform emergency operation only with the operative compressor or outdoor unit.

Caution

In order to disable the compressor operation due to a failure or else, be sure to do so in emergency operation mode.

NEVER attempt to disconnect power supply wires from magnetic contactors or else. (Doing so will operate compressors in combination that disables oil equalization between the compressors, thus resulting in malfunctions of other normal compressors.)

5.2.1 Restrictions for Emergency Operation

- In the case of system with 1 outdoor unit installed, only when thermostats of indoor units having a capacity of 50% or more of the outdoor unit capacity turn ON, the emergency operation is functional. (If the total capacity of indoor units with thermostat ON is small, the outdoor unit cannot operate.)
- If the emergency operation is set while the outdoor unit is in operation, the outdoor unit stops once after pump-down residual operation (a maximum of 5 minutes elapsed).

5.2.2 In the Case of 1-Outdoor-Unit System (RXYQ8P(A) to 18P(A))

[Set the system to operation prohibition mode by compressor]

• In order to set an INV compressor to operation LED display (○:ON ●:OFF ④:Blink) prohibition mode, set No. 42 of Setting mode 2 to H1P - - - H7P"EMERGENCY OPERATION". (Procedure) (1) Press and hold the MODE button (BS1) for a $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ period of 5 seconds or more. $00 \bullet 0 \bullet 0 \bullet$ (2) Press the SET button (BS2) 42 times. $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (Factory set) (3) Press the RETURN button (BS3) once. (4) Press the SET button (BS2) once. (5) Press the RETURN button (BS3) twice. $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (6) Press the MODE button (BS1) once. $\bullet \bullet \circ \bullet \bullet \bullet \bullet \bullet$ In order to set STD1 and STD2 compressors to operation prohibition mode, set No. 19 of Setting LED display (○:ON ●:OFF ●:Blink) mode 2 to "STD1. 2 OPERATION PROHIBITION". H1P - - - H7P(RXYQ10P(A) to 18P(A)) (Procedure) (1) Press and hold the MODE button (BS1) for a $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ period of 5 seconds or more. (2) Press the SET button (BS2) 19 times. $0 \bullet 0 \bullet \bullet 0 0$ (3) Press the RETURN button (BS3) once. $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (Factory set) (4) Press the SET button (BS2) once. $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (5) Press the RETURN button (BS3) twice. \bigcirc (6) Press the MODE button (BS1) once. $\bullet \bullet \circ \bullet \bullet \bullet \bullet \bullet$ In order to set the STD 2 compressor to operation LED display (○:ON ●:OFF ●:Blink) prohibition mode, set No. 19 of Setting mode 2 to "STD2 H1P - - - H7POPERATION PROHIBITION". (RXYQ14P(A), 16P(A), 18P(A)) (Procedure) $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more. (2) Press the SET button (BS2) 19 times. (3) Press the RETURN button (BS3) once. (Factory set) $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (4) Press the SET button (BS2) twice. $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (5) Press the RETURN button (BS3) twice.

- For RXYQ14P(A), 16P(A) and 18P(A), if the INV compressor is set to operation prohibition mode, only a single STD compressor will operate for the convenience of oil equalization.
- For RXYQ14P(A), 16P(A) and 18P(A), only the STD1 compressor cannot be put into operation prohibition mode for the convenience of oil equalization.

 $\bullet \bullet \circ \bullet \bullet \bullet \bullet \bullet$

• For the system with a single outdoor unit (RXYQ8P(A) to 18P(A)), automatic backup operation is not functional.

5.2.3 In The Case of Multi-Outdoor-Unit System (RXYQ20P(A) to 54P(A))

[Automatic backup operation]

(6) Press the MODE button (BS1) once.

With multi-outdoor-unit system, if a certain outdoor unit system malfunctions (i.e., the system stops and indoor unit remote controller displays the malfunction), by resetting the system with the indoor unit remote controller, the applicable outdoor unit is inhibited from operating for 8 hours, thus making it possible to perform emergency operation automatically. However, in the event any of the following malfunctions occurs, automatic backup operation can be performed.

Malfunctions under which automatic backup operation can be performed:

- E3, E4, E5, E7
- F3
- H7, H9
- J2, J3, J5, J6, J7, J9, JA, JC
- L4, L5, L8, L9, LC
- U2, UJ

In order to forcedly clear the automatic backup operation, reset the power supply with the outdoor unit in the stopped state.

[Emergency operation with settings in service mode]

* "Inhibition of operation" is set with each outdoor unit.

Make the following settings with the master unit. (Setting with the slave unit becomes disabled.)

* Discriminate the operating status of the master unit / slave units through the following LED display.

 In order to set the master unit to operation prohibition mode, set No. 38 of Setting mode 2 to "MASTER OPERATION PROHIBITION".

(Procedure)

- (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
- (2) Press the SET button (BS2) 38 times.
- (3) Press the RETURN button (BS3) once.
- (4) Press the SET button (BS2) once.
- (5) Press the RETURN button (BS3) twice.
- (6) Press the MODE button (BS1) once.

 In order to set the slave unit 1 to operation prohibition mode, set No. 39 of Setting mode 2 to "SLAVE 1 OPERATION PROHIBITION".

(Procedure)

- (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
- (2) Press the SET button (BS2) 39 times.
- (3) Press the RETURN button (BS3) once.
- (4) Press the SET button (BS2) once.
- (5) Press the RETURN button (BS3) twice.
- (6) Press the MODE button (BS1) once.

 In order to set the slave unit 2 to operation prohibition mode, set No. 40 of Setting mode 2 to "SLAVE 2 OPERATION PROHIBITION".

(Procedure)

- (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
- (2) Press the SET button (BS2) 40 times.
- (3) Press the RETURN button (BS3) once.
- (4) Press the SET button (BS2) once.
- (5) Press the RETURN button (BS3) twice.
- (6) Press the MODE button (BS1) once.

 $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (Factory set) $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \circ \bullet \bullet \bullet \bullet \bullet$ LED display (○:ON ●:OFF ●:Blink) H1P - - - H7P $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ 0000000 $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (Factory set) $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \circ \bullet \bullet \bullet \bullet \bullet$ LED display (○:ON ●:OFF ●:Blink) H1P - - - H7P00000000 $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc$ (Factory set)

LED display (○:ON ●:OFF ●:Blink)

H1P - - H7P

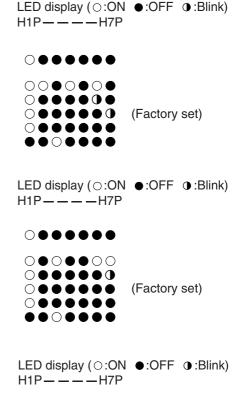
 \bigcirc

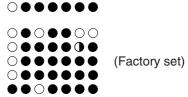
- *
 - In the case of multi-outdoor-unit system, "Inhibition of operation" is not set with each compressor individually.
 - In the case of multi-outdoor-unit system, when the above "Inhibition of operation" is set, outdoor unit rotation is not functional.

[Cancel of Emergency Operation]

To cancel the emergency operation, conduct the following setting. (Return to Factory setting.) <**RXYQ8P(A) to 18P(A)**>

- Cancel to set an INV compressor from operation prohibition mode, set No. 42 of Setting mode 2 to "Normal operation".
 - (Procedure)
 - (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
 - (2) Press the SET button (BS2) 42 times.
 - (3) Press the RETURN button (BS3) once.
 - (4) Press the SET button (BS2) once.
 - (5) Press the RETURN button (BS3) twice.
 - (6) Press the MODE button (BS1) once.


 Cancel to set STD1 and STD2 compressors from operation prohibition mode, set No. 19 of Setting mode 2 to "OFF". (RXYQ10P(A) to 18P(A))


- (Procedure)
- (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
- (2) Press the SET button (BS2) 19 times.
- (3) Press the RETURN button (BS3) once.
- (4) Press the SET button (BS2) twice.
- (5) Press the RETURN button (BS3) twice.
- (6) Press the MODE button (BS1) once.

 Cancel to set the STD 2 compressor from operation prohibition mode, set No. 19 of Setting mode 2 to "STD2 OPERATION PROHIBITION". (RXYQ14P(A), 16P(A), 18P(A))

(Procedure)

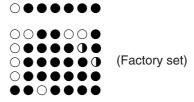
- (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
- (2) Press the SET button (BS2) 19 times.
- (3) Press the RETURN button (BS3) once.
- (4) Press the SET button (BS2) twice.
- (5) Press the RETURN button (BS3) twice.
- (6) Press the MODE button (BS1) once.

<RXYQ20P(A) to 54P(A)>

 Cancel to set the master unit from operation prohibition mode, set No. 38 of Setting mode 2 to "OFF".

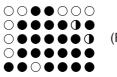
(Procedure)

- (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
- (2) Press the SET button (BS2) 38 times.
- (3) Press the RETURN button (BS3) once.
- (4) Press the SET button (BS2) once.
- (5) Press the RETURN button (BS3) twice.
- (6) Press the MODE button (BS1) once.
- Cancel to set the slave unit 1 from operation prohibition mode, set No. 39 of Setting mode 2 to "OFF".

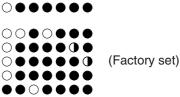

(Procedure)

- (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
- (2) Press the SET button (BS2) 39 times.
- (3) Press the RETURN button (BS3) once.
- (4) Press the SET button (BS2) once.
- (5) Press the RETURN button (BS3) twice.
- (6) Press the MODE button (BS1) once.
- Cancel to set the slave unit 2 from operation prohibition mode, set No. 40 of Setting mode 2 to "OFF".

(Procedure)


- (1) Press and hold the MODE button (BS1) for a period of 5 seconds or more.
- (2) Press the SET button (BS2) 40 times.
- (3) Press the RETURN button (BS3) once.
- (4) Press the SET button (BS2) once.
- (5) Press the RETURN button (BS3) twice.
- (6) Press the MODE button (BS1) once.

LED display (○:ON ●:OFF ●:Blink) H1P---H7P


LED display (○:ON ●:OFF ●:Blink) H1P---H7P

(Factory set)

LED display (○:ON ●:OFF ●:Blink) H1P---H7P

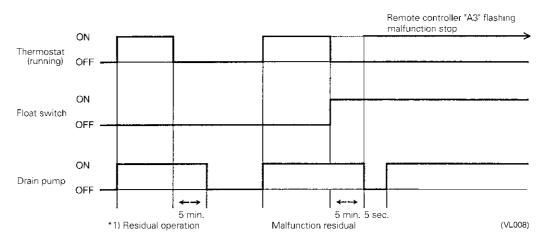
5.3 Demand Operation

In order to save the power consumption, the capacity of outdoor unit is saved with control forcibly by using "Demand 1 Setting" or "Demand 2 Setting".

To operate the unit with this mode, additional setting of "Continuous Demand Setting" or external input by external control adapter is required.

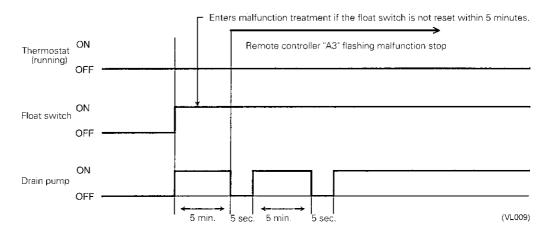
Set item	Condition	Content
Demand 1	Mode 1	The compressor operates at approx. 60% or less of rating.
	Mode 2	The compressor operates at approx. 70% or less of rating.
	Mode 3	The compressor operates at approx. 80% or less of rating.
Demand 2	—	The compressor operates at approx. 40% or less of rating.

5.4 Heating Operation Prohibition

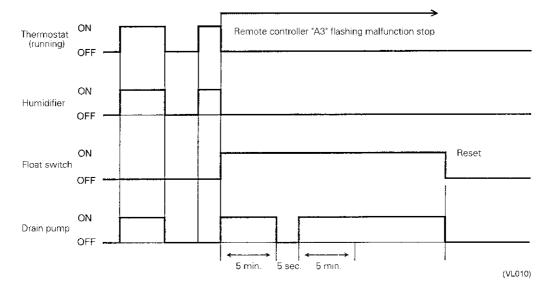

Heating operation is prohibited above 24°C ambient temperature.

6. Outline of Control (Indoor Unit)

6.1 Drain Pump Control

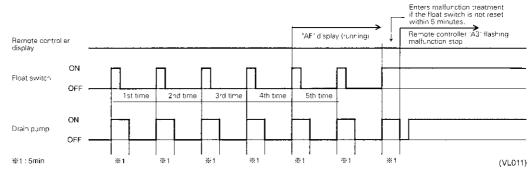

1. The drain pump is controlled by the ON/OFF buttons (4 button (1) - (4) given in the figure below).

6.1.1 When the Float Switch is Tripped While the Cooling Thermostat is ON:



* 1. The objective of residual operation is to completely drain any moisture adhering to the fin of the indoor unit heat exchanger when the thermostat goes off during cooling operation.

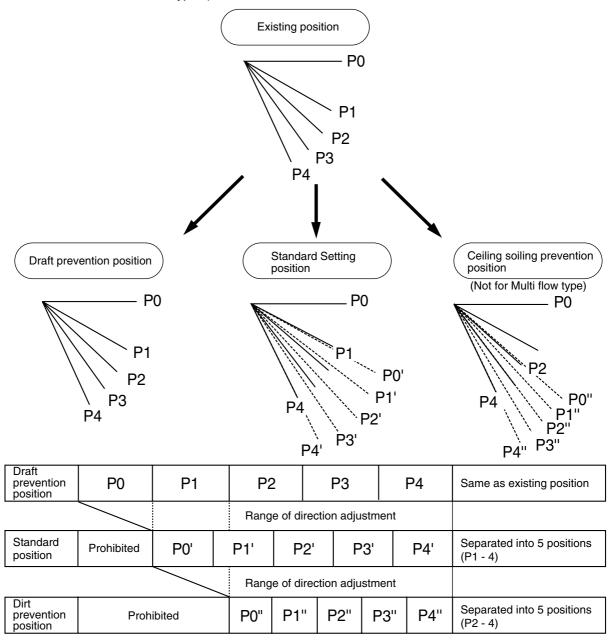
6.1.2 When the Float Switch is Tripped while the Cooling Thermostat is OFF :



6.1.3 When the Float Switch is Tripped During Heating Operation:

During heating operation, if the float switch is not reset even after the 5 minutes operation, 5 seconds stop, 5 minutes operation cycle ends, operation continues until the switch is reset.

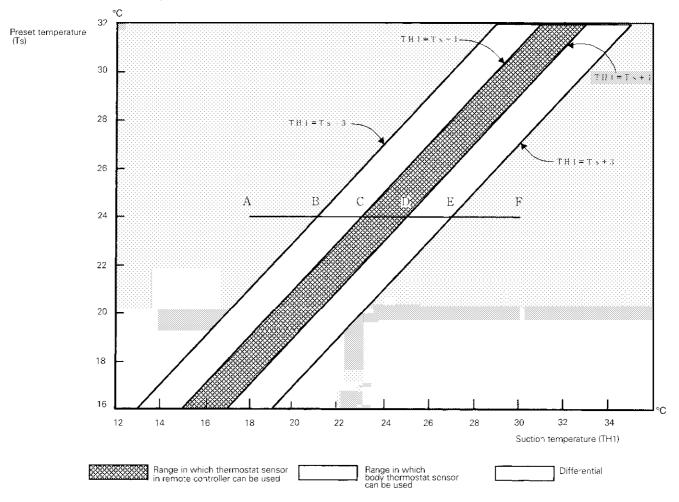
6.1.4 When the Float Switch is Tripped and "AF" is Displayed on the Remote Controller:



If the float switch is tripped five times in succession, a drain malfunction is determined to have occurred. "AF" is then displayed as operation continues.

6.2 Louver Control for Preventing Ceiling Dirt

We have added a control feature that allows you to select the range of in which air direction can be adjusted in order to prevent the ceiling surrounding the air discharge outlet of ceiling mounted cassette type units from being soiled. (This feature is available on double flow, multiflow and corner types.)


The factory set position is standard position.

6.3 Thermostat Sensor in Remote Controller

Temperature is controlled by both the thermostat sensor in remote controller and air suction thermostat in the indoor unit. (This is however limited to when the field setting for the thermostat sensor in remote controller is set to "Use".)

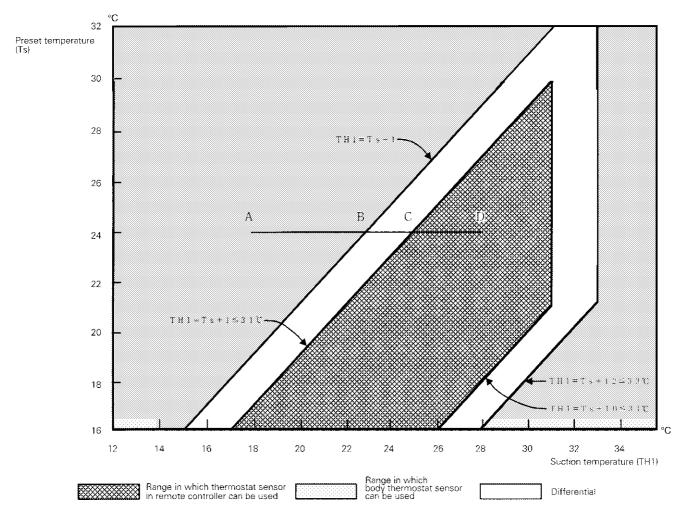
Cooling

If there is a significant difference in the preset temperature and the suction temperature, fine adjustment control is carried out using a body thermostat sensor, or using the sensor in the remote controller near the position of the user when the suction temperature is near the preset temperature.

Ex: When cooling

Assuming the preset temperature in the figure above is 24°C, and the suction temperature has changed from 18°C to 30°C (A \rightarrow F):

(This example also assumes there are several other air conditioners, the VRV system is off, and that temperature changes even when the thermostat sensor is off.) Body thermostat sensor is used for temperatures from 18°C to 23°C (A \rightarrow C). Remote controller thermostat sensor is used for temperatures from 23°C to 27°C (C \rightarrow E).


Body thermostat sensor is used for temperatures from 27°C to 30°C (E \rightarrow F).

And, assuming suction temperature has changed from 30°C to 18°C (F \rightarrow A):

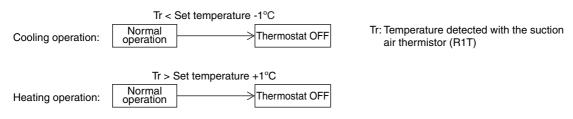
Body thermostat sensor is used for temperatures from 30°C to 25°C (F \rightarrow D). Remote controller thermostat sensor is used for temperatures from 25°C to 21°C (D \rightarrow B). Body thermostat sensor is used for temperatures from 21°C to 18°C (B \rightarrow A).

Heating

When heating, the hot air rises to the top of the room, resulting in the temperature being lower near the floor where the occupants are. When controlling by body thermostat sensor only, the unit may therefore be turned off by the thermostat before the lower part of the room reaches the preset temperature. The temperature can be controlled so the lower part of the room where the occupants are doesn't become cold by widening the range in which thermostat sensor in remote controller can be used so that suction temperature is higher than the preset temperature.

Ex: When heating Assuming the preset temperature in the figure above is 24°C, and the suction temperature has changed from 18°C to 28°C (A \rightarrow D):

(This example also assumes there are several other air conditioners, the VRV system is off, and that temperature changes even when the thermostat sensor is off.)

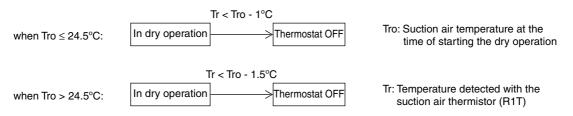

Body thermostat sensor is used for temperatures from 18°C to 25°C (A \rightarrow C).

Remote controller thermostat sensor is used for temperatures from 25°C to 28°C (C \rightarrow D).

And, assuming suction temperature has changed from 28°C to 18°C (D \rightarrow A): Remote controller thermostat sensor is used for temperatures from 28°C to 23°C (D \rightarrow B). Body thermostat sensor is used for temperatures from 23°C to 18°C (B \rightarrow A).

6.4 Thermostat Control While in Normal Operation

VRV multi systems are set at factory to thermostat control mode using the remote controller. While in normal thermostat differential control mode (i.e., factory set mode), the thermostat turns OFF when the system reaches a temperature of $-1^{\circ}C$ from the set temperature while in cooling operation or of $+1^{\circ}C$ from that while in heating operation.


While in a single remote controller group control, the body thermostat is only used fro this control.

Furthermore, while in heating operation, cassette-mounted indoor units conduct the thermostat control by a value compensated by -2°C for the value detected with the body thermostat. (Through field settings, the thermostat differential setting can be changed from 1°C to 0.5°C. For details on the changing procedure, refer to information on page onward.)

6.5 Thermostat Control in Dry Operation

While in dry operation, the thermostat control is conducted according to a suction temperature at the time of starting the dry operation.

Assuming that the suction air temperature at the time of starting the dry operation is Tro and the suction air temperature in operation is Tr,

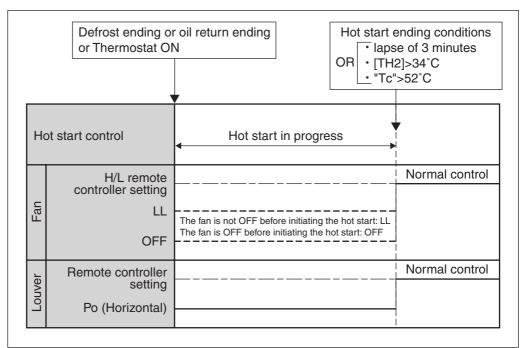
Furthermore, while in dry operation mode, fans operate at L flow rate, stops for a period of six minutes while the thermostat is OFF, and then return to operation at L flow rate. (This control is used to prevent a rise in indoor humidity while in thermostat OFF mode.)

6.6 Electronic Expansion Valve Control

Electronic expansion Valve Control

In cooling, to maximize the capacity of indoor unit heat exchanger (evaporator), operate the electronic expansion valve under PI control so that the evaporator outlet superheated degree (SH) will become constant.

In heating, to maximize the capacity of indoor unit heat exchanger (condenser), operate the electronic expansion valve under PI control so that the evaporator outlet superheated degree (Condenser outlet subcooled degree) will become constant.


Cooling SH=TH ₂ -TH ₁	SH : Evaporator outlet superheated degree
(Heating SC=TC-TH ₁)	TH ₁ : Temperature (°C) detected with the liquid thermistor
	TH ₂ : Temperature (°C) detected with the gas thermistor
	SC : Condenser outlet subcooled degree
	TC : High pressure equivalent saturated temperature
ermore, the default value of the	he optimal evaporator outlet superheated degree (c
	I have a second state of a fact that we have a second second state at the second second state of the second second state of the second se

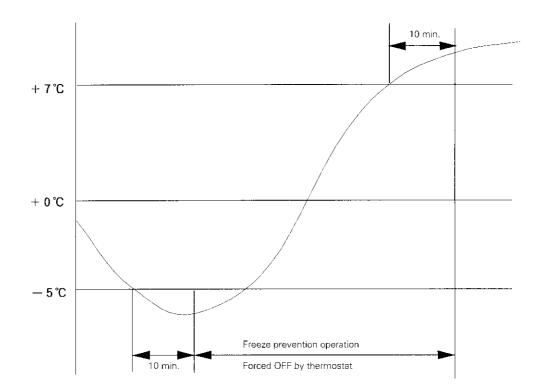
Furthermore, the default value of the optimal evaporator outlet superheated degree (condenser outlet subcooled degree) is 5 deg. However, this default value varies with the operating performance.

6.7 Hot Start Control (In Heating Operation Only)

At startup with thermostat ON or after the completion of defrosting in heating operation, the indoor unit fan is controlled to prevent cold air from blasting out and ensure startup capacity. **[Detail of operation]**

When either the **start condition 1** or the **start condition 2** is established, the operations shown below will be conducted.

TH₂: Temperature (°C) detected with the gas thermistor


TC : High pressure equivalent saturated temperature

6.8 Freeze Prevention

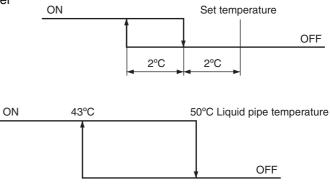
Freeze Prevention by Off Cycle (Indoor Unit) When the temperature detected by liquid pipe temperature thermistor (R2T) of the indoor unit heat exchanger drops too low, the unit enters freeze prevention operation in accordance with the following conditions, and is also set in accordance with the conditions given below.

Conditions for starting freeze prevention: Temperature is -1°C or less for total of 40 min., or temperature is -5°C or less for total of 10 min. Conditions for stopping freeze prevention: Temperature is +7°C or more for 10 min. continuously

Ex: Case where temperature is -5°C or less for total of 10 min.

6.9 Heater Control

The heater control is conducted in the following manner.


[Normal control]

While in heating operation, the heater control (ON/OFF) is conducted as shown on the right.

[Overload control]

When the system is overloaded in heating operation, the heater will be turned OFF in the following two manners.

(1) The heater control (ON/OFF) is conducted through the liquid pipe temperature (R2T) of the indoor unit.

(2) The heater control (ON/OFF) is conducted by converting the heater temperature into the condensing pressure equivalent saturated temperature (Tc) according to the temperature detection

through the high pressure sensor (SINPH) of the outdoor unit.

[Fan residual operation]

While the heater turns OFF, in order to prevent the activation of the thermal protector, the fan conducts residual operation for a given period of time after the heater turns OFF. (This operation is conducted regardless of with or without heater equipped.)

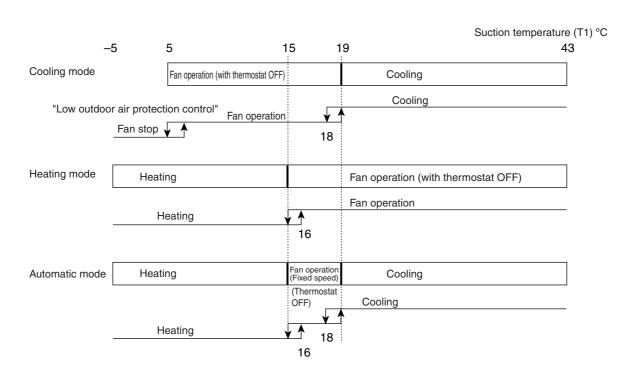
Residual operation time = 100 seconds on ceiling suspended type or 60 seconds on other types

6.10 List of Swing Flap Operations

Flap FXCQ Fan FXFQ FXHQ FXAQ FXKQ Swing OFF Horizontal Horizontal Horizontal Hot start from defrosting operation Wind direction set OFF Horizontal Horizontal Horizontal OFF Horizontal Horizontal Horizontal Swina Defrosting operation Wind direction set OFF Horizontal Horizontal Horizontal Swing LL Horizontal Horizontal Horizontal Heating Thermostat OFF Wind direction set LL Horizontal Horizontal Horizontal LL Horizontal Horizontal Horizontal Hot start from thermostat Swing OFF mode (for prevention Wind direction set of cold air) LL Horizontal Horizontal Horizontal OFF Horizontal Horizontal Totally closed Swing Stop Wind direction set OFF Horizontal Horizontal Totally closed L*¹ Swing Swing Swing Thermostat ON in dry Swing operation using micro L*¹ Wind direction set computer Set Set Set Thermostat OFF in dry Swing Swing Swing Swing OFF or L operation using micro Wind direction set Horizontal or Set Set Set computer Swing Set Swing Swing Swing Thermostat OFF in Coolina cooling Wind direction set Set Set Set Set Swing OFF Horizontal Horizontal Totally closed Stop Wind direction set OFF Horizontal Horizontal Totally closed Micro computer control Swina L Swina Swina Swing (including cooling Set operation) Wind direction set L Set Set

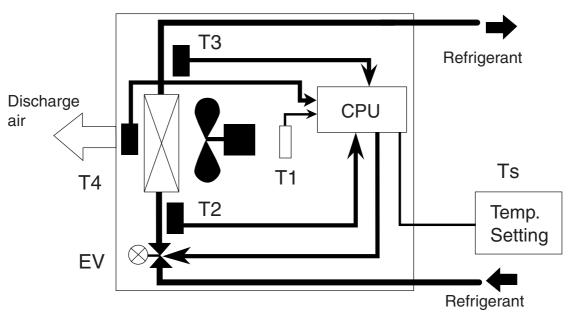
Swing flaps operate as shown in table below.

*1. L or LL only on FXFQ models


6.11 Control of Outdoor Air Processing Unit (Unique Control for Outdoor Air Processing Unit) 6.11.1 Selection of Operation Mode (by suction air thermostat)

To select cooling, heating, or fan operation mode according to the suction air (outdoor air) temperature.

Details

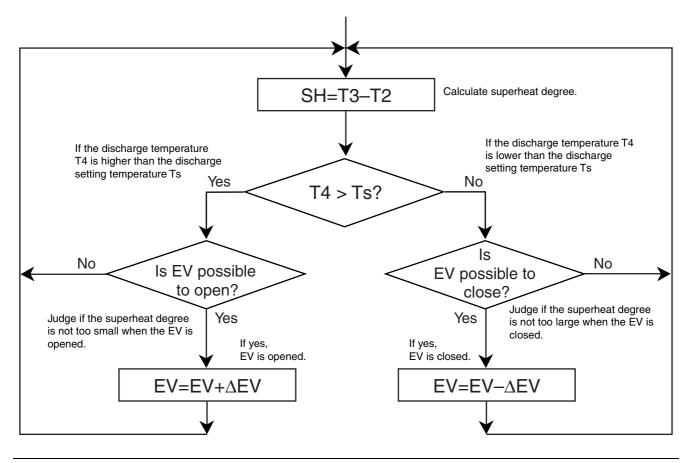

Objective

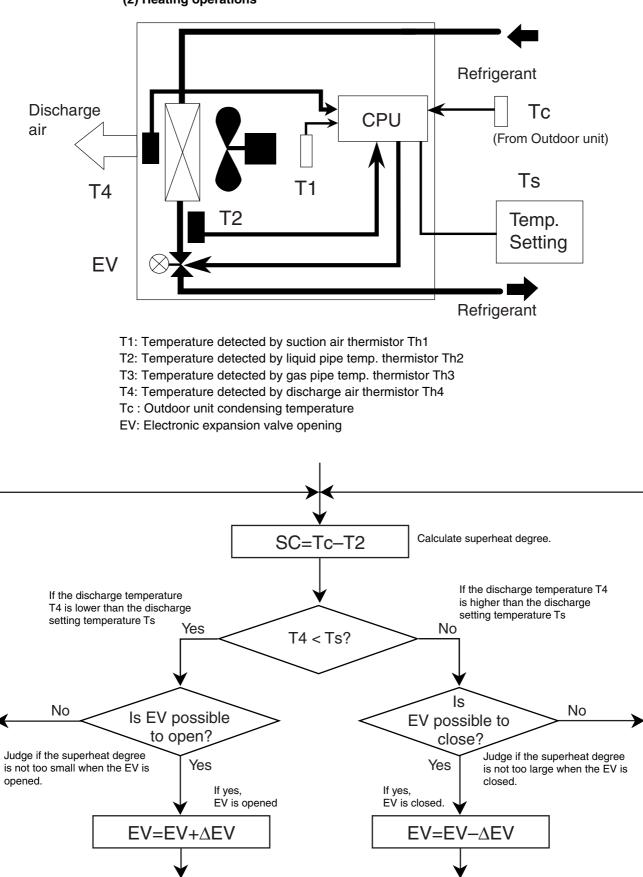
[Outdoor air processing unit]

6.11.2 Discharge Air Temperature Control

Used to control the EV (electronic expansion valve) opening and thermostat ON/OFF so as to keep the discharge air temperature at the set temperature.

(1) Cooling operations


T1: Temperature detected by suction air thermistor Th1


T2: Temperature detected by liquid pipe temp. thermistor Th2

T3: Temperature detected by gas pipe temp. thermistor Th3

T4: Temperature detected by discharge air thermistor Th4

EV: Electronic expansion valve opening

(3) Thermostat OFF by discharge air temperature

<Cooling>

Target discharge air temp. Ts – Discharge air temp. T4 >5 degree continue for 5 minutes. →Thermostat stops for 1 minute. →Thermostat ON

<Heating>

& {

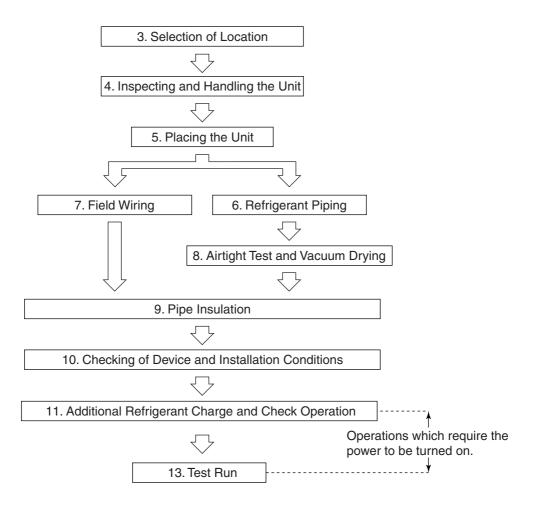
Discharge air temp. T4 – Target discharge air temp. Ts >5 degree continue for 5 minutes

EV opening is low limit

 $\rightarrow \mbox{Thermostat}$ stops for 1 minute. $\rightarrow \mbox{Thermostat}$ ON

6.11.3 Low Outdoor Air Temperature Protection Control

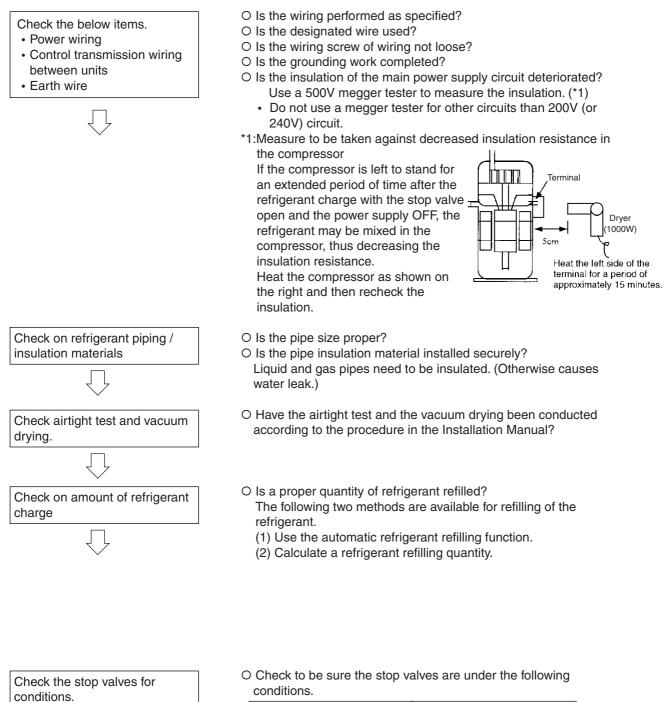
[Cooling and fan operation] Turn OFF the fan for a period of 60 minutes at a suction temperature of 5°C or lower.
In order to monitor the outdoor air temperature, however, turn ON the fan for a period of one minute and turn OFF the fan again at a temperature of 5°C or lower after the said timer completes the operative period. Reset the 60-minute timer when the fan stops running.
 [Heating] Turn OFF the fan for a period of 60 minutes at a suction temperature of -5°C or lower. In order to monitor the outdoor air temperature, however, turn ON the fan for a period of one minute and turn OFF the fan again at a temperature of -5°C or lower after the said timer completes the operative period. Reset the 60-minute timer when the fan stops running. * The thermostat will not turn ON in one minute due to the temperature while the fan stops. This control shall be disabled at test run both in cooling and heating. (The test run shall be
C F T III n C F


Part 5 Test Operation

180
180
181
195
196
197
197
214

1. Test Operation

1.1 Installation Process


Below figure shows the installation process. Install in the order of the steps shown.

1.2 Procedure and Outline

Follow the following procedure to conduct the initial test operation after installation.

1.2.1 Check work prior to turn power supply on

Liquid-side stop valve	Gas-side stop valve
Open	Open

Test Operation 1.2.2 Turn power on Turn outdoor unit and indoor unit power on. Check the LED display of the outdoor unit PC board. Make field settings with outdoor unit PC board. Conduct check operations. Check for normal operation.

O Be sure to turn the power on 6 hours before starting operation to protect compressors. (to power on clankcase heater)

Check to be sure the transmission is normal. The transmission is normal if the LEDs display conditions as shown in table below.

LED display ○ ON ● OFF ● Blinki										
		Micro-				/ HEAT	select			
LED display (Default status before delivery)		computer operation monitor			IND	MASTER	SLAVE	Low noise	Demand	Multi
			H1P	H2P	H3P	H4P	H5P	H6P	H7P	H8P
One outdoor unit	installed	•	•	•	0	•	•	•	•	•
When multiple	Master	0	•	٠	0	•	•	•	•	0
outdoor unit	Slave 1	0	•	٠	•	•	•	•	•	0
installed (*)	Slave 2	0	•	•	•	•	•	•	•	

(*) The master unit is the outdoor unit to which the transmission wiring for the indoor units is conncted.

The other outdoor units are slave units.

O Make field settings if needed.

(For the setting procedure, refer to information in "3.2. Field Setting from Outdoor Unit" on page 214 onward.) For the outdoor-multi system, make field settings with the master unit. (Field settings made with the slave unit will be all invalid.)

The check operations shown below will be automatically initiated.

- Check for erroneous wirings
- Check for failure to open stop valves
- Check for excessive refrigerant refilling
- Automatic judgment of piping length

O Before starting the normal operation after the completion of check operations, make sure indoor and outdoor units normally operate.

1.2.3 Air Tight Test and Vacuum Drying

Note:

- Always use nitrogen gas for the airtightness test.
- Absolutely do not open the shutoff valve until the main power circuit insulation measurement has been completed. (measuring after the shutoff valve is opened will cause the insulation value to drop.)

1.2.3.1 Preparations

<needed tools=""></needed>	
Gauge manifold Charge hose valve	 To prevent entry of any impurities and insure sufficient pressure resistance, always use the special tools dedicated for R-410A. Use charge hose that have pushing stick for connecting to service port of shutoff valves or refrigerant charge port.
Vacuum pump	 The vacuum pump for vacuum drying should be able to lower the pressure to -100.7kPa (5 Torr -755mm Hg). Take care the pump oil never flow backward into the refrigerant pipe during the pump stops.

<The system for air tight test and vacuum drying>

- Referring to figure 28, connect an nitrogen tank, refrigerant tank, and a vacuum pump to the outdoor unit.
- The shutoff valve and valve A~C in figure 28 should be open or closed as shown in the table below.

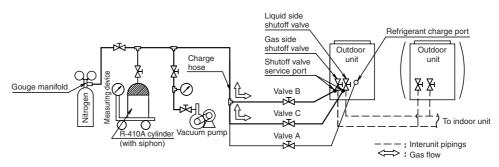


fig. 28

of valve A, B and C and shutoff valves		Valve		shutoff valve			
	Α	В	С	Liquid side	Gas side		
Air tight test, Vacuum drying (Close valve A and shutoff valves certainly. Otherwise the refrigerant in the unit are released.)	Close	Open	Open	Close	Close		

Note:

The airtightness test and vacuum drying should be done using the liquid side and gas side shutoff valve service ports.

See the [R-410A] Label attached to the front plate of the outdoor unit for details on the location of the service port (see figure at right).

- See [Shutoff valve operation procedure] for details on handling the shutoff valve. (Refer to page 185)
- The refrigerant charge port is connected to unit pipe. When shipped, the unit contains refrigerant, so use caution when attaching the charge hose.

[Caution] Label

1.2.3.2 Air Tight Test and Vacuum Drying Method

After finished piping work, carry out air tight test and vacuum drying. <**Air tight test>**

Pressurize the liquid and gas pipes to 4.0MPa (40bar) (do not pressurize more than 4.0MPa (40bar)). If the pressure does not drop within 24 hours, the system passes the test. If there is a pressure drop, check for leaks, make repairs, and perform the airtight test again. **<Vacuum drying>**

Evacuate the system from the liquid and gas pipes by using a vacuum pump for more than 2 hours and bring the system to -100.7kPa or less. After keeping the system under that condition for more than 1 hour, check if the vacuum gauge rises or not. If it rises, the system may either contain moisture inside or have leaks.

Note:

- If moisture might enter the piping, follow below.
 - (I.e., if doing work during the rainy season, if the actual work takes long enough that condensation may form on the inside of the pipes, if rain might enter the pipes during work, etc.)
- 1. After performing the vacuum drying for two hours, pressurize to 0.05 MPa (i.e., vacuum breakdown) with nitrogen gas, then depressurize down to -100.7 kPa for an hour using the vacuum pump (vacuum drying).
- 2. If the pressure does not reach –100.7 kPa even after depressurizing for at least two hours, repeat the vacuum breakdown vacuum drying process.

After vacuum drying, maintain the vacuum for an hour and make sure the pressure does not rise by monitoring with a vacuum gauge.

1.2.4 Additional Refrigerant Charge and Check Operation

The outdoor unit is charged with refrigerant when shipped from the factory, but depending on the size and length of the piping when installed, it may require additional charging. For charging the additional refrigerant, follow the procedure in this chapter. And then carry out the check operation.

Note: Total amount of refrigerant should be 100 kg or less

1.2.4.1 Before Working

Caution

[About the refrigerant cylinder]

Check whether the cylinder has a siphon pipe before charging and place the cylinder so that the refrigerant is charged in liquid form. (See the figure below.)

	Stand the cylinder upright and charge. (The siphon pipe goes all the way inside, so the cylinder does not need be put upside-down charge in liquid form.)
Other tanks	
	Stand the cylinder upside-down and charge.
• •	roper refrigerant (R-410A). If charged with the refrigerant containing an I, it may cause an explosion or accident.

R-410A is a mixed refrigerant, so charging it as a gas will cause the refrigerant composition to change, which may prevent normal operation.

[Shutoff Valve Operation Procedure]

When operating the shutoff valve, follow the procedure instructed below.

Note:

- Do not open the shutoff valve until "1.2.1 Check work prior to turn power supply on" in page 181 are completed. If the shutoff valve is left open without turning on the power, it may cause refrigerant to buildup in the compressor, leading insulation degradation.
- Be sure to use the correct tools.
- The shutoff valve is not a back-seat type. If forced it to open, it might break the valve body.
- When using a service port, use the charge hose.
- After tightening the cap, make sure no refrigerant gas is leaking.

[Tightening torque]

The sizes of the shutoff valves on each model and the tightening torque for each size are listed in the table below.

<Size of Shutoff Valve>

	5HP type	8HP type	10HP type	12HP type	14HP type	16HP type	18HP type		
Liquid side shutoff valve	The 12HP ty onsite piping	pe correspo	9.5 nds to the 12 ncluded pipin						
Gas side shutoff valve	φ 15.9		$$\phi25.4 The 10HP type corresponds to the 22.2-diameter onsite piping using the accessory pipe. The 12 ~ 18HP type corresponds to the 28.6-diameter on piping using the accessory pipe.						

<Tightening torque>

	Tightening torque N·m (Turn clockwise to close)								
Shutoff valve size	Shaft (va	alve body)	Cap (valve lid)	Service port					
φ 9.5	5.4 - 6.6	Hexagonal wrench	13.5 - 16.5						
φ 12.7	8.1 - 9.9	4 mm	18.0 - 22.0						
φ 15.9	13.5 - 16.5	Hexagonal wrench 6 mm		11.5 - 13.9					
φ 19.1 φ 25.4	27.0 - 33.0	Hexagonal wrench	22.5 - 27.5						
	27.0 - 33.0	8 mm							

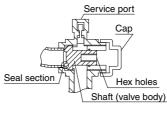


fig 34

[To open]

- 1. Remove the cap and turn the shaft counterclockwise with the hexagon wrench (JISB4648).
- 2. Turn it until the shaft stops.
- 3. Make sure to tighten the cap securely.

(For the tightening torque, refer to the item <Tightening Torque>.)

[To close]

- 1. Remove the cap and turn the shaft clockwise with the hexagon wrench (JISB4648).
- 2. Securely tighten the valve until the shaft contacts the main body seal.
- Make sure to tighten the cap securely.
 (For the tightening torque, refer to the item <Tightening Torque>.)

[How to Check How Many Units are Connected]

It is possible to find out how many indoor or outdoor unit in the system are turned on by operating the push button on the PC board (A1P) of outdoor unit (In case of multi system master unit).

Follow the procedure below to check how many indoor or outdoor units are turned on.

			l	ED	dis	play	y		
	(LED display: ●OFF ♀ON ♦Blin	king *Uncertain)	H 1 P	H 2 P	H 3 P	H 4 P	H 5 P	H 6 P	H 7 P
1.	Press the MODE button (BS1) once, and set t (H1P: Blinking).	Φ	•	•	•	•	•	•	
2.	Press the SET button (BS2) the number of times until the LED display matches that at	Φ	•	•	¢	•	•	•	
	right.	For checking the number of indoor units: five times	Φ	•	•	•	¢	•	¢
3.	 Press the RETURN button (BS3) and read the number of units from the display of H2P through H7P. [Reading Method] The display of H2P through H7P should be read as a binary number, with					*	*	*	*
	Ex: For the LED display at right, this would be "0 1 0" which would mean 22 units are connected. $32 \times 0 + 16 \times 1 + 8 \times 0 + 4 \times 10^{-1}$ Note: "000000" indicates 64 units.	Ф	•	Ф	•	Ф	ф	•	
4.	Press the MODE button (BS1) once. This retu (default).	•	•	¢	•	•	•	•	

Note:

Press the "MODE button" (BS1) if you get confused while operating. This returns to **Setting Mode 1** (default).

1.2.4.2 Procedure of Adding Refrigerant Charging and Check Operation

Electric Shock Warning

- Make sure to close the EL. COMPO. BOX lid before turning on the power when performing the refrigerant charging operation.
- Perform the setting on the PC board (A1P) of the outdoor unit and check the LED display after the power is on via the inspection door which is in the EL. COMPO. BOX lid.
- Use an insulated rod to operate the push buttons via the EL. COMPO. BOX's inspection door.

There is a risk of electric shock if you touch any live parts, since this operation must be performed with the power on.

Caution

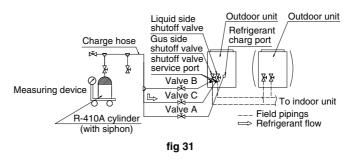
- Make sure to use the protect tool (protective groves and goggles) when charging the refrigerant.
- Due to a danger of liquid hammer, the refrigerant must not be charged over the allowable maximum amount when charging the refrigerant.
- Do not perform the refrigerant charging operation under working for the indoor unit.
- When opening the front panel, make sure to take caution to the fan rotation during the working.

After the outdoor unit stops operating, the fan may keep rotation for a while.

Note:

- If operation is performed within 12 minutes after the indoor and outdoor units are turned on, H2P will be lit on and the compressor will not operate.
- In order to ensure uniform refrigerant distribution, it may take up to around 10 minutes for the compressor to start up after the unit starting operating. This is not a malfunction.

<About refrigerant charging>

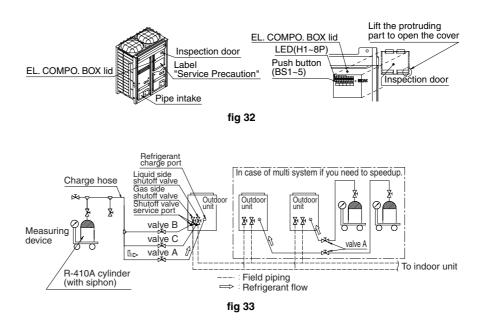

- The refrigerant charge port is connected to the piping inside the unit. When the unit is shipped from the factory, the unit's internal piping is already charged with refrigerant, so be careful when connecting the charge hose.
- After adding the refrigerant, make sure to close the lid of the refrigerant charging port. The tightening torque for the lid is 11.5 to 13.9 Nm.
- See [Shutoff valve operation procedure] in 1.2.4.1 for details on how to handle shutoff valves.
- When done or when pausing the refrigerant charging operation, close the valve of the refrigerant tank immediately. If the tank is left with the valve open, the amount of refrigerant which is properly charged may be off the point. More refrigerant may be charged by any remaining pressure after the machine is stopped.

<About check operation>

- Make sure to perform the check operation after installation. Otherwise, the malfunction code "U3" will be displayed and normal operation cannot be performed. And the failure of "Check of miswiring" may also cause abnormal operation. Performance may drop due to the failure of "Judgment of piping length".
- Check operation must be performed for each refrigerant piping system. Checking is impossible if plural systems are being done at once.
- The individual problems of indoor units can not be checked. About these problems check by test run after the check operation is completed. (See page 194)
- The check operation cannot be performed in recovery or other service modes.
- Make sure the following works are complete in accordance with the installation manual.
 Piping work
 - ■Wiring work
 - ■Air tight test
 - ■Vacuum drying
 - Installation work for indoor unit
- 2. Calculate the "additional charging amount" using "How to calculate the additional refrigerant to be charged" in "6 Example of connection" on Part7. Appendix in page 425.

 Open the valve C (See the figure 31. The valve A, B and the liquid and gas side shutout valve must be left closed), and charge the refrigerant of the "additional charging amount" from the liquid side shutout valve service port.

If the "additional charging amount" was charged fully, close the valve C and go to step 5. If the "additional charging amount" was not charged fully, go to step 4.


4. Perform the refrigerant charging operation following [Refrigerant charging operation procedure] as shown in page 189, and charge the remaining refrigerant of the "additional charging amount". For performing the refrigerant charging operation the push button on the PC board (A1P) of outdoor unit (Incase of multi system master unit) are use. (See the figure 32) In addition, the refrigerant are charged from the refrigerant charge port via the valve A. (See the figure 33)

For operating the push button and opening and closing the valve, follow the work procedure.

Note:

The refrigerant will be charged about 22kg in one hour at outdoor temp. 30°C DB (6kg at 0°C DB).

If you need to speed up in case of multi system, connect the refrigerant cylinders to each outdoor unit as shown in the figure 33.

[Refrigerant Charging Operation Procedure]

(1) Open the liquid and gas side shutoff valves (The valve A~C must be closed. The valve A~C means the valves in the figure 33.)

[Display of normal system]

			SERV.		TEST/		SELEC	-		DEMA-		
l (ED display	is of shipped)	MONI- TOR	MODE	HWL	IND	MASTE R	SLAVE	L.N.O.P	ND	MULTI	
			HAP	H1P	H2P	H3P	H4P	H5P	H6P	H7P	H8P	
	Single system		Ф	•	•	¢	•	•	•	•	•	
	Multi	Master unit	Ф	•	•	¢	•	•	•	•	¢	
	system (*)	Sub unit 1	Ф	•	•	٠	•	•	•	•	Φ	
		Sub unit 2	Ф	•	٠	•	•	•	•	•	•	

LED display: \bullet ...OFF, \diamondsuit ...ON, \diamondsuit ...Blinking

(*)How to distinguish the master unit, sub unit 1, and sub unit 2 in the multi system.

Method 1: By the H8P (MULTI) LED display

ON): Master unit	 (OFF): Sub unit 2 						
Method 2: By the transmission wiring to indoor unit							
Transmission wiring is connected: Master unit							
Transmission wiring is not connected : Sub unit 1 or Sub unit 2							

- (2) If necessary, set the field setting by using the dip switch on the outdoor unit PC board(A1P). (For how to set, see "1.2.5.1 Onsite Settings With the Power Off")
- (3) Close the EL. COMPO. BOX lid and all front panel except on the side of the EL. COMPO. BOX (*1) and turn the power to the outdoor unit and all connected indoor units. (*2)
 - After H2P stop blinking (about 12 minutes after turning on the power), check LED displays as shown in the table [Display of normal system] and the system is normal state.
 If H2P is blinking, check the malfunction code in the remote controller, and correct the malfunction in accordance with [Remote controller display malfunction code] in page 191.
- (*1) Lead the refrigerant charge hose etc from the pipe intake. All front panels must be closed at the procedure (9).
- (*2) If you perform the refrigerant charging operation within the refrigerant system that have the power off unit, the operation cannot finish properly.

For confirming the number of the outdoor and indoor units with the power on, see [How to check how many units are connected] in chapter 1.2.4.1. In case of a multi system, turn on the power to all outdoor units in the refrigerant system.

• To energize the crankcase heater, make sure to turn on for 6 hours before starting operation.

(4) Start the additional refrigerant charge operation.
 (About the system settings for additional refrigerant charge operation, refer to the [Service Precaution] label attached on the EL. COMPO. BOX lid in the outdoor unit.)
 Open valve A immediately after starting the compressor.

- (5) Close the valve A if the "additional charging amount" of refrigerant was charged, and push the RETURN button (BS3) once.
- (6) Record the charging amount on the accessory "REQUEST FOR THE INDICATION" label and attach it to the back side of the front panel.
- 5. After completing the additional refrigerant charging perform the check operation following below

NOTE:

- For check operation, the following work will be performed.
 - Check of shutoff valve opening
 - Check of miswiring
 - Judgment of piping length
 - Check of refrigerant overcharge
- It takes about 40 minutes to complete the check operation.

[Check Operation Procedure]

- (1) Make the onsite setting as needed using the dip switches on the outdoor unit PC board (A1P) with the power off (See "1.2.5.1 Onsite Settings With the Power Off")
- (2) Close the EL. COMPO. BOX lid and all front panels except as the side of the EL. COMPO. BOX and turn on the power to the outdoor unit and all connected indoor units. (Be sure to turn the power on at least 6 hours before operation in order to have power running to the crank case heater.)
- (3) Check the LED display on the outdoor unit PC board (A1P) is as shown in the table below and transmission is normal.

LED display (Default status of shipped)						-			
				IND	MASTE R	SLAVE	L.N.O.P	ND	MULTI
		H1P	H2P	H3P	H4P	H5P	H6P	H7P	H8P
system	Φ	•	•	¢	•	•	٠	•	•
Master unit	Ф	•	•	¢	•	•	٠	•	¢
Sub unit 1	Φ	•	٠	•	•	•	•	•	Φ
Sub unit 2	•	•	•	•	•	•	•	•	•
	e system Master unit Sub unit 1	ws of shipped) HAP system Master unit Sub unit 1	MONI- TORMODEus of shipped)HAPH1Psystem\$•Master unit\$•Sub unit 1\$•	MONI- TORMODEIES17 HWLHAPH1PH2PsystemImage: systemImage: systemMaster unitImage: systemImage: systemSub unit 1Image: systemImage: system	Us of shipped)SLRV MONI- TORMODETEST/ HWLINDHAPHAPH1PH2PH3PSystemImage: Sub unit 1Image: Sub unit 1<	Jus of shipped)SLINV MONI- TORMODETEST/ HWLINDMASTE RHAPH1PH2PH3PH4PsystemImage: systemImage: systemImage: systemImage: systemMaster unitImage: systemImage: systemImage: systemImage: systemSub unit 1Image: systemImage: syste	MONI- TORMODEHEST/ HWLINDMASTE RSLAVEHAPH1PH2PH3PH4PH5PsystemImage: systemImage: systemImage: systemImage: systemImage: systemMaster unitImage: systemImage: systemImage: systemImage: systemImage: systemMaster unitImage: systemImage: systemImage: systemImage: systemImage: systemSub unit 1Image: systemImage: systemImage: systemImage: systemImage: systemSub unit 1Image: systemImage: systemImage: systemImage: systemImage: system	SLAVE MONI- TORMODETEST/ HWLINDMASTE RSLAVEL.N.O.PINDHAPH1PH2PH3PH4PH5PH6PsystemImage: systemImage: syste	MONI- TOR MODE TEST/ HWL IND MASTE R SLAVE L.N.O.P DEMA- ND HAP H1P H2P H3P H4P H5P H6P H7P system Image:

LED display: ●...OFF, Q...ON, Φ...Blinking

(*) How to distinguish the master unit, sub unit 1, and sub unit 2 in the multi system.

Method 1: By the H8P (MULTI) LED display

ON): Master unit	 (OFF): Sub unit 2 							
Method 2: By the transmission wiring to indoor unit								
Transmission wiring is connected	Transmission wiring is connected: Master unit							
Transmission wiring is not connected : Sub unit 1 or Sub unit 2								

- (4) Make the onsite settings as needed using the push button (BS1-BS5) on the outdoor unit PC board (A1P) with the power on. (See "1.2.5.2 Onsite Settings With the Power On")
- (5) Perform the check operation following the Check Operation Method of the [Service Precautions] label on the EL. COMPO. BOX lid. The system operation for about 40 minutes and automatically stops the check operation. If the malfunction code is not displayed in the remote controller after the system stop, check

operation is completed. Normal operation will be possible after 5 minutes. If the malfunction code is displayed in the remote controller, correct the malfunction following [Remote controller displays malfunction code] and perform the check operation again.

Malfunction code	Installation error	Remedial action
E3, E4 F3, F6 UF	The shutoff valve of the outdoor unit is left closed.	Open the shutoff valve.
U1	The phases of the power to the outdoor unit is reversed.	Exchange two of the three phases (L1, L2, L3) to make a proper connection.
U1 U4 LC	No power is supplied to an outdoor or indoor unit (including phase interruption).	Make sure the power source wire is properly connected to the outdoor unit and revise if necessary.
UF	There is conflict on the connection of transmission wiring in the system.	Check if the refrigerant piping line and the transmission wiring are consistent with each other.
E3 F6 UF	Refrigerant overcharge.	Recalculate the additional amount refrigerant from the piping length and correct the refrigerant charge level by recovering any excessive refrigerant with a refrigerant recovery machine.
E4 F3	Insufficient refrigerant.	 Check if the additional refrigerant charge has been finished correctly. Recalculate the additional amount refrigerant from the piping length and add the adequate amount.
U7, U4 UF, UH	If the outdoor unit terminal is connected when there is one outdoor unit installed.	Remove the line from the outdoor multi terminals (Q1 and Q2).

[Remote controller displays malfunction code]

If any malfunction codes other than the above are displayed, check the service manual for how to respond.

1.2.5 Onsite Settings

NOTE:

In the case of a multi system, all onsite settings should be made on the master unit. Settings made on sub units are invalid.

The outdoor unit to which the indoor unit transmission wire are connected is the master unit, and all other units are sub units.

1.2.5.1 Onsite Settings with the Power Off

If the COOL/HEAT selector was connected to the outdoor unit, set the dip switch (DS1) on the outdoor unit PC board (A1P) to "ON" (it is set to "OFF" when shipped from the factory). For the position of the dip switch (DS1), see the "Service Precautions" label (see at right) which is attached to the EL. COMPO. BOX lid.

ℎ Electric Shock Warning

Never perform with the power on. There is a serious risk of electric shock if any live part is touched.

1.2.5.2 Onsite Settings with the Power On

Use the push button switches (BS1 through BS5) on the outdoor unit PC board (A1P) to make the necessary onsite settings.

See the "Service Precautions" label on the EL. CONPO. BOX lid for details on the positions and operating method of the push button switches and on the onsite setting.

Make sure to record the setting on the accessory "REQUEST FOR THE INDICATION" label.

\underline{H} Electric Shock Warning

Use an insulated rod to operate the push buttons via the inspection door of EL. COMPO. BOX lid.

There is a risk of electric shock if you touch any live parts, since this operation must be performed with the power on.

1.2.6 Test Run

1.2.6.1 Before Test Run

- Make sure the following works are completed in accordance with the installation manual.
 Piping work
- ■Wiring work
- ■Air tight test
- ■Vacuum drying
- ■Additional refrigerant charge
- Check that all work for the indoor unit are finished and there are no danger to operate.

1.2.6.2 Test Run

- After check operation is completed, operate the unit normally and check the following.
- (1) Make sure the indoor and outdoor units are operating normally.
- (2) Operate each indoor unit one by one and make sure the corresponding outdoor unit is also operating.
- (3) Check to see if cold (or hot) air is coming out from the indoor unit.
- (4) Push the fan direction and strength buttons on the remote controller to see if they operate properly.

NOTE:

- Heating is not possible if the outdoor temperature is 24°C or higher. Refer to the Operation manual.
- If a knocking sound can be heard in the liquid compression of the compressor, stop the unit immediately and then energize the crank case heater for a sufficient length of time before restarting the operation.
- Once stopping, the compressor will not restart in about 5 minutes even if the On/Off button of the remote controller is pushed.
- When the system operation is stopped by the remote controller, the outdoor units may continue operating for further 5 minutes at maximum.
- The outdoor unit fan may rotate at low speeds if the Night-time low noise setting or the External low noise level setting is made, but this is not a malfunction.

1.2.6.3 Checks after Test Run

- Perform the following checks after the test run is complete.
- Record the contents of field setting.
 - \rightarrow Record them on the accessory "REQUEST FOR THE INDICATION" label. And attach the label on the back side of the front panel.
- Record the installation date.
 - →Record the installation date on the accessory "REQUEST FOR THE INDICATION" label in accordance with the IEC60335-2-40.

And attach the label on the back side of the front panel.

NOTE:

After the test run, when handing the unit over to the customer, make sure the EL.COMPO.BOX lid, the inspection door, and the unit casing are all attached.

1.3 Operation When Power is Turned On

1.3.1 When Turning On Power First Time

The unit cannot be run for up to 12 minutes to automatically set the master power and address (indoor-outdoor address, etc.).

Status

Test lamp H2P Blinks

Can also be set during operation described above.

Indoor unit

Outdoor unit

If ON button is pushed during operation described above, the "UH" malfunction indicator blinks. (Returns to normal when automatic setting is complete.)

1.3.2 When Turning On Power The Second Time and Subsequent

Tap the RESET button on the outdoor unit PC board. Operation becomes possible for about 2 minutes. If you do not push the RESET button, the unit cannot be run for up to 10 minutes to automatically set master power.

Status

Outdoor unit

Test lamp H2P Blinks Can also be set during operation described above.

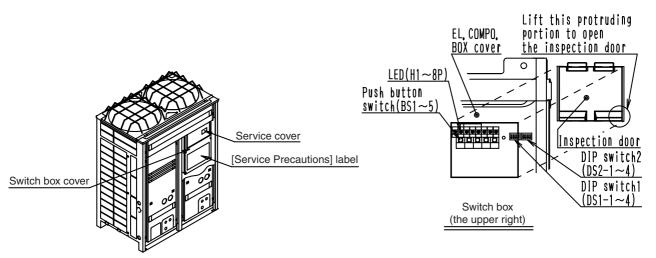
Indoor unit

If ON button is pushed during operation described above, the operation lamp lights but the compressor does not operate. (Returns to normal when automatic setting is complete.)

1.3.3 When an Indoor Unit or Outdoor unit Has Been Added, or Indoor or Outdoor Unit PC Board Has Been Changed

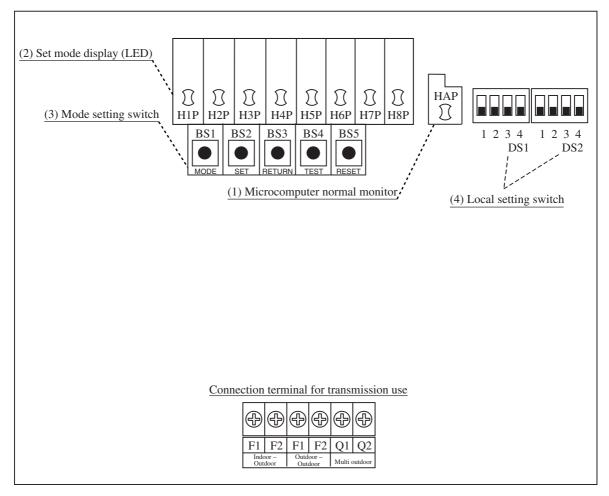
Be sure to push and hold the RESET button for 5 seconds. If not, the addition cannot be recognized. In this case, the unit cannot be run for up to 12 minutes to automatically set the address (indoor-outdoor address, etc.)

Status


Outdoor unit

Test lamp H2P ON

Can also be set during operation described above.


If ON button is pushed during operation described above, the "UH" or "U4" malfunction indicator blinks. (Returns to normal when automatic setting is complete.)

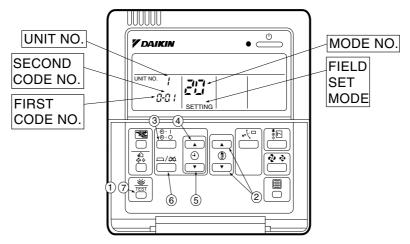
Caution When the 400 volt power supply is applyed to "N" phase by mistake, replace Inverter PC board (A2P) and control transformer (T1R, T2R) in switch box together.

2. Outdoor Unit PC Board Layout

Outdoor unit PC board

- (1) Microcomputer normal monitor This monitor blinks while in normal operation, and turns on or off when a malfunction occurs.
- (2) Set mode display (LED) LEDs display mode according to the setting.
- (3) Mode setting switch Used to change mode.
- (4) Local setting switch Used to make field settings.

3. Field Setting

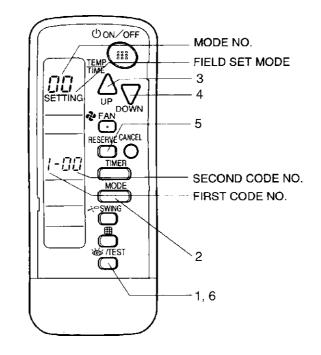

Field Setting from Remote Controller 3.1

Individual function of indoor unit can be changed from the remote controller. At the time of installation or after service inspection / repair, make the local setting in accordance with the following description.

Wrong setting may cause malfunction.

(When optional accessory is mounted on the indoor unit, setting for the indoor unit may be required to change. Refer to information in the option handbook.)

3.1.1 Wired Remote Controller < BRC1C61, 62>

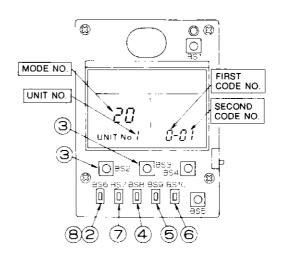

- 1. When in the normal mode, press the " $\boxed{\frac{1}{1651}}$ " button for a minimum of four seconds, and the FIELD SET MODE is entered.
- 2. Select the desired MODE NO. with the " 🗿 " button (2).
- 3. During group control, when setting by each indoor unit (mode No. 20, 22 and 23 have been selected), push the " $\left[\stackrel{\textcircled{0}}{\textcircled{0}} \right]$ " button (③) and select the INDOOR UNIT NO to be set. (This operation is unnecessary when setting by group.)
- 4. Push the " (a) and select FIRST CODE NO.
- 5. Push the " \bigcirc " lower button (5) and select the SECOND CODE NO.
- 6. Push the " button (6) once and the present settings are SET.
 7. Push the " state of the normal model.

(Example)

If during group setting and the time to clean air filter is set to FILTER CONTAMINATION, HEAVY, SET MODE NO. to "10" FIRST CODE NO. to "0", and SECOND CODE NO. to "02".

3.1.2 Wireless Remote Controller - Indoor Unit **BRC7C** type

BRC7E type BRC4C type


- 1. When in the normal mode, push the " " button for 4 seconds or more, and operation then enters the "field set mode."
- 2. Select the desired "mode No." with the "
- Pushing the " A " button, select the first code No.
 Pushing the " A " button, select the second code No.
 Push the timer " B button and check the settings.
- 6. Push the " "Dutton to return to the normal mode.

(Example)

When setting the filter sign time to "Filter Dirtiness-High" in all group unit setting, set the Mode No. to "10", Mode setting No. to "0" and setting position No. to "02".

3.1.3 Simplified Remote Controller

BRC2A51 BRC2C51

- 1. Remove the upper part of remote controller.
- 2. When in the normal mode, press the [BS6] BUTTON (2) (field set), and the FIELD SET MODE is entered.
- Select the desired MODE No. with the [BS2] BUTTON (③) (temperature setting ▲) and the [BS3] BUTTON (③) (temperature setting ▼).
- During group control, when setting by each indoor unit (mode No. 20, 22, and 23 have been selected), push the [BS8] (④) BUTTON (unit No.) and select the INDOOR UNIT NO. to be set. (This operation is unnecessary when setting by group.)
- 5. Push the [BS9] BUTTON (5) (set A) and select FIRST CODE NO.
- 6. Push the [BS10] BUTTON (6) (set B) and select SECOND CODE NO.
- 7. Push the [BS7] BUTTON (⑦) (set/cancel) once and the present settings are SET.
- 8. Push the [BS6] BUTTON ((3)) (field set) to return to the NORMAL MODE.
- (Example) If during group setting and the time to clean air filter is set to FILTER CONTAMINATION - HEAVY, SET MODE NO. to "10", FIRST CODE NO. to "0", and SECOND CODE NO. to "02".

3.1.4 Setting Contents and Code No. - VRV Indoor unit

	Mode	Setting					Sec	ond Code	e No.(Not	e 3)			Details
	No. Note 2	Switch No.	Setting Contents		0	01 02		0	3	0	4	No.	
	10	0	Filter contamination heavy/light (Setting for display time to clean air filter) (Sets display time to clean air filter to half when there is heavy filter	Super long life filter Long life filter Standard	Light	Approx. 10,000 hrs. Approx. 2,500 hrs. Approx.	Heavy	Approx. 5,000 hrs. Approx. 1,250 hrs. Approx.	_	_	_	_	(1)
	10 (20)		contamination.)	filter		200 hrs.	0	100 hrs.					
		1	Long life filter type		Long li	fe filter		ong life ter	-	_	-	-	(2)
		2	Thermostat sensor in remo controller	te	U	se	No	use	_	_	-	-	(3)
		3	Display time to clean air filter ca (Set when filter sign is not to be	lculation displayed.)	Dis	play	No di	splay	-	_	_	_	(4)
	11 (21)	7	Airflow adjustment		OI	FF	airf	etion of low tment		airflow tment	-	_	(5)
		0	Optional accessories output sel selection of output for adaptor for			nit turned Iermostat	-	_		ation put	Malfur out		(6)
		1	ON/OFF input from outside (Set v OFF is to be controlled from outsi	vhen ON/ de.)	Force	d OFF	ON/OFF	= control	External protection device input		on		(7)
		2	Thermostat differential changeover (Set when remote sensor is to be used.)		1'	°C	0.5°C		—		_		(8)
VRV system	12 (22)	3	OFF by thermostat fan spe	ed	L	L	Set fan	speed			-	_	(9)
indoor unit settings	()	4	Automatic mode differential (automatic temperature differential setting for VRV system heat recovery series cool/heat)		01:0	02:1	03:2	04:3	05:4	06:5	07:6	08:7	(10)
		5	Power failure automatic res	set	Not equipped		Equi	pped	-	_	-	_	(11)
		6	Airflow When Cooling Thermost	at is OFF	LL air flow		Preset	air flow	_	_	-	_	(12)
		0	High air outlet velocity (Set when installed in place ceiling higher than 2.7 m.)	e with	N H		4	S		-	_	(13)	
		1	Selection of air flow direction a blocking pad kit has been in	(Set when stalled.)	F (4 dir	ections)	T (3 directions)		W (2 directions)		-	_	(14)
	13	3	Air flow direction adjustment installation of decoration particular and the second sec		Equi	Equipped Not equipped		uipped	_			_	(15)
	(23)	4	Field set air flow position set	0	Draft pro	evention	ention Standard		Ceiling Soiling prevention			-	(16)
		5	Setting of the Static Pressure Selection		Stan	Idard		static sure	-	_	-	_	(17)
		6	External Static Pressure Settings		01:30 09:120	02:50 10:130	03:60 11:140	04:70 12:150	05:80 13:160	06:90 14:180	07:100 15:200	08:110 *7	(18)
		1	Thermostat OFF excess humidity			uipped		pped		-	10.200	-	(19)
	15 (25)	2	Direct duct connection (when the indoor unit and h reclaim ventilation unit are connected by duct directly.	neat		uipped		pped		_	_	_	(20)
	(20)	3	Drain pump humidifier interloc	,	Not eq	uipped	Equi	pped		_	-	_	(21)
		5	Field set selection for individu ventilation setting by remote c			uipped		pped	-	_	-	_	(22)

Notes :

1. Settings are made simultaneously for the entire group, however, if you select the mode No. inside parentheses, you can also set by each individual unit. Setting changes however cannot be checked except in the individual mode for those in parentheses.

- 2. The mode numbers inside parentheses cannot be used by wireless remote controllers, so they cannot be set individually. Setting changes also cannot be checked.
- 3. Marked **are** factory set.
- 4. Do not make settings other than those described above. Nothing is displayed for functions the indoor unit is not equipped with.
- 5. "88" may be displayed to indicate the remote controller is resetting when returning to the normal mode.
- 6. If the setting mode to "Equipped", heat reclaim ventilation fan conducts the fan residual operation by linking to indoor unit.
- 7. The FXMQ50.63.80.100.125PVE cannot be set to 30Pa.
 - The FXMQ40PVE cannot be set to 180 or 200Pa.

3.1.5 Applicable range of Field setting

	Ceiling cassette	mounted e type		Slim Ceiling	Ceiling mounted		Ceiling mounted			Floor standing		Ceiling	Outdoor air	Details No.
	Round flow	Double flow	Corner type	mounted duct type	built-in type	duct type (Middle and high static pressure)	duct type	type	type	type	standing type	suspended cassette type	processing unit	
	FXFQ	FXCQ	FXKQ	FXDQ	FXSQ	FXMQ- P	FXMQ- MA	FXHQ	FXAQ	FXLQ	FXNQ	FXUQ	FXMQ- MF	
Filter sign	0	0	0	0	0	0	0	0	0	0	0	0	0	(1)
Ultra long life filter sign	0	0	_	_	_	_	_	_	_	_	_	_	_	(2)
Remote controller thermostat sensor	0	0	0	0	0	0	0	0	0	0	0	0	_	(3)
Set fan speed when thermostat OFF	0	0	0	0	0	0	0	0	0	0	0	0	_	(9) (12)
Air flow auto adjustment	_	_	_	_	_	0	_	_	_	_	_	_	_	(5)
Air flow adjustment Ceiling height	0	_	_	_	_	_	_	0	_	_		0	_	(13)
Air flow direction	0	_	_	_	_	_	_	_	_	_	_	0	_	(14)
Air flow direction adjustment (Down flow operation)	_	_	0	_	_	_	_	_	_			_	_	(15)
Air flow direction adjustment range	0	0	0				_	_	_	-	_	_		(16)
Field set fan speed selection	0	_	_	O*1	_	O*1	_	0	_	_	_	_	_	(17) (18)
Discharge air temp. (Cooling)	_	_	_	_	_	_	_	_	_	_	_	_	0	3.1.7*2
Discharge air temp. (Heating)	_	_	_	_	_	_	_	—	_	_	_	_	0	3.1.7*2

*1 Static pressure selection

*2 Refer to 3.1.7 Outdoor Air Processing Unit-Field Setting (Remote Controller) on P.209.

3.1.6 Detailed Explanation of Setting Modes

(1) Filter Sign Setting

If switching the filter sign ON time, set as given in the table below.

Set Time

Filter Specs. Setting	Standard	Long Life	Ultra Long Life Filter
Contamination Light	200 hrs.	2,500 hrs.	10,000 hrs.
Contamination Heavy	100 hrs.	1,250 hrs.	5,000 hrs.

(2) Ultra-Long-Life Filter Sign Setting

When a Ultra-long-life filter is installed, the filter sign timer setting must be changed.

Setting Table

Mode No.	Setting Switch No.	Setting Position No.	Setting
		01	Long-Life Filter
10 (20)	1	02	Ultra-Long-Life Filter (1)
		03	—

(3) Selection of Thermistor

Select the thermistor to control room temperature.

Mode No.	First Code No.	Second Code No.	Thermistor that controls room temperature
		01	Indoor air thermistor for remote controller and suction air thermistor for indoor unit
10 (20)	2	02	Suction air thermistor for indoor unit
		03	Thermistor for remote controller

The factory setting for the Second Code No. is "01" and room temperature is controlled by the indoor unit suction air thermistor and remote controller thermistor.

When the Second Code No. is set to "02", room temperature is controlled by the suction air thermistor.

When the Second Code No. is set to "03", room temperature is controlled by the remote controller thermistor.

(4) "Filter Cleaning" Displayed or Not Displayed

Whether or not to display "Filter Cleaning" after operation of certain duration can be selected.

Mode No.	First Code No.	Second Code No.	"Filter Cleaning" display
10 (20)	2	01	Display
10 (20)	5	02	No display

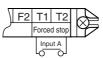
(5) Airflow Adjustment (AUTO)

External Static Pressure Settings

Make settings in either method (a) or method (b) as explained below.

- (a) Use the airflow auto adjustment function to make settings.
 - Airflow auto adjustment: The volume of blow-off air is automatically adjusted to the rated quantity.
- (b) Select External Static Pressure with Remote Controller Check that 01 (OFF) is set for the "SECOND CODE NO." in "MODE NO. 21" for airflow adjustment on an indoor unit basis in Table 4. The "SECOND CODE NO." is set to 01 (OFF) at factory set. Change the "SECOND CODE NO." as shown in Table according to the external static pressure of the duct to be connected.

Mode No.	First Code No.	Second Code No.	Airflow adjustment
			OFF
11 (21)	7	02	Completion of airflow adjustment
		03	Start of airflow adjustment


(6) Optional Output Switching

Using this setting, "operation output signal" and "abnormal output signal" can be provided. Output signal is output between terminals K1 and K2 of "customized wiring adapter," an optional accessory.

Mode No.	First Code No.	Second Code No.	Remarks
		01	Indoor unit thermostat ON/OFF signal is provided.
12 (22)	0	03	Output linked with "Start/Stop" of remote controller is provided.
	0	04	In case of "Malfunction Display" appears on the remote controller, output is provided.

(7) External ON/OFF input

This input is used for "ON / OFF operation" and "Protection device input" from the outside. The input is performed from the T1-T1 terminal of the operation terminal block (X1A) in the electric component box.

Setting Table

Mode No.	Setting Switch No.	Setting Position No.	Operation by input of the signal A
		01	ON: Forced stop (prohibition of using the remote controller) OFF: Permission of using the remote controller
12 (22)	1	02	$OFF \rightarrow ON$: Permission of operation $ON \rightarrow OFF$: Stop
		03	ON: Operation OFF: The system stops, then the applicable unit indicates "A0". The other indoor units indicate "U9".

(8) Thermostat Switching

Differential value during thermostat ON/OFF control can be changed. (For details, refer to "6.4 Thermostat Control while in Normal Operation" on page 170.)

Mode No.	ode No. First Code No. Second Code No.		Differential value
12(22)	2	01	1°C
12(22)	2	02	0.5°C

(9) Air Flow Setting When Heating Thermostat is OFF

This setting is used to set air flow when heating thermostat is OFF.

* When thermostat OFF air flow volume up mode is used, careful consideration is required before deciding installation location. During heating operation, this setting takes precedence over "(7) Fan Stop When Thermostat is OFF."

Mode No.	Mode No. First Code No. Second Code No.		Contents
12 (22)	2	01	LL air flow
	3	02	Preset air flow

(10) Setting of operation mode to "AUTO"

This setting makes it possible to change differential values for mode selection while in automatic operation mode.

Mode No.	Sotting switch No		Setting position No.						
Mode No.	Setting switch No.	01	02	03	04	05	06	07	08
12 (22)	4	0°C	1°C	2°C	3°C	4°C	5°C	6°C	7°C

The automatic operation mode setting is made by the use of the "Operation Mode Selector" button.

(11) Auto Restart after Power Failure Reset

For the air conditioners with no setting for the function (same as factory setting), the units will be left in the stop condition when the power supply is reset automatically after power failure reset or the main power supply is turned on again after once turned off. However, for the air conditioners with the setting, the units may start automatically after power failure reset or the main power supply turned on again (return to the same operation condition as that of before power failure).

For the above reasons, when the unit is set enabling to utilize "Auto restart function after power failure reset", utmost care should be paid for the occurrence of the following situation.

Caution 1. The air conditioner starts operation suddenly after power failure reset or the main power supply turned on again. Consequently, the user might be surprised (with question for the reason why).

> 2. In the service work, for example, turning off the main power switch during the unit is in operation, and turning on the switch again after the work is completed start the unit operation (the fan rotates).

(12) Air Flow When Cooling Thermostat is OFF

This is used to set air flow to "LL air flow" when cooling thermostat is OFF.

Mode No.	Mode No. First Code No.		Contents	
12 (22)	6	01	LL air flow	
	6	02	Preset air flow	

(13) Setting of Normal Air Flow

Make the following setting according to the ceiling height. The setting position No. is set to "01" at the factory.

In the Case of FXAQ

Mode No.	Setting Switch No.	Setting Position No.	Setting
		01	Wall-mounted type: Standard
13(23)	0	02	Wall-mounted type: Slight increase
		03	Wall-mounted type: Normal increase

In the Case of FXHQ

Mode No.	First code No.	Second code No.	Ceiling height (m)
13(23)	0	01	2.7 or less
13(23)	0	02	2.7-3.5

■ In the Case of FXFQ25~80 (All round outlet)

Mode No.	First code No.	Second code No.	Setting	Ceiling height (m)
		01	Standard • All round outlet	≤2.7
13 (23)	0	02	High Ceiling (1)	2.7-3
		03	Higher Ceiling (2)	3-3.5

■ In the Case of FXFQ100~125 (All round outlet)

Mode No.	First code No.	Second code No.	Setting	Ceiling height (m)
		01	Standard • All round outlet	≤3.2
13 (23)	0	02	High Ceiling (1)	3.2-3.6
		03	Higher Ceiling (2)	3.6-4.2

■ In the Case of FXFQ25~80 (*²4-Way, 3-Way, 2-Way Outlets)

Mode	First	Second		Ceiling height				
No.	code No.	code No.	Setting	4-way Outlets	3-way Outlets	2-way Outlets		
		01	Standard (N)	Lower than 3.1 m	Lower than 3.0 m	Lower than 3.5 m		
13 (23)	0	02	High Ceiling (H)	Lower than 3.4 m	Lower than 3.3 m	Lower than 3.8 m		
		03	Higher Ceiling (S)	Lower than 4.0 m	Lower than 3.5 m	—		

■ In the Case of FXFQ100~125 (*²4-Way, 3-Way, 2-Way Outlets)

Mode	First	Second			Ceiling height	
No.	code No.	code No.	Setting	4-way Outlets	3-way Outlets	2-way Outlets
		01	Standard (N)	Lower than 3.4 m	Lower than 3.6 m	Lower than 4.2 m
13 (23)	0	02	High Ceiling (H)	Lower than 3.9 m	Lower than 4.0 m	Lower than 4.2 m
		03	Higher Ceiling (S)	Lower than 4.5 m	Lower than 4.2 m	—

*1 "Mode No." setting is done in a batch for the group. To make or confirm settings for an individual unit, set the internal mode number in parentheses.

*2 The figure of the ceiling height is for the all round outlet. For the settings for four-direction (part of corner closed off), three-direction and two-direction outlets, see the installation manual and technical guide supplied with the separately sold closure material kit.

In the Case of FXUQ71~125		In the	Case	of	FXU	Q71	~125
---------------------------	--	--------	------	----	-----	-----	------

Mode	First	Second	0	Ceiling height							
No. code code Setting No. No. No.		Setting	4-way Outlets	3-way Outlets	2-way Outlets						
		01	Standard (N)	Lower than 2.7 m	Lower than 3.0 m	Lower than 3.5 m					
13 (23)	0	02	High Ceiling (H)	Lower than 3.0 m	Lower than 3.5 m	Lower than 3.8 m					
	03 Higher Ceiling		Higher Ceiling (S)	Lower than 3.5 m	Lower than 3.8 m						

(14) Air Flow Direction Setting

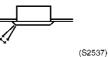
Set the air flow direction of indoor units as given in the table below. (Set when optional air outlet blocking pad has been installed.) The second code No. is factory set to "01."

Setting Table

Mode No.	First Code No.	Second Code No.	Setting		
		01	F : 4-direction air flow		
13 (23)	1	02	T : 3-direction air flow		
		03	W : 2-direction air flow		

(15) Operation of Downward Flow Flap: Yes/No

Only the model FXKQ has the function.


When only the front-flow is used, sets yes/no of the swing flap operation of down-flow.

Setting Table

First Code No.	Second Code No.	Setting		
2	01	Down-flow operation: Yes		
3	02	Down-flow operation: No		
	First Code No.	3 01		

(16) Setting of Air Flow Direction Adjustment Range

Make the following air flow direction setting according to the respective purpose.

Setting Table

Mode No.	First Code No.	Second Code No.	Setting
		01	Upward (Draft prevention)
13 (23)	4	02	Standard
		03	Downward (Ceiling soiling prevention)

Some indoor unit models are not equipped with draft prevention (upward) function.

(17) Setting of the Static Pressure Selection

■ In the Case of FXDQ20~32PB, FXDQ40~63NB

Model No.	First Code No.	irst Code No. Second Code No.		
13 (23)	5	01	Standard (10Pa)	
	5	02	High static pressure (30Pa)	

(18) External Static Pressure Settings (for FXMQ-P model)

MODE NO.	FIRST CODE NO.	SECOND CODE NO.	External Static Pressure
		01	30Pa (*1)
		02	50Pa
		03	60Pa
		04	70Pa
		05	80Pa
		06	90Pa
		07	100Pa
13 (23)	06	08	110Pa
		09	120Pa
		10	130Pa
		11	140Pa
		12	150Pa
		13	160Pa
		14	180Pa (*2)
		15	200Pa (*2)

The "SECOND CODE NO." is set to 07 (an external static pressure of 100 Pa) at factory set.

*1 The FXMQ50 \cdot 63 \cdot 80 \cdot 100 \cdot 125PVE cannot be set to 30 Pa.

*2 The FXMQ40PVE cannot be set to 180 or 200 Pa.

(19) Humidification When Heating Thermostat is OFF

Setting to "Humidification Setting" turns ON the humidifier if suction temperature is 20°C or above and turns OFF the humidifier if suction temperature is 18°C or below when the heating thermostat is OFF.

Mode No.	First Code No.	Second Code No.	Setting
15 (25)	4	01	—
	1	02	Setting of humidifier

(20) Setting of Direct Duct Connection

This is used when "fresh air intake kit equipped with fan" is connected. The indoor fan carries out residual operation for one minute after the thermostat is stopped. (For the purpose of preventing dust on the air filter from falling off.)

Mode No.	First Code No.	Second Code No.	Contents
		01	Without direct duct connection
15 (25)	2	02	With direct duct connection equipped with fan

(21) Interlocked Operation between Humidifier and Drain Pump

This is used to interlock the humidifier with the drain pump. When water is drained out of the unit, this setting is unnecessary.

Mode No.	First Code No.	Second Code No.	Contents
		01	Individual operation of humidifier
15 (25)	3	02	Interlocked operation between humidifier and drain pump

(22) Individual Setting of Ventilation

This is set to perform individual operation of heat reclaim ventilation using the remote controller/ central unit when heat reclaim ventilation is built in.

(Switch only when heat reclaim ventilation is built in.)

Mode No.	First Code No.	Second Code No.	Contents
		01	_
15 (25)	5	02	Individual operation of ventilation

3.1.7 Outdoor Air Processing Unit-Field Setting (Remote Controller)

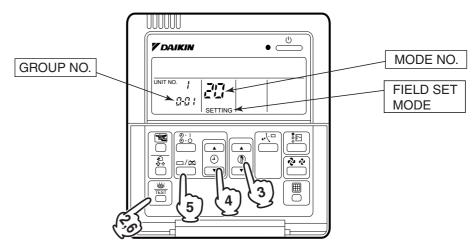
Mode	Setting	Setting					S	Setting	g posit	tion N	0.						
No.	SW No.	contents	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
	0	Stain of filter	2500hr	1250hr	_	—	—	_	—	—	—	—	—	—	_	_	
10 (20)	3	Filtering time cumulation	Display	No display		_	_		_	_	_	_	_	_			
10	1	External ON/OFF input	Forced stop	ON-OFF control	_	_	_	_	_	_	_	_	_	_	_	_	_
12 (22)	5	Power failure automatic reset	Not equipped	Equipped		_	_		_	_	_	_	_	_			_
14	3	Discharge temperature (cooling)	13°C	14	15	16	17	18	19	20	21	22	23	24	25	25	25
(24)	4	Discharge temperature (heating)	18°C	19	20	21	22	23	24	25	26	27	28	29	30	30	30

Note) Bold face in 🔲 indicates the default setting.

3.1.8 Centralized Control Group No. Setting

BRC1C Type	In order to conduct the central remote control using the central remote controller and the unified
	ON/OFE controller. Group No, settings should be made by group using the operating remote

by group using the operating remote controller.


Make Group No. settings for central remote control using the operating remote controller.

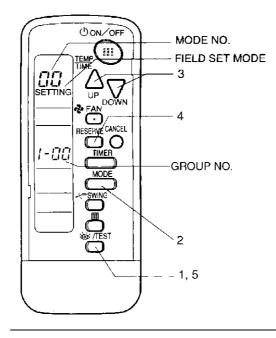
1. Turn ON the power of the indoor unit and unified ON/OFF controller. (Unless the power is ON, no setting can be made.)

Check that the installation and electrical wiring are correct before turning the power supply ON.

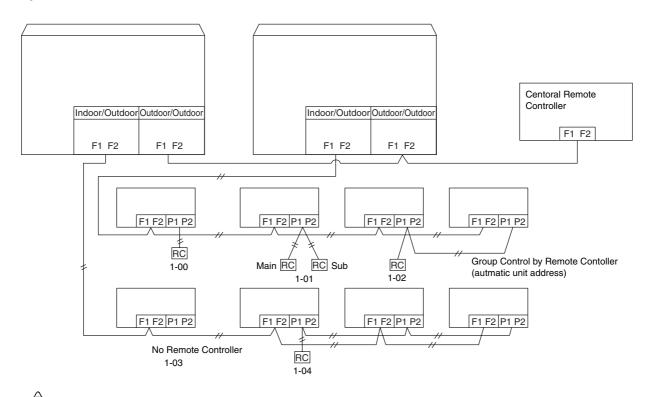
When the power supply is turned ON, all LCD appear once and the unit may not accept the operation for about one minute with the display of " HOST ! " flashing (an interval of ON, ON, and OFF).

- 2. While in normal mode, press and hold the " more to set the system to "Field Setting Mode".
- 3. Select the MODE No. "33" with the " $\overline{\frac{1}{2}}$ " button.
- 4. Use the " 👔 " button to select the group No. for each group.
 - (Group numbers increase in the order of 1-00, 1-01, ... 1-15, 2-00, ... 4-15.)
- Press " and a result of the selected group No.
 Press " and a result of the NORMAL MODE.

Note:


- For wireless remote controller, see the following.
- For setting group No. of HRV and wiring adaptor for other air conditioners, etc., refer to the instruction manual attached.

NOTICE


Enter the group No. and installation place of the indoor unit into the attached installation table. Be sure to keep the installation table with the operation manual for maintenance.

BRC7C Type		Group N
BRC7E Type	1.	When i
BRC4C Type		enters t
	2.	Set mod
	0	Catthe

- Group No. setting by wireless remote controller for centralized control
- 1. When in the normal mode, push " "" button for 4 seconds or more, and operation then enters the "field set mode."
- 2. Set mode No. "00" with " $\stackrel{\text{MODE}}{\longrightarrow}$ " button.
- 3. Set the group No. for each group with " \bigtriangleup " " $\bigcup_{\text{constant}}$ " button (advance/backward).
- 4. Enter the selected group numbers by pushing " $\overset{\text{\tiny RESERVE}}{\bigcirc}$ " button.
- 5. Push " $\bigcirc^{\pi \epsilon sr}$ " button and return to the normal mode.

Group No. Setting Example

Caution

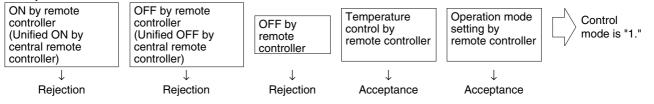
When turning the power supply on, the unit may often not accept any operation while "88" is displaying after all indications were displayed once for about 1 minute on the liquid crystal display. This is not an operative fault.

3.1.9 Setting of Operation Control Mode from Remote Controller (Local Setting)

The operation control mode is compatible with a variety of controls and operations by limiting the functions of the operation remote controller. Furthermore, operations such as remote controller ON/OFF can be limited in accordance with the combination conditions. (Refer to information in the next page.)

Central remote controller is normally available for operations. (Except when centralized monitor is connected)

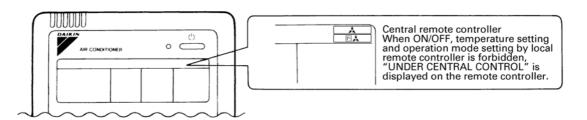
3.1.10 Contents of Control Modes


Twenty modes consisting of combinations of the following five operation modes with temperature and operation mode setting by remote controller can be set and displayed by operation modes 0 through 19.

- ON/OFF control impossible by remote controller
 Used when you want to turn on/off by central remote controller only.
 (Cannot be turned on/off by remote controller.)
- OFF control only possible by remote controller Used when you want to turn on by central remote controller only, and off by remote controller only.
- Centralized

Used when you want to turn on by central remote controller only, and turn on/off freely by remote controller during set time.

- Individual
- Used when you want to turn on/off by both central remote controller and remote controller.
 Timer operation possible by remote controller
 - Used when you want to turn on/off by remote controller during set time and you do not want to start operation by central remote controller when time of system start is programmed.



	Control by remote controller							
Control mode	Operation Unified operation, individual operation by central remote controller, or		OFF	Temperature control	Operation mode setting	Controlmode		
	operation controlled by timer	controller, or timer stop						
				Rejection	Acceptance	0		
ON/OFF control			Rejection	Пејескоп	Rejection	10		
impossible by remote controller			(Example)	Acceptance	Acceptance (Example)	1(Example)		
	Rejection (Example)			(Example)	Rejection	11		
				Rejection	Acceptance	2		
OFF control only		Rejection (Example)		Rejection	Rejection	12		
possible by remote controller				Acceptance	Acceptance	3		
					Rejection	13		
				Rejection	Acceptance	4		
Centralized	A				Rejection	14		
Centralized				Acceptance	Acceptance	5		
			Acceptance	Acceptance	Rejection	15		
	Acceptance		Acceptance	Rejection	Acceptance	6		
Individual		Acceptance		Rejection	Rejection	16		
Individual		Acceptance		Accentance	Acceptance	7 *1		
				Acceptance	Rejection	17		
				Paiastian	Acceptance	8		
Timer operation possible by	Acceptance (During timer at ON	Acceptance (During timer at ON		Rejection	Rejection	18		
remote controller	position only)	position only)		Acceptance	Acceptance	9		
					Rejection	19		

Do not select "timer operation possible by remote controller" if not using a remote controller. Operation by timer is impossible in this case.

*1. Factory setting

3.2 Field Setting from Outdoor Unit

3.2.1 Field Setting from Outdoor Unit

List of Field Setting Items

This following section indicates the list of field setting items. For the lists of dip switch contents, Setting mode 1, and Setting mode 2, refer to information in tables shown on the following page onward.

For setting items of (*1), refer to detailed information provided on page 226 onward.

	Se	etting item	Content and objective of setting	Overview of setting procedure
	1	Setting of COOL/ HEAT selection (*1)	 COOL/HEAT selection methods are possible to select from the following (1) Control by each outdoor unit using the indoor unit remote controller (2) Control by each outdoor unit using the COOL/HEAT selection remote controller (3) Batch control by outdoor unit group using the indoor unit remote controller (4) Batch control by outdoor unit group using the COOL/HEAT selection remote controller 	 In order to use the COOL/HEAT selection remote controller, set the DS1-1 on the outdoor unit PC board to OUT. For outdoor unit group control, set the system to "BATCH MASTER" or "SLAVE" while in "Setting mode 1". Then, make setting of COOL/HEAT batch address.
			 A. Use external input to step down the upper limit of the fan (factory set to Step 8), providing low noise level. (1) Mode 1: Step 6 or lower (2) Mode 2: Step 5 or lower (3) Mode 3: Step 4 or lower 	 Use the "External control adaptor for outdoor unit". Set to "External control adaptor for outdoor unit" with No. 12 of "Setting mode 2" and select the mode with No. 25. If necessary, set the "Capacity priority setting" to ON with No. 29.
Function setting	2	Setting of low noise operation (*1)	 B. The low noise operation aforementioned is enabled in nighttime automatic low noise operation mode. Start time: Possible to select in the range of 20:00 to 24:00 hours. End time: Possible to select in the range of 06:00 to 08:00 hours. (Use the said time as a guide since the start time and the end time are estimated according to outdoor temperatures.) 	 Make this setting while in "Setting mode 2". Select a mode with No. 22 of "Setting mode 2". Select the start time with No. 26 and the end time with No. 27. If necessary, set the "Capacity priority setting" to ON with No. 29.
	3	Setting of demand operation (*1)	 Used to place limits on the compressor operating frequency to control the upper limit of power consumption. (1) Mode 1 of Demand 1: 60% or less of rating (2) Mode 2 of Demand 1: 70% or less of rating (3) Mode 3 of Demand 1: 80% or less of rating (4) Demand 2: 40% or less of rating 	 For setting with the use of "external control adapter": Set the system to "External control adaptor for outdoor unit" with No. 12 of Setting mode 2" and select the mode with No. 30. For setting only in "Setting mode 2": Set the system to Normal demand mode with No. 32 of "Setting mode 2" and select the mode with No. 30.
	4	Setting of AirNet address	Used to make address setting with AirNet connected.	Set the AirNet to an intended address using binary numbers with No. 13 of "Setting mode 2".
	5	Setting of hot water heater	Make this setting to conduct heating operation using the hot water heater.	Set No. 16 of "Setting mode 2" to ON.
	6	Setting of high static pressure	 Make this setting to operate a system with diffuser duct while in high static pressure mode. (Use this setting mode when shields are installed on upper floors or balconies.) In order to mount the diffuser duct, remove the cover from the outdoor unit fan. 	Set No. 18 of "Setting mode 2" to ON.

Se	etting item	Content and objective of setting	Overview of setting procedure
1	Indoor unit fan forced H operation	Used to operate the indoor unit in the stopped state in forced H operation mode.	Set No. 5 of "Setting mode 2" to indoor unit forced fan H.
2	Indoor unit forced operation	Used to operate the indoor unit in forced operation mode.	Set No. 6 of "Setting mode 2" to indoor unit forced operation mode.
3	Change of targeted evaporating temperature (in cooling)	In cooling operation, used to change the targeted evaporating temperature for compressor capacity control.	 Select high side or low side with No. 8 of "Setting mode 2".
4	Change of targeted condensing temperature (in heating)	In heating operation, used to change the targeted condensing temperature for compressor capacity control.	Select high side or low side with No. 9 of "Setting mode 2".
5	Setting of defrost selection	Used to change a temperature at which the defrost operation is initiated, thus making the initiation easy or hard.	 Select fast side or slow side with No. 10 of "Setting mode 2".
6	Setting of sequential startup	Used to start units not in sequence but simultaneously.	Set No. 11 of "Setting mode 2" to NONE.
7	Emergency operation (*1)	If the compressor has a failure, used to prohibit the operation of compressor(s) concerned or outdoor unit(s) concerned and to conduct emergency operation of the system only with operable compressor(s) or outdoor unit(s).	 Make this setting while in "Setting mode 2". For system with a single outdoor unit: Set with No. 19 or 42. For system with multiple outdoor units: Set with No. 38, 39, or 40.
8	Additional refrigerant charging (*1)	If a necessary amount of refrigerant cannot be charged due to the stop of outdoor unit, operate the outdoor unit and then refill refrigerant.	Set No. 20 of "Setting mode 2" to ON and then charge refrigerant.
9	Refrigerant recovery mode (*1)	Used to recover refrigerant on site. With operations of indoor and outdoor units prohibited, fully open the expansion valve of the indoor and outdoor units.	Set No. 21 of "Setting mode 2" to ON.
10	Vacuuming mode (*1)	Used to conduct vacuuming on site. Fully open the expansion valves of the indoor and outdoor units, and energize part of solenoid valves. Use a vacuum pump to conduct vacuuming.	Set No. 21 of "Setting mode 2" to ON.
11	ENECUT test operation	Used to forcedly turn ON the ENECUT. (Be noted this mode is not functional with the indoor unit remote controller turned ON.)	Set No. 24 of "Setting mode 2" to ON.
12	Power transistor check mode	 Used for the troubleshooting of DC compressors. Inverter waveform output makes it possible to judge whether a malfunction results from the compressor or the PC board. 	Set No. 28 of "Setting mode 2" to ON.
13	Setting of model with spare PC board	In order to replace the PC board by a spare one, be sure to make model setting.	For this setting, set the DS2-2, -3, and-4 switches on the PC board to the model concerned.
	1 2 3 4 5 6 7 8 9 9 10 11 12	1forced H operation2Indoor unit forced operation3Change of targeted evaporating temperature (in cooling)4Change of targeted condensing temperature (in heating)5Setting of defrost selection6Setting of sequential startup7Emergency operation (*1)8Additional refrigerant charging (*1)9Refrigerant recovery mode (*1)10Vacuuming mode (*1)11ENECUT test operation12Power transistor check mode13Setting of model with spare PC	1 Indoor unit fan forced H operation Used to operate the indoor unit in the stopped state in forced H operation mode. 2 Indoor unit forced operation Used to operate the indoor unit in forced operation mode. 3 Indoor unit forced operation Used to operate the indoor unit in forced operation mode. 3 Change of targeted evaporating temperature (in cooling) In cooling operation, used to change the targeted evaporating temperature for compressor capacity control. 4 Change of targeted condensing temperature (in heating) In heating operation, used to change the targeted condensing temperature for compressor capacity control. 5 Setting of selection Used to change a temperature at which the defrost operation is initiated, thus making the initiation easy or hard. 6 Setting of sequential startup If the compressor has a failure, used to prohibit the operation of compressor(s) concerned or outdoor unit(s) concerned and to conduct emergency operation of the system only with operable compressor(s) or outdoor unit(s). 8 Additional refrigerant charging (*1) If a necessary amount of refrigerant cannot be charged due to the stop of outdoor unit, operate the outdoor unit, operate the outdoor units. 9 Refrigerant recovery mode (*1) Used to conduct vacuuming on site. Fully open the expansion valves of the indoor and outdoor units. and energize part of solenoid valves. Use a vacuum pump to conduct vacuuming. <tr< td=""></tr<>

For setting items of (*1), refer to detailed information provided on page 226 onward.

Setting by dip switches

Using dip switches on the PC board enables field setting shown below. However, make no changes of factory settings except for DS1-1.

	, ,					
	Dipswitch	Setting item	Description			
No.	Setting	Setting item	Description			
	ON		Used to set cool / heat select by Cool/Heat selector			
DS1-1 OFF (Factory se		Cool / Heat select	equipped with outdoor unit.			
DS1-2	ON	Netwood	De not change the factory actions			
~DS1-4	OFF (Factory set)	Not used	Do not change the factory settings.			
DS2-1	ON	Notuood	Do not change the factory acttings			
~4	OFF (Factory set)	Not used	Do not change the factory settings.			

Setting at replacement by spare PC board

∕ **Caution**

Setting at replacement by spare 1 C board

DIP switch Setting after changing the main PC board(A1P) to spare parts PC board After the replacement by the spare PC board, be sure to make settings shown below. When you change the main PC board(A1P) to spare parts PC board, please carry out the following setting.

Initial conditions of dip switches

DS No.	Item	Contents							
DS1-1	Cool/Heat change over setting			COOL/HEA Cool/Heat s					
		OFF (Factory setting of spare PC board)		COOL/HEA Cool/Heat s					
DS1-2	Power supply	ON	1	200V class	(220V)				
	specification	OFF (Factory setting of spare PC board)		400V class	(380V)				
DS1-3	Cooling only/Heat-	ON	(Cooling onl	y setting	g			
	pump setting	OFF (Factory setting of spare PC board)		Heat pump	setting				
DS1-4	Unit allocation setting	ON	1	Make the fo unit. (All mo	ollowing odels ar	settings e set to	accordir OFF at fa	ng to allo actory.)	ocation
DS2-1						mestic apan	Oversea Genera	··· F	urope
D32-1		OFF (Factory		DS1-4		DFF	OFF		ON
		setting of spare PC board)		DS2-1	(DFF	ON		OFF
DS2-2	Model setting	Make the following settings according to models of outdoor units (All models are set to OFF at factory.)							
DS2-3		RXYO		()	RXYQ10P(A)	RXYQ12P(A)	()	RXYQ16P(A)	RXYQ18P(A
			FF		ON	OFF	ON	OFF	ON
DS2-4			FF FF	-	ON OFF	OFF ON	OFF ON	ON ON	ON ON
D32-4									

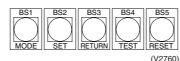
DIP Switch Detail

If the DS1-1~1-4, DS2-2~2-4 setting has not been carried out, error code "UA" are displayed and unit can not be operated.

Refer "DS1-1~4, DS2-1~4 setting detail" on next page.

Unit	Setting method (resents the position of switches)
HEAT PUMP(5HP) RXYQ5PAY1 RXYQ5PAYL, PTL	ON OFF $1 2 3 4$ $1 2 3 4$	Set DS2-1 to ON.
HEAT PUMP(8HP) RXYQ8PAY1 RXYQ8PAYL, PTL	ON OFF 1 2 3 4 1 2 3 4	Set DS2-1 and DS2-3 to ON.
HEAT PUMP(10HP) RXYQ10PAY1 RXYQ10PAYL, PTL	ON OFF 1 2 3 4 1 2 3 4	Set DS2-1, DS2-2 and DS2-3 to ON.
HEAT PUMP(12HP) RXYQ12PAY1 RXYQ12PAYL, PTL	ON OFF 1 2 3 4 1 2 3 4	Set DS2-1 and DS2-4 to ON.
HEAT PUMP(14HP) RXYQ14PAY1 RXYQ14PAYL, PTL	ON OFF 1 2 3 4 1 2 3 4	Set DS2-1, DS2-2 and DS2-4 to ON.
HEAT PUMP(16HP) RXYQ16PAY1 RXYQ16PAYL, PTL	ON OFF	Set DS2-1, DS2-3 and DS2-4 to ON.
HEAT PUMP(18HP) RXYQ18PAY1 RXYQ18PAYL, PTL	ON OFF 1 2 3 4 1 2 3 4	Set DS2-1, DS2-2, DS2-3, and DS2-4 to ON.

Setting by push button switches


The following settings are made by pushbutton switches on PC board. In case of multi-outdoor unit system, various items should be set with the master unit. (Setting with the slave unit is disabled.)

The master unit and slave unit can be discriminated with the LED display as shown below.

LED display

		MODE TEST		COOL/HEAT select			Low	Demand	Multi;
			H2P	IND H3P	MASTER H4P	SLAVE H5P	noise H6P	H7P	H8P
	tdoor-unit tem	•	•	0	•	•	•	•	\bullet
Outdoor-	Master	•	•	0	•	•	•	•	0
multi	Slave 1	•	•	•	•	•	•	•	0
system	Slave 2	•	•	•	•	•	•	•	•
								/Lester	a (a a ttina)

(Factory setting)

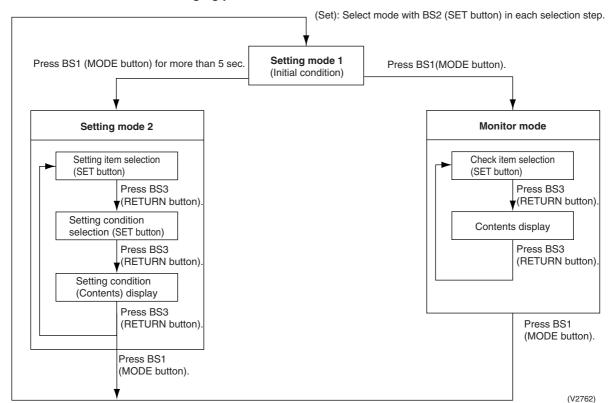
There are the following three setting modes.

① Setting mode 1 (H1P off)

Initial status (when normal) : Used to select the cool/heat setting. Also indicates during "abnormal", "low noise control" and "demand control".

② Setting mode 2 (H1P on)

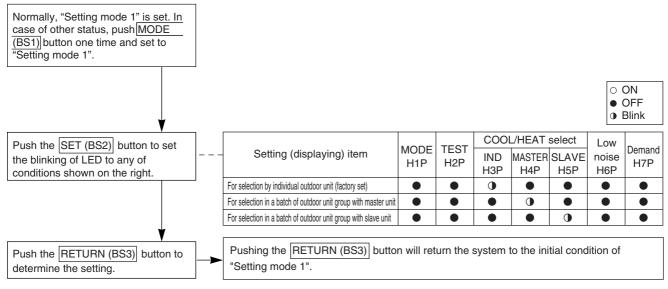
Used to modify the operating status and to set program addresses, etc. Usually used in servicing the system.

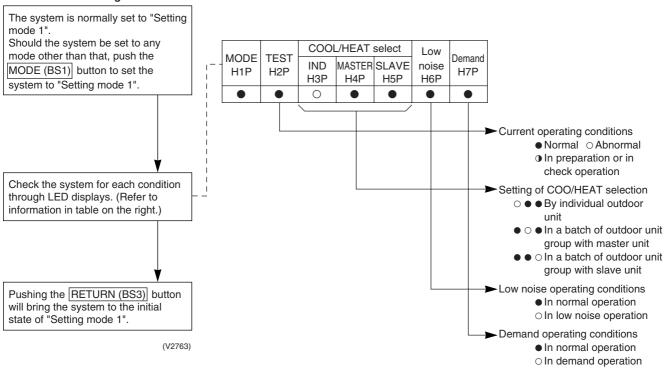

③ Monitor mode (H1P blinks)

Used to check the program made in Setting mode 2.

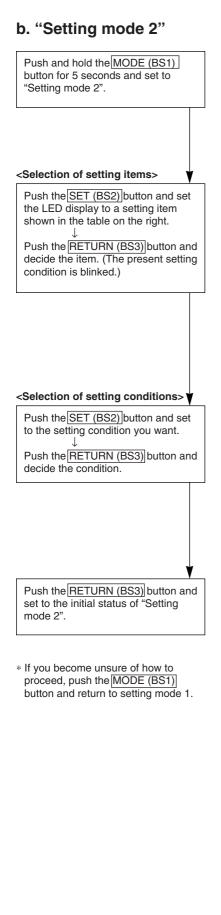
Mode changing procedure 1

Mode changing procedure 2


a. "Setting mode 1"


This mode is used to set and check the following items.

- 1. Set items In order to make COOL/HEAT selection in a batch of outdoor unit group, change the setting.


 - COOL/HEAT selection (SLAVE).....Used to select COOL or HEAT by outdoor unit group with the slave unit.
- 2. Check items The following items can be checked.
 - (1) Current operating conditions (Normal / Abnormal / In check operation)
 - (2) Setting conditions of COOL/HEAT selection (Individual / Batch master / Batch slave)
 - (3) Low noise operating conditions (In normal operation / In low noise operation)
 - (4) Demand operating conditions (In normal operation / In demand operation)

Procedure for changing COOL/HEAT selection setting

Procedure for checking check items

No.	Setting item	Description
0	Digital pressure gauge kit display	Used to make setting of contents to display on the digital pressure gauges (e.g. pressure sensors and temperature sensors)
1	Cool/heat unified address	Sets address for cool/heat unified operation.
2	Low noise/demand address	Address for low noise/demand operation
3	Test operation settings	Used to conduct test operation without making changes to the PC board and replacing the refrigerant, after the completion of maintenance.
5	Indoor unit forced fan H	Allows forced operation of indoor unit fan while unit is stopped. (H tap)
6	Indoor unit forced operation	Allows forced operation of indoor unit.
8	Te setting	Target evaporation temperature for cooling
9	Tc setting	Target condensation temperature for heating
10	Defrost changeover setting	Changes the temperature condition for defrost and sets to quick defrost or slow defrost.
11	Sequential operation setting	Sets sequential operation (Factory set to ON)
12	External low noise setting / Demand setting	Reception of external low noise or demand signal
13	AIRNET address	Set address for AIRNET.
16	Setting of hot water	Make this setting to conduct heating operation with hot water heater.
18	High static pressure setting	Make this setting in the case of operating in high static pressure mode with diffuser duct mounted. (In order to mount the diffuser duct, remove the cover from the outdoor unit fan.)
19	Emergency operation (STD compressor operation prohibited)	Used to operate system only with inverter compressor when STD compressor malfunctions. This is a temporary operation extremely impairing comfortable environment. Therefore, prompt replacement of the compressor is required. (This operation, however, is not set with RXYQ5, 8P.)
20	Additional refrigerant charge operation setting	Carries out additional refrigerant charge operation.
21	Refrigerant recovery/ vacuuming mode setting	Sets to refrigerant recovery or vacuuming mode.
22	Night-time low noise setting	Sets automatic nighttime low noise operation in a simple way. The operating time is based on "Starting set" and "Ending set".
24	ENECUT test operation	Used to forcedly turn ON the ENECUT. (Be noted that the ENECUT is only functional with outdoor unit in the stopped state - Japanese domestic model only.)
25	Setting of external low noise level	Sets low noise level when the low noise signal is input from outside.
26	Night-time low noise operation start setting	Sets starting time of nighttime low noise operation. (Night-time low noise setting is also required.)
27	Night-time low noise operation end setting	Sets ending time of nighttime low noise operation. (Night-time low noise setting is also required.)
28	Power transistor check mode *Check after disconnection of compressor wires	Used for trouble diagnosis of DC compressor. Since the waveform of inverter is output without wiring to the compressor, it is convenient to probe whether the trouble comes from the compressor or PC board.
29	Capacity precedence setting	If the capacity control is required, the low noise control is automatically released by this setting during carrying out low noise operation and nighttime low noise operation.
30	Demand setting 1	Changes target value of power consumption when demand control 1 is input.
32	Normal demand setting	Normally enables demand control 1 without external input. (Effective to prevent a problem that circuit breaker of small capacity is shut down due to large load.)

No.	Setting item	Description
35	Setting of difference in elevation for the outdoor unit	Make the setting when the outdoor unit is installed 40 m or more below the indoor unit.
38	Emergency operation (Setting for the master unit operation prohibition in multi- outdoor-unit system)	
39	Emergency operation (Setting for the slave unit 1 operation prohibition in multi- outdoor-unit system)	Used to temporarily prohibit the applicable outdoor unit from operating should there be any faulty part in multi- outdoor-unit system. Since the comfortable environment is extremely impaired, prompt replacement of the part is required.
40	Emergency operation (Setting for the slave unit 2 operation prohibition in multi- outdoor-unit system)	
42	Emergency operation (prohibition of INV compressor operation)	If the INV compressor has a failure, used to run the system only with STD compressor(s). This is a temporary running of the system until the compressor is replaced, thus making comfort extremely worse. Therefore, it is recommended to replace the compressor as soon as possible. (Be noted this setting is not available on model RXYQ5, 8PAY1.)

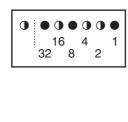
			Setting	g item disp	olav										
No.		MODE			/H selection	on	Low	Demond	Setting	condi	tion disp	olay			
110.	Setting item	MODE H1P	TEST H2P	IND H3P	Master H4P	Slave H5P	noise H6P	Demand H7P	, i i i i i i i i i i i i i i i i i i i		•	-	*	Factor	nv set
				пог	N4F	пог			Address	0	\cap				*
0	Digital pressure gauge kit display	0	•	\bullet	•	●	•	•	Binary number	1	0			• (
	0 0 1 7								(4 digits)		~		\sim		
										15	0		50	00	
									Address	0	\bigcirc	\bullet		• •	*
1	Cool / Heat Unified address	0	•	•	•	•		0	Binary number	1	\bigcirc	\bullet		• 0)
	Onlined address								(6 digits)		~				
								-		31	\bigcirc	00	0 0	00)
									Address	0	\bigcirc	\bullet		• •	*
2	Low noise/demand	0	•	•	•	•	0		Binary number	1	\bigcirc	\bullet		• 0)
	address	_		_		_	_		(6 digits)		~				
										31	\bigcirc	00	O O	00)
3	Test operation	0	•	•	•	•	0	0	Test operation: OFF		\bigcirc	\bullet		• 0) *
	· • • • • • • • • • • • • • • • • • • •		-		-	•	Ŭ	Ŭ	Test operation: ON		\bigcirc			\bigcirc)
5	Indoor forced fan H	0				0		0	Normal operation		\bigcirc	•		• 0) *
5	Indoor forced fair if	U	•	•	•	U	•	0	Indoor forced fan H		\bigcirc	•		0	
_	Indoor forced	0				0			Normal operation		0	• • •		• 0) *
6	operation	0	•	•	•	0	0	•	Indoor forced operation		0	•		0	
									Low (Level L)		0			• ()
									Normal (Level M)		\circ			\circ	*
									High① ┐					00	
8	Te setting	0			0				High(2)						
Ŭ	To Setting	\bigcirc	•	•	\bigcirc	•	•	•	High(3) (Level H)						, ,
									High④						
									High 5 J		0				
		~		-	0	-			Low		\bigcirc			• (
9	Tc setting	0	•	•	0	•	•	0	Normal (factory setting)		\circ \bullet	\bullet		0	*
								-	High		\bigcirc		0	• •)
	Defrect changes you								Slow defrost		\bigcirc	\bullet		• 0)
10	Defrost changeover setting	0	•	•	0	•	0		Normal (factory setting)		\bigcirc	\bullet		0	*
									Quick defrost		\bigcirc	• • •		• •)
11	Sequential operation	0			0		0	0	OFF		$\circ \bullet$	•		• 0)
' '	setting	\cup	•	•	\bigcirc	•	\cup		ON		\bigcirc	•		0	*
									External low noise/demand: NO		0			• 0) *
12	External low noise/ demand setting	0	•	•	0	0	•	•	External low noise/demand:						
									YES		0			0)
									Address	0	\bigcirc	•		• •	*
13	Airnet address	0			0	0		0	Binary number	1	0	•		• 0)
13	Aimer address	0	•	•	\cup	0	•	U	(6 digits)		~				
										63	ОС	$\circ \circ$	0 0	00)
10	Setting of hot water	\sim		\sim					OFF		0	•) *
16	heater	0		0		-			ON		0			0	
									High static pressure setting:		0			• () *
18	High static pressure setting	0		0		\bullet	0		OFF		~ •				
1									High static pressure setting: ON		0	\bullet		0	•
	Emergency								OFF		0			•	*
19	operation (STD compressor is	0		0		\bullet	0	0	STD 1, 2 operation: Inhibited	ł	0			• 0)
1	inhibited to operate.)								STD 2 operation: Inhibited		\cap			\cap	
\vdash	Additional refrigerant	L		L		L			Refrigerant charging: OFF		\bigcirc) *
20	charging operation setting	0		0		0			Refrigerant charging: ON						
╞──	Refrigerant								Refrigerant recovery / vacuuming: OF	F) *
21	recovery/vacuuming mode setting	0		0	\bullet	0	\bullet	0	Refrigerant recovery / vacuuming: OF		\circ				
	mode setting								neingeran recovery / vacuuming: ON		\circ			0	<u> </u>

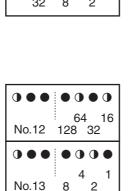
			Settin	g item dis	play		T	1						
No.	Setting item	MODE	TEST	C IND	/H selection Master	on Slave	Low noise	Demand	Setting condi	tion disp	ay			
		H1P	H2P	H3P	H4P	H5P	H6P	H7P				* Fac	tory	set
									OFF	$\bigcirc \bullet$	$\bullet \bullet \bullet$		ullet	*
22	Night-time low noise	0	•	0	•	0	0	•	Level 1 (outdoor fan with 6 step or lower)	$\bigcirc \bullet$	$\bullet \bullet \bullet$		Ο	
	setting	0	•	Ŭ		Ŭ	Ũ		Level 2 (outdoor fan with 5 step or lower)	$\bigcirc \bullet$			ullet	
									Level 3 (outdoor fan with 4 step or lower)	$\bigcirc \bullet$			0	
24	ENECUT test operation (Domestic	0	•	0	0	•	•	•	ENECUT output OFF	$\bigcirc \bullet$	$\bullet \bullet \bullet$		Ο	*
	Japan only)	•	•		Ũ	•	•	-	ENECUT output forced ON	$\bigcirc \bullet$				
									Level 1 (outdoor fan with 6 step or lower)	$\bigcirc \bullet$	••		Ο	
25	Low noise setting	0	•	0	0	•	•	0	Level 2 (outdoor fan with 5 step or lower)	$\bigcirc \bullet$	••		•	*
									Level 3 (outdoor fan with 4 step or lower)	$\bigcirc \bullet$) •		
	Night-time low noise								About 20:00	$\bigcirc \bullet$	••		Ο	
26	operation start setting	0	•	0	0	•	0	•	About 22:00 (factory setting)	$\bigcirc \bullet$			ullet	*
	oottiing								About 24:00	$\bigcirc \bullet$) •		
	Night-time low noise								About 6:00	$\bigcirc \bullet$			Ο	
27	operation end setting	0	•	0	0	•	0	0	About 7:00	$\bigcirc \bullet$			ullet	
	ootting								About 8:00 (factory setting)	$\bigcirc \bullet$) •		*
28	Power transistor	0	•	0	0	0			OFF	$\bigcirc \bullet$	••) •	Ο	*
20	check mode)	•	Ŭ	Ŭ	Ŭ	•	-	ON	$\bigcirc \bullet$				
29	Capacity	0		0	0	0		0	OFF	$\bigcirc \bullet$	••) •	0	*
20	precedence setting)	•	Ŭ	0	<u> </u>	•	Ŭ	ON	$\bigcirc \bullet$				
									60 % demand	$\bigcirc \bullet$	••) •	Ο	
30	Demand setting 1	0	•	0	0	0	0	•	70 % demand	$\bigcirc \bullet$			ullet	*
									80 % demand	$\bigcirc \bullet$) •		
32	Normal demand	0	0						OFF	$\bigcirc \bullet$	••) •	0	*
02	setting)	<u> </u>	•	•	•	•	•	ON	$\bigcirc \bullet$			lacksquare	
	Setting of difference								Normal	$\bigcirc \bullet$			ullet	
35	in elevation for the outdoor unit	0	0	•	•	•	0	0	65 m or less	$\bigcirc \bullet$		0 0	ullet	
									90 m or less	$\bigcirc \bullet$		0 0	0	
	Emergency operation								OFF	$\bigcirc \bullet$			0	*
38	(Master unit with multi-outdoor-unit	0	0	•	•	0	0	•		•••			Ŭ	
	system is inhibited to operate.)		_			_			Master unit operation: Inhibited	$\circ \bullet \circ$			ullet	
	, ,													
	Emergency operation			_		_			OFF	$\bigcirc \bullet$			0	*
39	(Slave unit 1 with multi-outdoor-unit	0	0			0	0	0	.				-	
	system is inhibited to operate.)								Slave unit 1 operation: Inhibited	$\bigcirc \bullet$			•	
	Emergency								OFF	0.			0	*
40	operation (Slave unit 2 with	0	0	•	0	•	•	•					U	-
	multi-outdoor-unit system is inhibited to	0	Ũ	•	Ŭ	•	•		Slave unit 2 operation: Inhibited	$\circ \bullet \circ$			•	
	operate.)									_		-		
	Emergency operation								Normal operation	$\bigcirc \bullet$	••		0	*
42	(prohibition of INV compressor	0	0		0		0		Emergency operation					
	operation)								Emergency operation (prohibition of INV compressor operation)	$\bigcirc \bullet$	•••		•	

c. Monitor mode	No	O atting item	LED display H1P H2P H3P H4P H5P H6P H7P			Data diantau				
	No.	Setting item	H1P	H2P	H3P	H4P	H5P	H6P	H7P	Data display
To enter the monitor mode, push the MODE (BS1) button when in	0	Various settings	\bullet	\bullet	•	•	•	•	•	Lower 4 digits
"Setting mode 1".	1	C/H unified address	0		٠	•	•	•	0	
	2	Low noise/demand address	0					0		
	3	Not used	0	•	•	•	•	0	0	
	4	Airnet address	0				0			
	5	Number of connected indoor units *1	0	•	•	•	0	•	0	Lower 6 digits
<selection item="" of="" setting=""> V Push the SET (BS2) button and set</selection>	6	Number of connected BS units *2	0				0	0		
the LED display to a setting item.	7	Number of connected zone units (Fixed to "0")	0	•	•	•	0	0	0	
	8	Number of outdoor units *3	0		•	0	•	•	•	
	9	Number of BS units *4	0	•	•	0	•	•	0	Lower 4 digits: upper
	10	Number of BS units *4	•	•	•	0	•	0	•	Lower 4 digits: lower
Confirmation on setting contents>	11	Number of zone units	0	•	•	0	٠	0	0	Lower 6 digits
Push the RETURN (BS3) button to display different data of set items.	12	Number of terminal units *5	0	•	•	0	0	•	•	Lower 4 digits: upper
	13	Number of terminal units *5	•	•	•	0	0	•	0	Lower 4 digits: lower
	14	Contents of malfunction (the latest)	0	•	•	0	0	0	•	Malfunction code table
	15	Contents of malfunction (1 cycle before)	•	•	•	0	0	0	0	Refer page 256.
	16	Contents of malfunction (2 cycle before)	•	•	0	•	•	•	•	
	20	Contents of retry (the latest)	\bullet	۲	0		0			
Push the RETURN (BS3) button and switches to the initial status of	21	Contents of retry (1 cycle before)	•	•	0	•	0	•	0	
"Monitor mode".	22	Contents of retry (2 cycle before)	0		0		0	0		
	25	Number of multi connection outdoor units	•	•	0	0	•		0	Lower 6 digit

* Push the MODE (BS1) button and returns to "Setting mode 1".

The numbers in the "No." column represent the number of times to press the SET (BS2) button.


*1: Number of connected indoor units


Used to make setting of the number of indoor units connected to an outdoor unit.

- *2: Number of connected BS units Used to make setting of the number of BS units connected to an outdoor unit.
- *3: Number of outdoor units Used to make setting of the number of outdoor units connected to DIII-NET that is one of the communication lines.
- *4: Number of BS units Used to make setting of the number of BS units connected to DIII-NET that is one of the communication lines.
- *5: Number of terminal units Used to make setting of the number of indoor units connected to DIII-NET that is one of the communication lines. (Only available for VRV indoor units)

EMG operation / backup operation	ON	\bullet	ullet		0	•	•	•
setting	OFF	\bullet	•	•	•	•	•	
Defrost select setting	Short	\bullet	•	•	•	0	•	
	Medium	0	•	•	•	•	•	•
	Long	0	•	•	•	•	•	•
Te setting	L	0	•	•	•	•	•	•
	М	0	•	•	•	•	0	•
	H (1~5)	0	•	•	•	•	0	•
Tc setting	L	0	•	•	•	•	•	•
	М	0	•	•	•	•	•	•
	Н	•	•	•	•	•	•	0

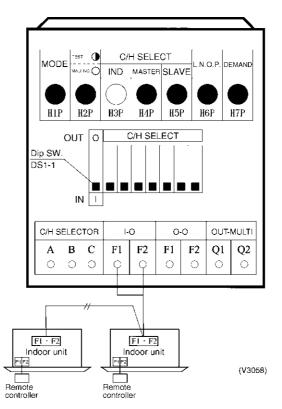
★ Data such as addresses and number of units is expressed as binary numbers; the two ways of expressing are as follows:

The No. 1 cool/heat unified address is expressed as a binary number consisting of the lower 6 digits. (0 - 63)

In ① the address is 010110 (binary number), which translates to 16 + 4 + 2 = 22 (base 10 number). In other words, the address is 22.

The number of terminal blocks for No. 12 and 13 is expressed as an 8-digit binary number, which is the combination of four upper, and four lower digits for No. 12 and 13 respectively. (0 - 128) In $\ensuremath{@}$ the address for No. 12 is 0101, the address for No. 13 is 0110, and the combination of the two is 01010110 (binary number), which translates to 64 + 16 + 4 + 2 = 86 (base 10 number). In other words, the number of terminal block is 86.

 \star See the preceding page for a list of data, etc. for No. 0 - 25.


3.2.2 Cool / Heat Mode Switching

There are the following 4 cool/heat switching modes.

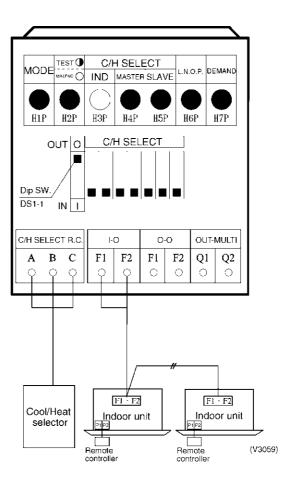
- ① Set cool/heat separately for each outdoor unit system by indoor unit remote controller.
- ② Set cool/heat separately for each outdoor unit system by cool/heat selector.
- Set cool/heat for more than one outdoor unit system simultaneously in accordance with unified master outdoor unit by indoor unit remote controller.
- ④ Set cool/heat for more than one outdoor unit system simultaneously in accordance with unified master outdoor unit by cool/heat switching remote controller.

① Set Cool / Heat Separately for Each Outdoor Unit System by Indoor Unit Remote Controller

- It does not matter whether or not there is outdoor outdoor unit wiring.
 - Set outdoor unit PC board DS1-1 to IN (factory set).
 - Set cool/heat switching to IND (individual) for "Setting mode 1" (factory set).
 - Set the master unit (= indoor unit having the right to select the cooling/heating operation mode).

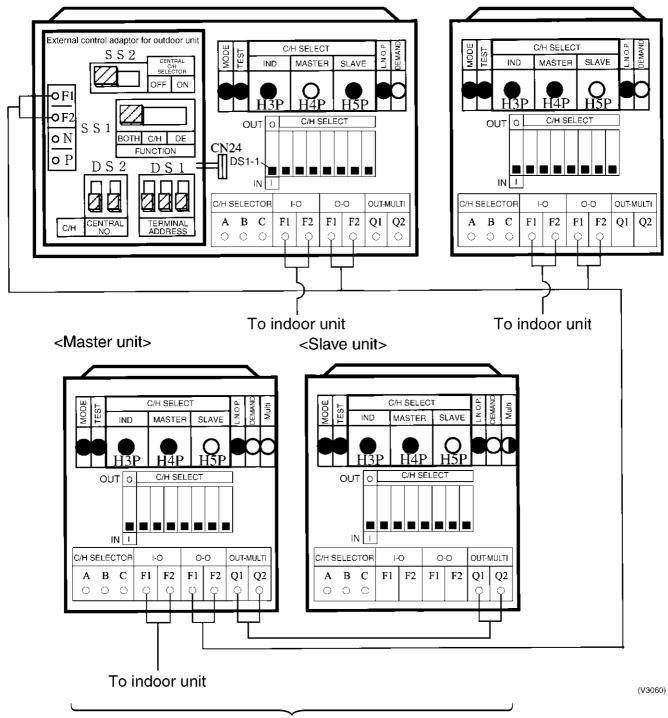
<Set the master unit (= indoor unit having the right to select the cooling/heating operation mode).>

In the case of wired remote controllers


- After the check operation, "CHANGEOVER UNDER CONTROL" is flashing in all connected remote controllers.
- Select an indoor unit to be used as the master unit in accordance with the request from the customer. (It is recommended to select an indoor unit which will be used most often as the master unit.)
- Press the operation mode selector button in the remote controller of the indoor unit selected as the master unit.
- In that remote controller, "CHANGEOVER UNDER CONTROL" disappears. That remote controller will control
- changeover of the cooling/heating operation mode. In other remote controllers, "CHANGEOVER UNDER CONTROL" lights.

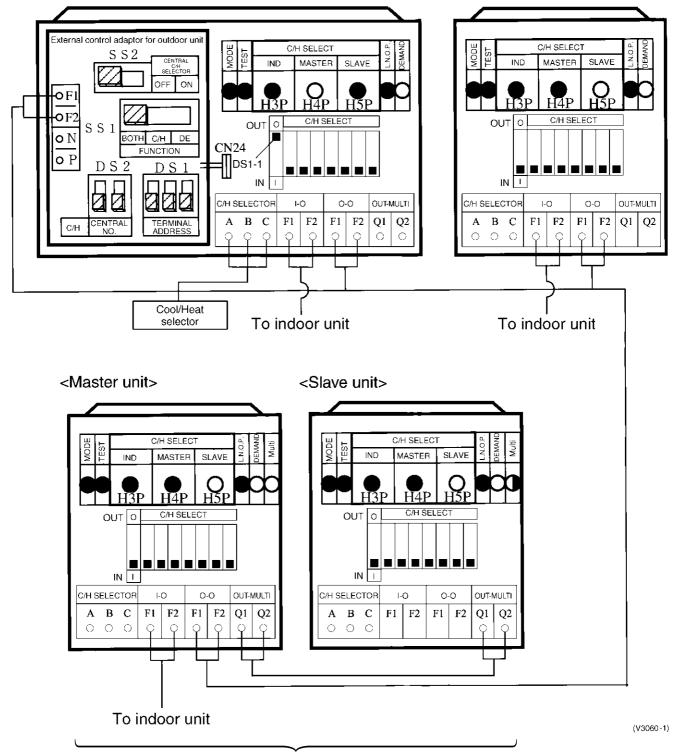
For the details, refer to the installation manual supplied together with the indoor unit.

- In the case of wireless remote controllers
 - After the check operation, the timer lamp is flashing in all connected indoor units.
 - Select an indoor unit to be used as the master unit in accordance with the request from the customer. (It is recommended to select an indoor unit which will be used most often as the master unit.)
 - Press the operation selector mode button in the remote controller of the indoor unit selected as the master unit. A "peep" sound is emitted, and the timer lamp turns off in all indoor units.
 - That indoor unit will control changeover of the cooling/ heating operation mode.


② Set Cool / Heat Separately for Each Outdoor Unit System by Cool / Heat Selector

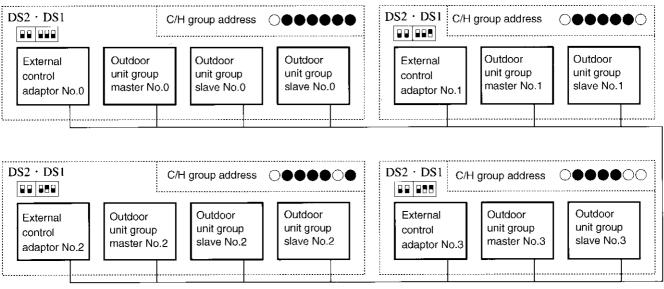
- It does not matter whether or not there is outdoor outdoor unit wiring.
- Set outdoor unit PC board DS1-1 to <u>OUT</u> (factory set).
- Set cool/heat switching to IND (individual) for "Setting mode 1" (factory set).

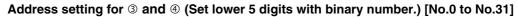
^③ Set Cool / Heat for More Than One Outdoor Unit System Simultaneously in Accordance with Unified Master Outdoor Unit by Indoor Unit Remote Controller


- Install the external control adapter for outdoor unit on either the outdoor-outdoor, indooroutdoor transmission line.
- Set outdoor unit PC board DS1-1 to <u>IN</u> (factory set).
- In setting mode 1, set the outdoor unit you want to give cool/heat selection permission to as the group master, and set the other outdoor units as group slave units.
- Set the outdoor unit external control adapter SS1 to BOTH (factory set) or C/H, and SS2 to OFF (factory set).

Multi outdoor units connection

④ Set Cool / Heat for More Than One Outdoor Unit System Simultaneously in Accordance with Unified Master Outdoor Unit by Cool / Heat Selector


- Install the external control adapter for outdoor unit on either the outdoor-outdoor, indooroutdoor transmission line.
- Mount the COOL/HEAT selector to the master outdoor unit for the unified control.
- Set the DS1-1 on the PC board of master outdoor unit to <u>OUT</u>.
- In setting mode 1, set the outdoor unit you want to give cool/heat selection permission to as the group master, and set the other outdoor units as group slave units.
- Set the outdoor unit external control adapter SS1 to BOTH (factory set) or C/H, and SS2 to OFF (factory set).


Multi outdoor units connection

Supplementation on 3 and 4.

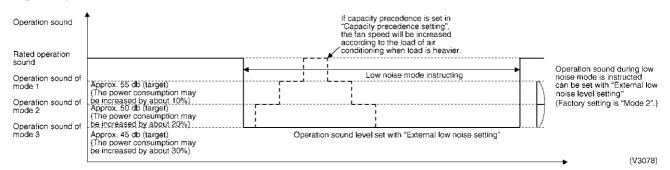
When switching cool/heat for each adapter PC board with the use of more than one adapter PC board, set the address of the external control adaptor for outdoor unit PC board <u>DS1 and DS2</u> so that it matches the unified cool/heat address of outdoor unit main PC board.

(V2723)

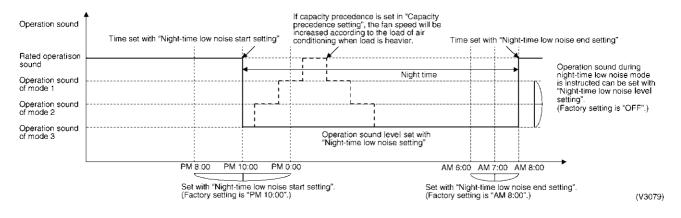
Address No.	Outdoor unit PC board LED Set with setting mode 2	External control DS2	l adaptor for outdoor unit DS1
No 0	$\bigcirc \bullet \qquad \bullet \bullet \bullet \bullet \bullet \\ \circ \qquad \circ \qquad \circ \bullet \bullet \bullet \bullet \\ \circ \qquad \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ \circ \qquad \circ \bullet \bullet$		
No 1	$\bigcirc \bullet \qquad \bullet \bullet \bullet \circ \\ 1 \qquad \qquad 1$		
No 2	$\bigcirc \bullet \qquad \bullet \bullet \bullet \bigcirc \bullet \\ 2 \qquad \qquad 2$		2
No 3	$\bigcirc \bullet \qquad \bullet \bullet \bullet \circ \circ \circ \\ 3 \qquad \qquad$		
No 4	$\bigcirc \bullet \qquad \bullet \bullet \circ \bullet \bullet \\ 4$		
2	2		2
No 30			30 and a second
No 31	$\bigcirc \bullet \qquad \bigcirc $		31
	○ ON ● OFF Upper position (0		sition (OFF) he shaded part shows knol

3.2.3 Setting of Low Noise Operation and Demand Operation

Setting of Low Noise Operation


By connecting the external contact input to the low noise input of the outdoor unit external control adapter (optional), you can lower operating noise by 2-3 dB.

Setting	Content
Mode 1	Set the outdoor unit fan to Step 6 or lower.
Mode 2	Set the outdoor unit fan to Step 5 or lower.
Mode 3	Set the outdoor unit fan to Step 4 or lower.

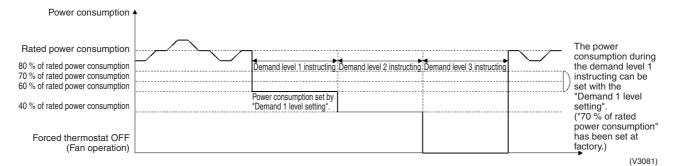

- A. When the low noise operation is carried out by external instructions (with the use of the external control adapter for outdoor unit)
- 1. While in "Setting mode 2", set the setting condition for set item No. 12 (Setting of external low noise/demand operation) to "YES".
- 2. If necessary, while in "Setting mode 2", select the setting condition (i.e., "Mode 1", "Mode 2", or "Mode 3") for set item No. 25 (Setting of external low noise level).
- If necessary, while in "Setting mode 2", set the setting condition for the set item No. 29 (Setting of capacity precedence) to "ON".
 (If the condition is set to "ON", when the air-conditioning load reaches a high level, the low noise operation command will be ignored to put the system into normal operation mode.)
- B. When the low noise operation is carried out automatically at night (The external control adapter for outdoor unit is not required)
- 1. While in "Setting mode 2", select the setting condition (i.e., "Mode 1", "Mode 2", or "Mode 3") for set item No. 22 (Setting of nighttime low noise level).
- If necessary, while in "Setting mode 2", select the setting condition (i.e., "20:00", "22:00", or "24:00") for set item No. 26 (Setting of start time of nighttime low noise operation). (Use the start time as a guide since it is estimated according to outdoor temperatures.)
- 3. If necessary, while in "Setting mode 2", select the setting condition (i.e., "06:00", "07:00", or "08:00") for set item No. 27 (Setting of end time of nighttime low noise operation). (Use the end time as a guide since it is estimated according to outdoor temperatures.)
- If necessary, while in "Setting mode 2", set the setting condition for set item No. 29 (Setting of capacity precedence) to "ON".
 (If the condition is set to "ON", when the air-conditioning load reaches a high level, the

system will be put into normal operation mode even during nighttime.)

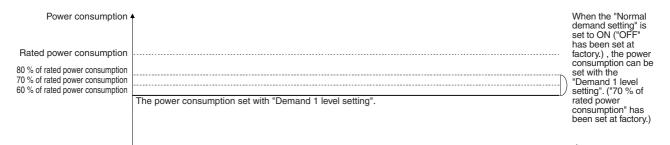
Image of operation in the case of A

Image of operation in the case of B

Image of operation in the case of A and B


Setting of Demand Operation

By connecting the external contact input to the demand input of the outdoor unit external control adapter (optional), the power consumption of unit operation can be saved suppressing the compressor operating condition.


Set item	Condition	Content
Demand 1	Mode 1	The compressor operates at approx. 60% or less of rating.
	Mode 2	The compressor operates at approx. 70% or less of rating.
	Mode 3	The compressor operates at approx. 80% or less of rating.
Demand 2	—	The compressor operates at approx. 40% or less of rating.

- A. When the demand operation is carried out by external instructions (with the use of the external control adapter for outdoor unit).
- 1. While in "Setting mode 2", set the setting condition for set item No. 12 (Setting of external low noise/demand operation) to "YES".
- 2. If necessary, while in "Setting mode 2", select the set item No. 30 (Setting of Demand 1 level) and then set the setting condition to targeted mode.
- B. When the normal demand operation is carried out. (Use of the external control adapter for outdoor unit is not required.)
- 1. While in "Setting mode 2", make setting of the set item No. 32 (Setting of constant demand) to "ON".
- 2. While in "Setting mode 2", select the set item No. 30 (Setting of Demand 1 level) and then set the setting condition to targeted mode.

Image of operation in the case of A

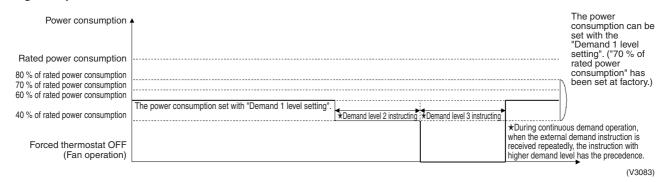


Image of operation in the case of B

(V3082)

Image of operation in the case of A and B

Detailed Setting Procedure of Low Noise Operation and Demand Control

1. Setting mode 1 (H1P off)

 \bigcirc In setting mode 2, push the BS1 (MODE button) one time. \rightarrow Setting mode 2 is entered and H1P lights.

During the setting mode 1 is displayed, "In low noise operation" and "In demand control" are displayed.

2. Setting mode 2 (H1P on)

- $\odot~$ In setting 1, push and hold the BS1 (MODE button) for more than 5 seconds. \rightarrow Setting mode 2 is entered and H1P lights.
- ② Push the BS2 (SET button) several times and match the LED display with the Setting No. you want.
- ③ Push the BS3 (RETURN button) one time, and the present setting content is displayed. → Push the BS2 (SET button) several times and match the LED display with the setting content (as shown below) you want.
- ④ Push the BS3 (RETURN button) two times. \rightarrow Returns to \bigcirc .
- $\$ Push the BS1 (MODE button) one time. \rightarrow Returns to the setting mode 1 and turns H1P off.

Setting contents ternal w noise / emand tting ght-time w noise tting	H1P O		H3P •	H4P	H5P	1	H7P	H1P O		etting H3P	H4P O	H5P O	H6P	H7P	Setting contents	H1P	H2P	tents i H3P		H5P	H6P	H7F	
w noise / emand tting ght-time w noise tting tternal w noise		•				•		0		•					NO	HIP	H2P	нзр	H4P	H5P	H6P	H/ŀ	
ght-time w noise tting tternal w noise													•	•	NO (Factory setting)	0	•	•	•	•	•	0	
v noise tting tternal v noise															YES	0	•	•	٠	•	0	•	
w noise								0	•	0	•	0	0	•	OFF (Factory setting)	0	•	•	•	•	•	•	
w noise															Mode 1	0	•	•	●	●	•	•	
w noise																Mode 2	0	•	•	•	•	0	•
w noise															Mode 3	0	•	•	●	●	•	•	
								0	•	0	0	•	•	0	Mode 1	0	٠	•	٠	•	•	•	
															Mode 2 (Factory setting)	0	•	•	•	•	•	•	
															Mode 3	0	٠	•	٠	0	•	•	
ght-time								0	•	0	0	•	0	•	PM 8:00	0	٠	•	٠	•	•	•	
w noise art setting															PM 10:00 (Factory setting)	0	•	•	•	•	0	•	
															PM 0:00	0	•	•	•	0	•	•	
ght-time								0	•	0	0	•	0	0	AM 6:00	0	٠	٠	٠	•	•	•	
w noise d setting															AM 7:00	0	•	•	•	•	0	•	
															AM 8:00 (Factory setting)	0	•	•	•	0	•	•	
apacity ecedence tting								0	•	0	0	0	•	0		0	•	•	•	•	•	0	
															Capacity precedence	0	٠	•	•	•	0	•	
emand tting 1								0	•	0	0	0	0	•	rated power	0	•	•	•	•	•	0	
															rated power consumption (Factory	0	•	•	•	•	•	•	
															rated power	0	•	•	•	0	•	•	
ormal								0	•	•	•	•	•	•	(Factory	0	●	•	•	•	•	0	
mand tting																0	٠	٠	٠	٠	0	•	
ec ttii	edence ng nand ng 1	edence ng land ng 1 nal and ng	edence ng land ng 1	edence ng land ng 1	edence ng land ng 1	and ng 1	edence ng land ng 1	edence ng land ng 1	edence ng land ng 1 nal and	acity edence ng O Image: Second	acity edence ng and ng 1 and ng 1 and and ng 1 and ng 1 and ng 1 and ng 1 and ng 1 and ng 1 and ng 1 and ng 1 and ng 1 and ng 1 and and and and and and and and and an	acity edence ng Image: Constraint of the second	acity edence ng O O O O O O O O Factory setting) O <	acity edence ng \bigcirc </td <td>acity edence ng\bigcirc<!--</td--><td>acity edence ng </td><td>acity edence ng Image: Second Sec</td></td>	acity edence ng \bigcirc </td <td>acity edence ng </td> <td>acity edence ng Image: Second Sec</td>	acity edence ng	acity edence ng Image: Second Sec						

3.2.4 Setting of Refrigerant Recovery Mode

When carrying out the refrigerant collection on site, fully open the respective expansion valve of indoor and outdoor units.

All indoor and outdoor unit's operation are prohibited.

[Operation procedure]

In setting mode 2 with units in stop mode, set "Refrigerant Recovery / Vacuuming mode" to ON. The respective expansion valve of indoor and outdoor units are fully opened. (H2P turns to display "TEST OPERATION" (blinks), "TEST OPERATION" and "UNDER CENTRALIZED CONTROL" are displayed on the remote controller, and the all indoor / outdoor unit operation is prohibited.

After setting, do not cancel "Setting Mode 2" until completion of refrigerant recovery operation.

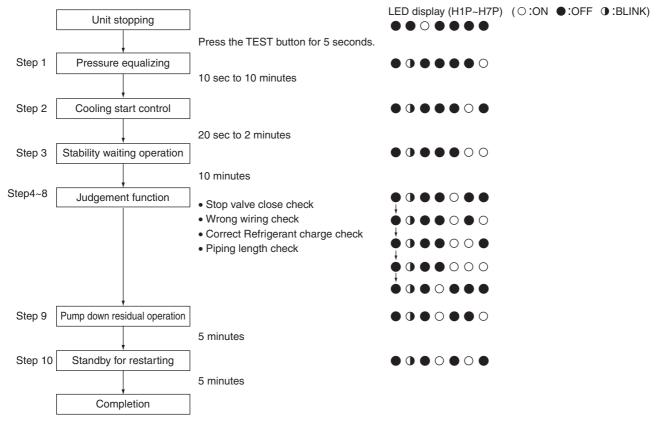
- Collect the refrigerant using a refrigerant recovery unit. (See the instruction attached to the refrigerant recovery unit for more detal.)
- ③ Press Mode button "BS1" once and reset "Setting Mode 2".

3.2.5 Setting of Vacuuming Mode

In order to perform vacuuming operation at site, fully open the expansion valves of indoor and outdoor units and turn on some solenoid valves.

[Operating procedure]

① With Setting Mode 2 while the unit stops, set "Refrigerant recovery / Vacuuming mode" to ON. The expansion valves of indoor and outdoor units fully open and some of solenoid valves open.


(H2P blinks to indicate the test operation, and the remote controller displays "Test Operation" and "Under centralized control", thus prohibiting operation.)

- After setting, do not cancel "Setting Mode 2" until completion of Vacuuming operation.
- $\ensuremath{\textcircled{O}}$ Use the vacuum pump to perform vacuuming operation.
- ③ Press Mode button "BS1" once and reset "Setting Mode 2".

3.2.6 Check Operation Detail

CHECK OPERATION FUNCTION

(Press the MODE button BS1 once and set to SETTING MODE 1 (H1P: OFF))

Part 6 Troubleshooting

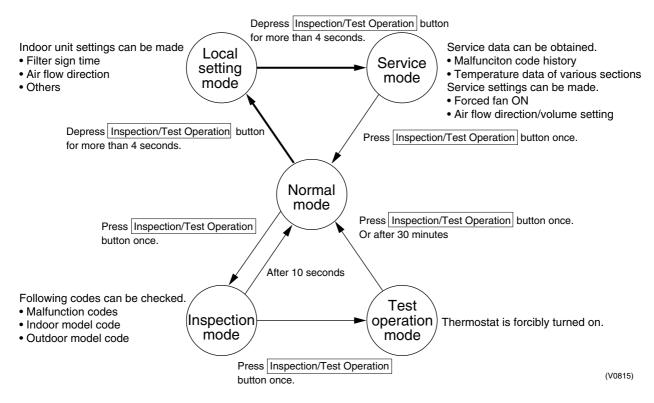
1.	Sym	ptom-based Troubleshooting	.242
2.	Trou	bleshooting by Remote Controller	.245
	2.1	The INSPECTION / TEST Button	
	2.2	Self-diagnosis by Wired Remote Controller	246
	2.3	Self-diagnosis by Wireless Remote Controller	
	2.4	Operation of The Remote Controller's Inspection /	
		Test Operation Button	250
	2.5	Remote Controller Service Mode	251
	2.6	Remote Controller Self-Diagnosis Function	253
3.	Trou	bleshooting by Indication on the Remote Controller	
•	3.1	"#0" Indoor Unit: Error of External Protection Device	
	3.2	"፡፡፡ /" Indoor Unit: PC Board Defect	
	3.3	"83" Indoor Unit: Malfunction of Drain Level Control System (S1L)	
	3.4	"兆" Indoor Unit: Fan Motor (M1F) Lock, Overload	
	3.5	"80" Indoor Unit: Malfunction of Swing Flap Motor (M1S)	
	3.6	Abnormal Power Supply Voltage	
	3.7	"昭" Indoor Unit: Malfunction of Moving Part of	
		Electronic Expansion Valve (Y1E)	271
	3.8	"#" Indoor Unit: Drain Level above Limit	
	3.9	"Re" Indoor Unit: Malfunction of Capacity Determination Device	274
	3.10	"? "Indoor Unit: Failure of Transmission	
		(Between Indoor unit PC Board and Fan PC Board)	275
	3.11	"ርч" Indoor Unit: Malfunction of Thermistor (R2T) for	
		Heat Exchanger	277
	3.12	"25" Indoor Unit: Malfunction of Thermistor (R3T) for Gas Pipes	
	3.13	"[5" Indoor Unit: Failure of Combination	
		(Between Indoor unit PC Board and Fan PC Board)	279
	3.14	"C3" Indoor Unit: Malfunction of Thermistor (R1T) for Suction Air	280
	3.15	"[[" Indoor Unit: Malfunction of Humidity Sensor System	281
	3.16	"Cu" Indoor Unit: Malfunction of Thermostat Sensor in	
		Remote Controller	282
	3.17	"E I" Outdoor Unit: PC Board Defect	283
	3.18	"E3" Outdoor Unit: Actuation of High Pressure Switch	284
	3.19	"ደч" Outdoor Unit: Actuation of Low Pressure Sensor	286
	3.20	"ES" Outdoor Unit: Inverter Compressor Motor Lock	288
	3.21	"E&" Outdoor Unit: STD Compressor Motor Overcurrent/Lock	290
	3.22	"ደና" Outdoor Unit: Malfunction of Outdoor Unit Fan Motor	291
	3.23	"£5" Outdoor Unit: Malfunction of Moving Part of	
		Electronic Expansion Valve (Y1E, Y2E)	
	3.24	"F3" Outdoor Unit: Abnormal Discharge Pipe Temperature	296
		"۶٤" Outdoor Unit: Refrigerant Overcharged	
	3.26	"អា?" Outdoor Unit: Abnormal Outdoor Fan Motor Signal	298
	3.27	"#5" Outdoor Unit: Malfunction of Thermistor (R1T) for Outdoor Air	.299
	3.28	"టెడి" Outdoor Unit: Current Sensor Malfunction	.300

	3.29	"ਹੋੜ" Outdoor Unit: Malfunction of Discharge Pipe Thermistor
		(R3, R31~33T)
	3.30	"J5" Outdoor Unit: Malfunction of Thermistor (R2T, R7T) for
	0.01	Suction Pipe
	3.31	"ഷ്" Outdoor Unit: Malfunction of Thermistor (R4T) for
	0 00	Outdoor Unit Heat Exchanger
		"" Outdoor Unit: Malfunction of Liquid Pipe Thermistor (R6T)
	3.33	"J3" Outdoor Unit: Malfunction of Subcooling Heat Exchanger
	0.04	Gas Pipe Thermistor (R5T)
		"#" Outdoor Unit: Malfunction of High Pressure Sensor
	3.30	"LY" Outdoor Unit: Malfunction of Inverter Radiating Fin Temperature Rise
	2 27	"£5" Outdoor Unit: Inverter Compressor Abnormal
		"L8" Outdoor Unit: Inverter Current Abnormal
		"L3" Outdoor Unit: Inverter Start up Error
	3.40	Inverter and Control PC Board
	2 / 1	"? I" Outdoor Unit: Inverter Over-Ripple Protection
		"안 Outdoor Unit: Malfunction of Inverter Radiating
	3.42	Fin Temperature Rise Sensor
	2 12	"Pu" Outdoor Unit: Faulty Field Setting after Replacing Main PC Board or
	3.43	Faulty Combination of PC Board
	3 11	""" Outdoor Unit: Low Pressure Drop Due to Refrigerant Shortage or
	0.44	Electronic Expansion Valve Failure
	3 15	"" I" Reverse Phase, Open Phase
		"" Outdoor Unit: Power Supply Insufficient or
	0.40	Instantaneous Failure
	3 47	"#3" Outdoor Unit: Check Operation not Executed
		""" Malfunction of Transmission Between Indoor Units
		"us" Indoor Unit: Malfunction of Transmission Between
	0.40	Remote Controller and Indoor Unit
	3 50	""" Indoor Unit: Malfunction of Transmission Between
	0.00	Outdoor Units
	3.51	""" Indoor Unit: Malfunction of Transmission Between
	0.01	Main and Sub Remote Controllers
	3 52	""" Indoor Unit: Malfunction of Transmission Between
	0.02	Indoor and Outdoor Units in the Same System
	3.53	"#" Improper Combination of Indoor and Outdoor Units,
	0.00	Indoor Units and Remote Controller
	3.54	"""" Address Duplication of Centralized Controller
		"#E" Malfunction of Transmission Between
		Centralized Controller and Indoor Unit
	3.56	"#F" System is not Set yet
		"UH" Malfunction of System, Refrigerant System Address Undefined343
4		bleshooting (OP: Central Remote Controller)
	4.1	۳۲ ۳ PC Board Defect
	4.2	"MS" Malfunction of Transmission Between Optional Controllers for
		Centralized Control
	4.3	"MS" Improper Combination of Optional Controllers for
		Centralized Control
	4.4	"ML" Address Duplication, Improper Setting

5.	Trou	bleshooting (OP: Unified ON/OFF Controller)	353
	5.1	Operation Lamp Blinks	

- 5.2 Display "Under Centralized Control" Blinks (Repeats Single Blink)355
 5.3 Display "Under Centralized Control" Blinks (Repeats Double Blink)358

1. Symptom-based Troubleshooting


	- 1	Symptom	Supposed Cause	Countermeasure				
1	The system does	not start operation at all.	Blowout of fuse(s)	Turn Off the power supply and then replace the fuse(s).				
			Cutout of breaker(s)	 If the knob of any breaker is in its OFF position, turn ON the power supply. If the knob of any circuit breaker is in its tripped position, do not turn ON the power supply. 				
				ON Knob Tripped OFF Circuit breaker				
			Power failure	After the power failure is reset, restart the system.				
2	The system starts immediate stop.	operation but makes an	Blocked air inlet or outlet of indoor or outdoor unit	Remove obstacle(s).				
			Clogged air filter(s)	Clean the air filter(s).				
3	The system does	not cool or heat air well.	Blocked air inlet or outlet of indoor or outdoor unit	Remove obstacle(s).				
			Clogged air filter(s)	Clean the air filter(s).				
			Enclosed outdoor unit(s)	Remove the enclosure.				
			Improper set temperature	Set the temperature to a proper degree.				
			Airflow rate set to "LOW"	Set it to a proper airflow rate.				
			Improper direction of air diffusion	Set it to a proper direction.				
			Open window(s) or door(s)	Shut it tightly.				
		[In cooling]	Direct sunlight received	Hang curtains or shades on windows.				
		[In cooling]	Too many persons staying in a room					
		[In cooling]	Too many heat sources (e.g. OA equipment) located in a room					
4	The system does not operate.	The system stops and immediately restarts operation.	If the OPERATION lamp on the remote controller turns ON, the system will be normal. These	Normal operation. The system will automatically start operation after a lapse of five minutes.				
		Pressing the TEMP ADJUST button immediately resets the system.	symptoms indicate that the system is controlled so as not to put unreasonable loads on the system.					
		The remote controller displays "UNDER CENTRALIZED CONTROL", which blinks for a period of several seconds when the OPERATION button is depressed.	The system is controlled with centralized controller. Blinking display indicates that the system cannot be operated using the remote controller.	Operate the system using the COOL/HEAT centralized remote controller.				
		The system stops immediately after turning ON the power supply.	The system is in preparation mode of micro computer operation.	Wait for a period of approximately one minute.				
5	The system makes intermittent stops.	The remote controller displays malfunction codes "U4" and "U5", and the system stops but restarts after a lapse of several minutes.	The system stops due to an interruption in communication between units caused by electrical noises coming from equipment other than air conditioners.	Remove causes of electrical noises. If these causes are removed, the system will automatically restart operation.				
6	COOL-HEAT selection is disabled.	The remote controller displays "UNDER CENTRALIZED CONTROL".	This remote controller has no option to select cooling operation.	Use a remote controller with option to select cooling operation.				
		The remote controller displays "UNDER CENTRALIZED CONTROL", and the COOL- HEAT selection remote controller is provided.	COOL-HEAT selection is made using the COOL-HEAT selection remote controller.	Use the COOL-HEAT selection remote controller to select cool or heat.				

		Symptom	Supposed Cause	Countermeasure
7	The system conducts fan operation but not cooling or heating operation.	This symptom occurs immediately after turning ON the power supply.	The system is in preparation mode of operation.	Wait for a period of approximately 10 minutes.
8	The airflow rate is not reproduced according to the setting.	Even pressing the AIRFLOW RATE SET button makes no changes in the airflow rate.	In heating operation, when the room temperature reaches the set degree, the outdoor unit will stop while the indoor unit is brought to fan LL operation so that no one gets cold air. Furthermore, if fan operation mode is selected when other indoor unit is in heating operation, the system will be brought to fan LL operation. (The fan LL operation is also enabled while in oil return mode in cooling operation.)	Normal operation.
9	The airflow direction is not reproduced according to the setting.	The airflow direction is not corresponding to that displayed on the remote controller. The flap does not swing.	Automatic control	Normal operation.
10	A white mist comes out from the system.	<pre><indoor unit=""> In cooling operation, the ambient humidity is high. (This indoor unit is installed in a place with much oil or dust.)</indoor></pre>	Uneven temperature distribution due to heavy stain of the inside of the indoor unit	Clean the inside of the indoor unit.
		<indoor unit=""> Immediately after cooling operation stopping, the ambient temperature and humidity are low.</indoor>	Hot gas (refrigerant) flown in the indoor unit results to be vapor from the unit.	Normal operation.
		<indoor and="" outdoor="" units=""> After the completion of defrosting operation, the system is switched to heating operation.</indoor>	Defrosted moisture turns to be vapor and comes out from the units.	Normal operation.
11	The system produces sounds.	<indoor unit=""> Immediately after turning ON the power supply, indoor unit produces "ringing" sounds.</indoor>	These are operating sounds of the electronic expansion valve of the indoor unit.	Normal operation. This sound becomes low after a lapse of approximately one minute.
		<indoor and="" outdoor="" units=""> "Hissing" sounds are continuously produced while in cooling or defrosting operation.</indoor>	These sounds are produced from gas (refrigerant) flowing respectively through the indoor and outdoor units.	Normal operation.
		<indoor and="" outdoor="" units=""> "Hissing" sounds are produced immediately after the startup or stop of the system, or the startup or stop of defrosting operation.</indoor>	These sounds are produced when the gas (refrigerant) stops or changes flowing.	Normal operation.
		<indoor unit=""> Faint sounds are continuously produced while in cooling operation or after stopping the operation.</indoor>	These sounds are produced from the drain discharge device in operation.	Normal operation.
		<pre><indoor unit=""> "Creaking" sounds are produced while in heating operation or after stopping the operation.</indoor></pre>	These sounds are produced from resin parts expanding and contracting with temperature changes.	Normal operation.
		<indoor unit=""> Sounds like "trickling" or the like are produced from indoor units in the stopped state.</indoor>	On VRV systems, these sounds are produced when other indoor units in operation. The reason is that the system runs in order to prevent oil or refrigerant from dwelling.	Normal operation.
		<outdoor unit=""> Pitch of operating sounds changes.</outdoor>	The reason is that the compressor changes the operating frequency.	Normal operation.

		Symptom	Supposed Cause	Countermeasure
12	Dust comes out from the system.	Dust comes out from the system when it restarts after the stop for an extended period of time.	Dust, which has deposited on the inside of indoor unit, is blown out from the system.	Normal operation.
13	Odors come out from the system.	In operation	Odors of room, cigarettes or else adsorbed to the inside of indoor unit are blown out.	The inside of the indoor unit should be cleaned.
14	Outdoor unit fan does not rotate.	In operation	The reason is that fan revolutions are controlled to put the operation to the optimum state.	Normal operation.
15	LCD display "88" appears on the remote controller.	Immediately after turning ON the power supply	The reason is that the system is checking to be sure the remote controller is normal.	Normal operation. This code is displayed for a period of approximately one minute at maximum.
16	The outdoor unit compressor or the outdoor unit fan does not stop.	After stopping operation	It stops in order to prevent oil or refrigerant from dwelling.	Normal operation. It stops after a lapse of approximately 5 to 10 minutes.
17	The outdoor gets hot.	While stopping operation	The reason is that the compressor is warmed up to provide smooth startup of the system.	Normal operation.
18	Hot air comes out from the system even though it stops.	Hot air is felt while the system stops.	On VRV systems, small quantity of refrigerant is fed to indoor units in the stopped state when other indoor units are in operation.	Normal operation.
19	The system does not cool air well.	The system is in dry operation.	The reason is that the dry operation serves not to reduce the room temperature where possible.	Change the system to cooling operation.

2. Troubleshooting by Remote Controller 2.1 The INSPECTION / TEST Button


The following modes can be selected by using the [Inspection/Test Operation] button on the remote control.

2.2 Self-diagnosis by Wired Remote Controller

Explanation

If operation stops due to malfunction, the remote controller's operation LED blinks, and malfunction code is displayed. (Even if stop operation is carried out, malfunction contents are displayed when the inspection mode is entered.) The malfunction code enables you to tell what kind of malfunction caused operation to stop. See page 254 for malfunction code and malfunction contents.

Note:

- 1. Pressing the INSPECTION/TEST button will blink the check indication.
- 2. While in check mode, pressing and holding the ON/OFF button for a period of five seconds or more will clear the failure history indication shown above. In this case, on the codes display, the malfunction code will blink twice and then change to "00" (=Normal), the Unit No. will change to "0", and the operation mode will automatically switch from check mode to normal mode (displaying the set temperature).

2.3 Self-diagnosis by Wireless Remote Controller

In the Case of	If equipment stops due to a malfunction, the operation indicating LED on the light reception
BRC7C Type	section flashes.
BRC7E Type	The malfunction code can be determined by following the procedure described below. (The
BRC4C Type	malfunction code is displayed when an operation error has occurred. In normal condition, the
	malfunction code of the last problem is displayed.)

- 1. Press the INSPECTION/TEST button to select "Inspection."
 - The equipment enters the inspection mode. The "Unit" indication lights and the Unit No. display shows flashing "0" indication.
- 2. Set the Unit No.

Press the UP or DOWN button and change the Unit No. display until the buzzer (*1) is generated from the indoor unit.

*1 Number of beeps

3 short beeps : Conduct all of the following operations.

1 short beep : Conduct steps 3 and 4.

Continue the operation in step 4 until a buzzer remains ON. The continuous buzzer indicates that the malfunction code is confirmed.

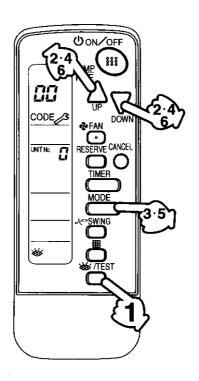
- Continuous beep : No abnormality.
- 3. Press the MODE selector button.

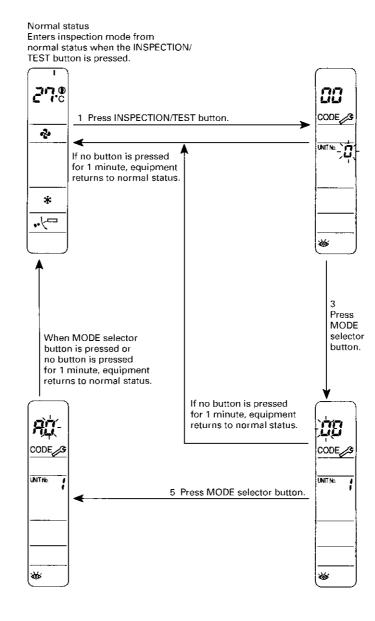
The left "0" (upper digit) indication of the malfunction code flashes.

- 4. Malfunction code upper digit diagnosis
 - Press the UP or DOWN button and change the malfunction code upper digit until the malfunction code matching buzzer (*2) is generated.
- The upper digit of the code changes as shown below when the UP and DOWN buttons are pressed.

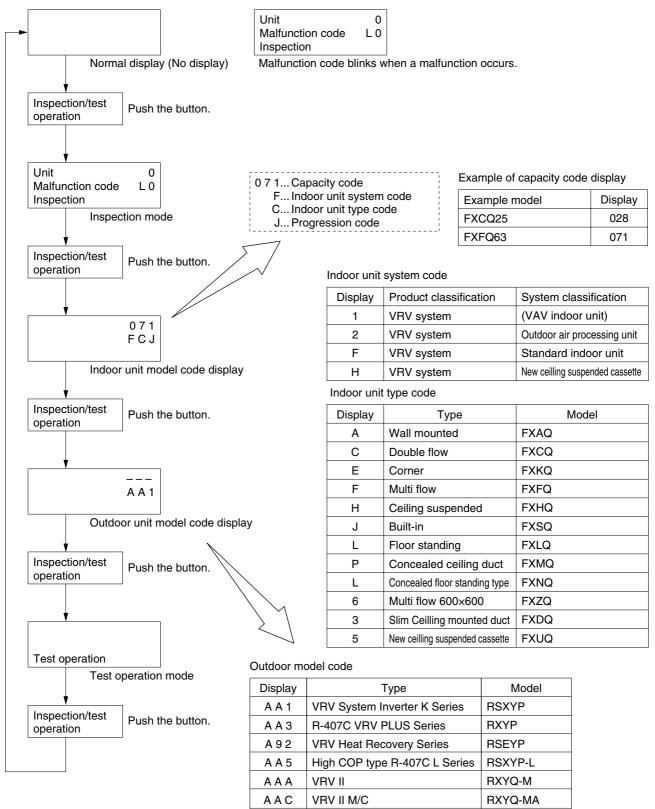
$$\Rightarrow \text{"Advance" button} \quad \textbf{Advance" button}$$

*2 Number of beeps

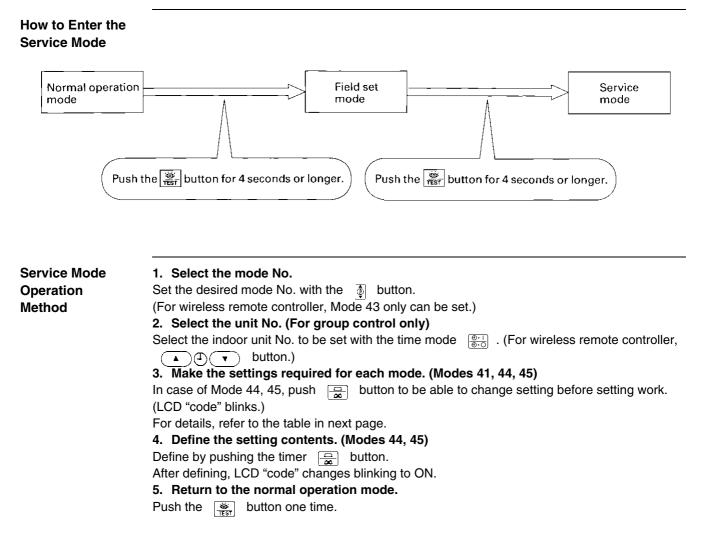

Continuous beep : Both upper and lower digits matched. (Malfunction code confirmed) **2 short beeps :** Upper digit matched.


1 short beep : Lower digit matched.

- 5. Press the MODE selector button.
- The right "0" (lower digit) indication of the malfunction code flashes.
- Malfunction code lower digit diagnosis Press the UP or DOWN button and change the malfunction code lower digit until the continuous malfunction code matching buzzer (*2) is generated.


The lower digit of the code changes as shown below when the UP and DOWN buttons are pressed.

2.4 Operation of The Remote Controller's Inspection / Test Operation Button

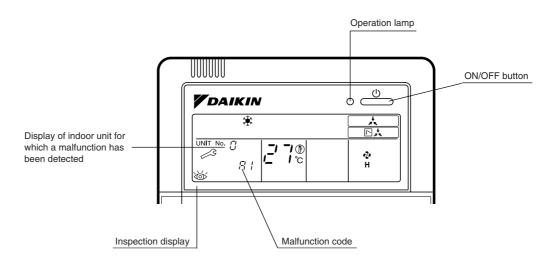


AAE

VRV III

RXYQ-P(A)

2.5 Remote Controller Service Mode



Mode No	Function	Contents and operation method	Remote controller display example
40	Malfunction hysteresis display	Display malfunction hysteresis. The history No. can be changed with the button.	Unit 1 Malfunction code 2-U4 Malfunction code Hystory No: 1 - 9 1: Latest
41	Display of sensor and address data	Display various types of data. Select the data to be displayed with the button. Sensor data 0: Thermostat sensor in remote controller. 1: Suction 2: Liquid pipe 3: Gas pipe Address data 4: Indoor unit address 5: Outdoor unit address 6: BS unit address 7: Zone control address 8: Cool/heat group address 9: Demand / Iow noise address	Sensor data display Unit No. Sensor type 1 1 2 7 Temperature °C Address display Unit No. Address type 1 8 47 1 Address type
43	Forced fan ON	Manually turn the fan ON by each unit. (When you want to search for the unit No.) By selecting the unit No. with the OOD button, you can turn the fan of each indoor unit on (forced ON) individually.	Unit 1 <i>ЧЗ</i>
44	Individual setting	Set the fan speed and air flow direction by each unit Select the unit No. with the time mode button. Set the fan speed with the button. Set the air flow direction with the button.	Unit 1 Code 44 T S High (VE010)
45	Unit No. transfer	Transfer unit No. Select the unit No. with the OT button. Set the unit No. after transfer with the Debutton.	Vnit 1 0 2 45 Code 0 2 Unit No. after transfer
46 47	This function is not	used by VRV III R-410A Heat Pump 50Hz / 60Hz.	

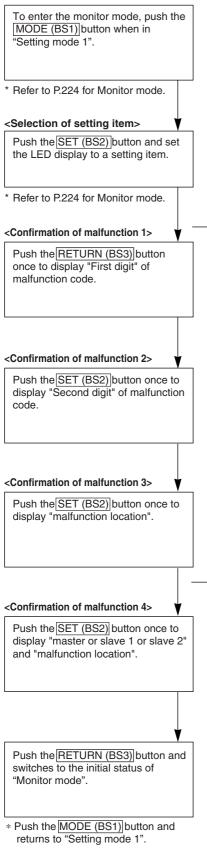
2.6 Remote Controller Self-Diagnosis Function

The remote controller switches are equipped with a self diagnosis function so that more appropriate maintenance can be carried out. If a malfunction occurs during operation, the operation lamp, malfunction code and display of malfunctioning unit No. let you know the contents and location of the malfunction.

When there is a stop due to malfunction, the contents of the malfunction given below can be diagnosed by a combination of operation lamp, INSPECTION display of the liquid crystal display and display of malfunction code. It also lets you know the unit No. during group control.

(VL050)

	Malfunction	Operation	O: ON ●: OFF	I : Blink Page							
	code	lamp		Referred							
Indoor Unit	A0	0	Error of external protection device	260							
	A1	0	PC board defect, E ² PROM defect	261							
	A3	0	Malfunction of drain level control system (S1L)	262							
	A6	0	Fan motor (M1F) lock, overload	264, 265							
	A7	0	Malfunction of swing flap motor (M1S)	268							
	A8	0	Abnormal power supply voltage	270							
	A9	0	Malfunction of moving part of electronic expansion valve (Y1E)	271							
	AF	0	Drain level above limit	273							
	AH	0	Malfunction of air filter maintenance	—							
	AJ	0	Malfunction of capacity Determination Device								
	C1	Failure of transmission (between indoor unit PC board and fan PC bo									
	C4	0	Malfunction of thermistor (R2T) for heat exchange (loose connection, disconnection, short circuit, failure)	277							
	C5	0	Malfunction of thermistor (R3T) for gas pipes (loose connection, disconnection, short circuit, failure)	278							
	C6	0	Failure of combination (between indoor unit PC board and fan PC board)	279							
	C9	0	Malfunction of thermistor (R1T) for suction air (loose connection, disconnection, short circuit, failure)								
	CC	0	Malfunction of humidity sensor system	281							
	CJ	0	Malfunction of thermostat sensor in remote controller	282							
Dutdoor Unit	E1	0	PC board defect	283							
	E3	0	Actuation of high pressure switch	284							
	E4	0	Actuation of low pressure sensor	286							
	E5	0	Inverter compressor motor lock	288							
	E6	0	STD compressor motor overcurrent/lock	290							
	E7	0	Malfunction of outdoor unit fan motor	291							
	E9	0	Malfunction of moving part of electronic expansion valve (Y1E, Y2E)	294							
	F3	0	Abnormal discharge pipe temperature	296							
	F6	0	Refrigerant overcharged	297							
	H7	0	Abnormal outdoor fan motor signal	298							
	H9	0	Malfunction of thermistor (R1T) for outdoor air (loose connection, disconnection, short circuit, failure)	299							
	J2	0	Current sensor malfunction	300							
	J3	0	Malfunction of discharge pipe thermistor (R3, R31~33T) (loose connection, disconnection, short circuit, failure)	301							
	J5	0	Malfunction of thermistor (R2T,R7T) for suction pipe (loose connection, disconnection, short circuit, failure)	302							
	J6	0	Malfunction of thermistor (R4T) for outdoor unit heat exchanger (loose connection, disconnection, short circuit, failure)	303							
	J7	0	Malfunction of liquid pipe thermistor (R6T)	304							
	J9	0	Malfunction of subcooling heat exchanger gas pipe thermistor (R5T)	305							
	JA	0	Malfunction of high pressure sensor	306							
	JC	0									
	L0	0	Inverter system error								
	L4	0	Malfunction of inverter radiating fin temperature rise	308							
	L5	0	Inverter compressor abnormal	310							
	L8	0	Inverter current abnormal	312							


	NA 16 11								
	Malfunction code	Operation lamp	Malfunction contents	Page Referred					
Outdoor Unit	L9	0	Inverter start up error	314					
	LA	0	Malfunction of power unit	—					
	LC	0	Malfunction of transmission between inverter and control PC board	316					
	P1	0	Inverter over-ripple protection	319					
	P4	0	Malfunction of inverter radiating fin temperature rise sensor	320					
	PJ	•	Faulty field setting after replacing main PC board or faulty combination of PC board	322					
System	UO	0	Low pressure drop due to refrigerant shortage or electronic expansion valve failure						
	U1	0	Reverse phase / open phase	324					
	U2	0	Power supply insufficient or instantaneous failure	325					
	U3	0	Check operation is not executed	328					
	U4	0	Malfunction of transmission between indoor units	329					
	U5	0	Malfunction of transmission between remote controller and indoor unit	331					
	U5	•	Failure of remote controller PC board or setting during control by remote controller	331					
	U7	0	Malfunction of transmission between outdoor units	332					
	U8	•	Malfunction of transmission between main and sub remote controllers (malfunction of sub remote controller)	334					
	U9	0	Malfunction of transmission between indoor and outdoor units in the same system	335					
	UA	0	Improper combination of indoor and outdoor units, indoor units and remote controller	336					
	UC	0	Address duplication of centralized controller	338					
	UE	0	Malfunction of transmission between centralized controller and indoor unit	339					
	UF	0	System is not set yet	342					
	UH	0	Malfunction of system, refrigerant system address undefined	343					
Central	M1	○ or ●	PC board defect	345					
Remote Controller and	M8	○ or ●	Malfunction of transmission between optional controllers for centralized control	346					
Schedule	MA	○ or ●	Improper combination of optional controllers for centralized control	348					
Timer	MC	○ or ●	Address duplication, improper setting	350					
Heat	64	0	Indoor unit's air thermistor error	_					
Reclaim Ventilation	65	0	Outside air thermistor error						
• criticulori	6A	0	Damper system alarm	- 1					
	6A	0	Damper system + thermistor error	—					
	6F	0	Malfunction of simple remote controller	—					
	6H	0	Malfunction of door switch or connector	- I					
	94	0	Internal transmission error	—					
		•							

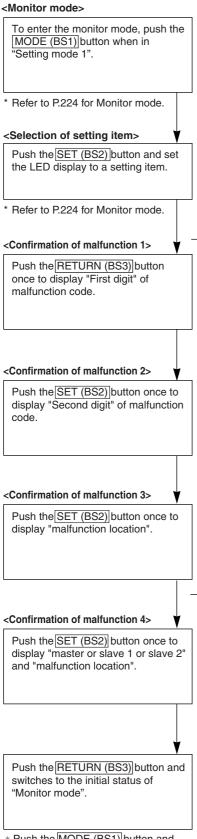
○: ON ●: OFF ④: Blink

The system operates for malfunction codes indicated in black squares, however, be sure to check and repair.

Malfunction code indication by outdoor unit PC board

<Monitor mode>

Detail


on next page.

description

Contents of	malfunction	Malfunction code
PC board malfunction	PC board malfunction	E1
	Faulty PC board	
Abnormal discharge pressure	HPS activated	E3
Abnormal suction pressure	Abnormal Pe	E4
I I		E4 E5
Compressor lock	Detection of INV compressor lock	
Activation of OC	Detection of STD1 compressor lock	E6
0	Detection of STD2 compressor lock	
Over load, over current, abnormal lock of outdoor unit fan motor	Instantaneous over current of DC fan 1 motor	E7
	Detection of DC fan 1 motor lock	
	Instantaneous over current of DC fan 2 motor	
	Detection of DC fan 2 motor lock	
Malfunction of electronic expansion valve	EV1	E9
	EV2	
	EV3	
Abnormal position signal of outdoor unit fan motor	Abnormal position signal of DC fan 1 motor	H7
	Abnormal position signal of DC fan 2 motor	
Faulty sensor of outdoor air temperature	Faulty Ta sensor (short)	H9
	Faulty Ta sensor (open)	
Abnormal discharge pipe temperature	Abnormal Td	F3
Abnormal heat exchanger temperature	Refrigerant over charge	F6
Faulty current sensor	Faulty CT1 sensor	J2
	Faulty CT2 sensor	
Faulty sensor of discharge pipe	Faulty Tdi sensor (short)	J3
temperature	Faulty Tds1 sensor (short)	
	Faulty Tds2 sensor (short)	
	Faulty Tdi sensor (open)	
	Faulty Tds1 sensor (open)	
	Faulty Tds2 sensor (open)	
Faulty sensor of suction pipe	Faulty Ts1 sensor (short)	J5
temperature	Faulty Ts1 sensor (open)	00
	Faulty Ts2 sensor (short)	
E. B	Faulty Ts2 sensor (open)	10
Faulty sensor of heat exchanger temperature	Faulty Tb sensor (short)	J6
•	Faulty Tb sensor (open)	
Malfunction of the liquid pipe temperature sensor	Faulty TI sensor (short)	J7
	Faulty TI sensor (open)	
Faulty sensor of subcool heat exchanger temperature	Faulty Tsh sensor (short)	J9
exchanger temperature	Faulty Tsh sensor (open)	
Faulty sensor of discharge pressure	Faulty Pc sensor (short)	JA
	Faulty Pc sensor (open)	
Faulty sensor of suction pressure	Faulty Pe sensor (short)	JC
	Faulty Pe sensor (open)	
Instantaneous power failure	*NO display on remote controller (Judge during compressor operation)	(L2)
Inverter radiation fin temperature rising	Over heating of inverter radiation fin temperature	L4
DC output over current	Inverter instantaneous over current	L5
	IGBT malfunction	L5
Electronic thermal	Electronic thermal switch 1	L8
	Electronic thermal switch 2	
	Out-of-step	
	Speed down after startup	
	Lightening detection	
Stall prevention (Limit time)	Stall prevention (Current increasing)	L9
		20
	Stall prevention (Faulty start up)	
	Abnormal wave form in startup	
	Out-of-step Inverter transmission error	LC
Transmission error between inverter		

0: O I	•: OFF	Blink

Melfunction	(Confin	matio	n of n	nalfun	ction	1	0	Confirr	matior	n of m	alfun	ction	2		Confir	matio	n of r	nalfu	nction	3		C: Confir				Ction 4
Malfunction code	H1P		H3P	H4P	H5P	H6P	H7P		H2P	H3P	H4P	H5P	H6P	L H7P		H2P	-	H4P				H1P	-	H3P		H5P	H6P H7P
E1	•		1101	•	•	0	•	•	1121	1101	•	•	•	0	0	1.121	1101	•	•	•	•	0	1.121	1101	•	•	0 0
	•					•		0			•	•	•	0	0			•	•	•	•	0			•	•	0
E3								0			•	•	•	0	0			•	•	•	•	0			•	•	
E4								0			•	0	•	•	0			•	•	•	•	0			•	•	
E5								0					-						-						_	-	
E6								0			•	0	•	0	0			•	•	•	•	0			•	•	
LU								0			•	0	•	•	-			•	•	•	•	-			•		
E7								•							0			•	•	•	•	0			•	0	
								0			•	0	0	0	0			•	•	•	•	0			•	•	*1
															0			•	•	•	•	0			•	0	
															0			•	•	•	0	0			•	•	
															0			•	•	•	0	0			•	0	
E9								•			0	•	•	•	0			•	•	•	•	0			•	•	
															0			•	•	•	•	•			•	0	
															0			•	•	•	•	0			0	•	
H7	0			•	•	•	•	•			•	•	0	•	0			•	•	•	•	•			•	•	
															0			•	•	•	•	0			•	•	*1
H9								•			0	•	•	•	0				•	•	•	•			•	•	
											_				•			٠	٠	•	•	•			•	•	
F3	0			•	•	•	0	•			•	•	0	•	0			•	•	•	•	•			•	٠	*1
F6								•			•	0	0	•	0			•	•	•	•	0				•	0 0
J2	0			•	•	0	•	0			٠	•	0	•	0			٠	•	•	•	•				•	
								L							0			•	•	•	•	•			•	0	
J3								0			•	•	0	0	0			•	•	•	•	0			•	•	
															0			٠	٠	•	•	0			•	•	
															0			•	•	•	•	•			0	•	
															•			•	•	•	•	•			•	•	
															0			•	•	•	0	0			•	0	
															0			•	•	•	•	0			0	•	
J5								•			•	0	•	0	0			•	•	•	•	0			•	•	
											•				0				•	•	•	0			•	•	
															0			•	•	•	•	0			•	•	
																		-	-		-						*1
10								-				-	-		0			•	•	•	0	0			•	0	
J6								0			•	0	0	•	0			•	•	•	•	0			•	•	
															0			•	•	•	0	•			•	•	
J7								•			•	•	0	•	0			•	•	•	•	0			•	•	
															0			•	•	•	0	0			•	•	
J9								•			0	•	•	•	0			•	•	•	•	0			•	•	
															0			•	•	•	•	0			•	•	
JA								•			0	•	0	•	0			•	•	•	•	0			•	•	
															0			•	•	•	0	0			٠	•	
JC								•			0	•	•	•	0			٠	•	•	٠	0			•	٠	
															0			٠	٠	•	0	0			•	٠	
(L2)	0			•	•	•	0	•			•	•	0	•	0			•	•	•	•	•			•	•	
L4								•			•	•	۲	•	0			•	•	•	٠	•			•	٠	
L5								0			•	0	•	0	0			•	•	•	•	0			•	۲	
L5															0			•	•	•	•	0			•	0	
L8								•			0	•	•	•	0			•	•	•	•	•			•	•	
															0			•	•	•	•	•			•	0	
																											*1
															0			•	•	•	•	0			•	•	*1
															0			•	•	•	•	0			•	•	
L9								0			0	•	•	0	0			•	•	•	•	0			•	•	
20															0			•	•	•	•	0			•	•	
															0		-		•	•	•	0			•		
LC								•			0	0	•				<u> </u>				•				•		
LU								0			0	0		•	0							0				0	
						·								-						· · · · ·					_		~
					play of o						Disp	lay of o	conten	ts of						ay 1 of	ate:I						ay 2 of
				malt	unctior	i (first (uigit)			r	naitun	ction (secon	u aigit)				ma	iruncti	on in de	etail						on in detail
																								*1	•	•	Master
																									•	•	Slave1 Slave2
																									0	-	System
																									<u> </u>	~	

Detail

on next page.

description

* Push the MODE (BS1) button and returns to "Setting mode 1".

Contents of	malfunction	Malfunction code
Open phase/Power supply imbalance	Imbalance of inverter power supply voltage	P1
Faulty temperature sensor inside switch box	Faulty thermistor of inverter box	P3
Faulty temperature sensor of inverter radiation fin	Faulty thermistor of inverter fin	P4
Incorrect combination of Inverter and fan driver	Incorrect combination of inverter	PJ
landiver	Incorrect combination of fan driver 1	
	Incorrect combination of fan driver 2	
Gas shortage	Gas shortage alarm	U0
Reverse phase	Reverse phase error	U1
Abnormal power supply voltage	Insufficient Inverter voltage	U2
	Inverter open phase (phase T)	
	Charging error of capacitor in inverter main circult	
No implementation of test-run		U3
Transmission error between indoor	I/O transmission error	U4
and outdoor unit	I/O transmission error	
Transmission error between outdoor	Sequential startup ADP alarm	U7
units, transmission error between thermal storage units, duplication of IC	Sequential startup ADP malfunction	U7
address	Malfunction of transmission between multi units (Multi 1)	
	Malfunction of transmission between multi units (Multi 2)	
	Abnormal multi horsepower setting	
	Abnormal multi address setting	
	Excessive multi connections	
	Multi system malfunction	
Transmission error of other system	Indoor unit system abnormal in other system or other indoor unit system abnormal in own system	U9
Erroneous field setting	System transmission malfunction	UA
	Overconnection malfunction of indoor units	
	Malfunction of field setting	
	Refrigerant abnormal	
	Multi-ID abnormal	
	Alarm of TSS field setting	UA
	Alarm of CT address setting	
Faulty system malfunction	Wiring error (Auto-address error)	UH
Transmission error in accessory	Malfunction of multi-level connection	UJ
devices	Alarm of multi-level connection	UJ
Conflict in wiring and piping, no setting for system	Conflict in wiring and piping	UF

O: ON ●: OFF ④:Blink

Malfunction	(Confiri	matio	n of m	nalfun	ction	1	(Confirmation of malfunction 2					(Confirmation of malfunction 3 Confirmation of							n of m	of malfunction 4					
code	H1P			H4P		H6P	H7P	H1P	H2P	H3P	H4P	H5P	H6P	H7P	H1P	H2P	H3P	H4P	H5P	H6P		H1P		H3P	H4P	H5P		H7P
P1	0			0	•	•	•	0			•	•	•	0	0			•	٠	•	•	0			•	•		
P3								0			•	•	0	0	•			•	•	•	•	0			•	•		
P4								0			•	•	•	•	•			•	•	•	•	0			•	•	*	1
PJ								0			0	•	•	•	•			•	•	•	•	•			•	•		
															•			•	•	•	•	•			•	•		
															•			•	•	•	٠	0			•	•		
U0	0			0	•	•	•	0			•	•			•					•	•	0			•	•	0	•
U1								•			•	•	•	0	•			•	•	•	•	•			•	٠		
U2								•			•	•	0	•	•			•	•	•	•	•			•	•		
															•			•	•	•	•	0			•	0		
U3								0			•	•	•	•	•			•	•	•	•	•			•	•	0	0
00															0			•	•	•	•	0			•	0	0	0
U4								0			•	0	•	•	0			•	•	•	•	0			•	•	0	0
_											-	Ŭ	-	-	0			•	•	•	•	0			•	0	0	0
U7								0			•	0	•	0	•			•	•	•	•	0			•	0	0	0
U7															•			•	•	•	•	0			•	•	•	•
															0			•	•	•	•	•			0	•	0	0
															0			•	•	•	•	0			0	0	0	0
															•			•	•	•	•	•			•	•	•	•
															•			•	•	•	•	•			•	•	•	•
															•			•	•	•	•	•			•	•	•	•
															•			•	•	•	•	0			•	0	0	•
U9								0			0	•	•	0	•			•	•	•	•	•			•	•	0	•
UA								0			•	•	0	•	•			•	•	•	•	•			•	•	•	•
															•			•	•	•	•	0			•	0	0	•
															•			٠	•	•	•	•			•	•	•	•
															•			•	•	•	•	0			•	•	0	•
															•			٠	٠	•	0	0			•	0	0	•
UA															0			٠	•	•	0	0			0	•	0	•
															•			•	•	•	0	0	<u> </u>		•	0	0	•
UH								0			0	•	0	0	•			•	•	•	•	0	<u> </u>		•	•	0	0
UJ								0			0	0	•	0	0			•	•	•	•	•	<u> </u>		•	•	*	1
UJ											6	6	_		0			•	•	•	•	0		-	•	0	6	
UF								0			0	0	•	0	0			•	•	•	•	0			•	•	0	0
																	×							`				

Display of contents of malfunction (first digit)

Display of contents of malfunction (second digit)

Display 1 of malfunction in detail

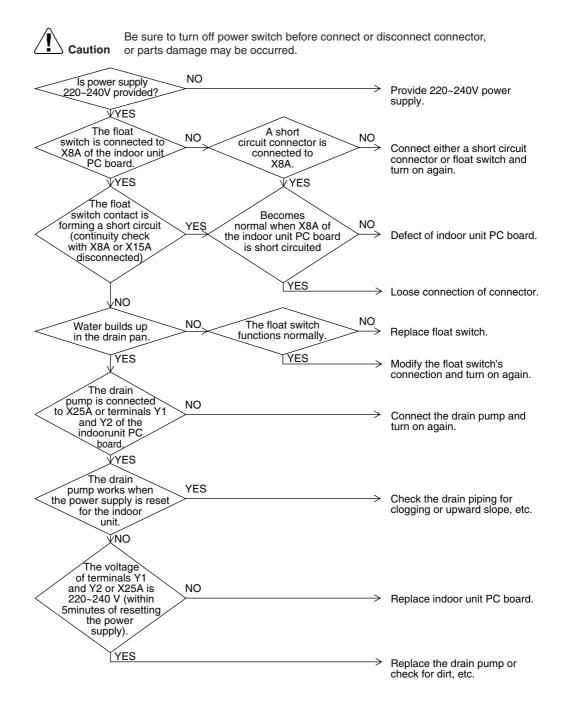
Display 2 of malfunction in detail *1 • • Master Slave1 Slave2 • • System

3. Troubleshooting by Indication on the Remote Controller

3.1 "记" Indoor Unit: Error of External Protection Device

Remote Controller Display	80			
Applicable Models	All indoor unit models			
Method of Malfunction Detection	Detect open or short circuit between external input terminals in indoor unit.			
Malfunction Decision Conditions	When an open circuit occurs between external input terminals with the remote controller set to "external ON/OFF terminal".			
Supposed Causes	 Actuation of external protection device Improper field set Defect of indoor unit PC board 			
Troubleshooting	Image: Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: Caution External protection device is connected to terminals T1 and T2 of the indoor unit terminal block. Image: NO NO			
	ON/OFF input from outside (mode No. 12; first code No. 1) has been YES set to external protection device input (second code No. 03) by remote controller.			
	Indoor unit PC board replacement.			

3.2 "S !" Indoor Unit: PC Board Defect

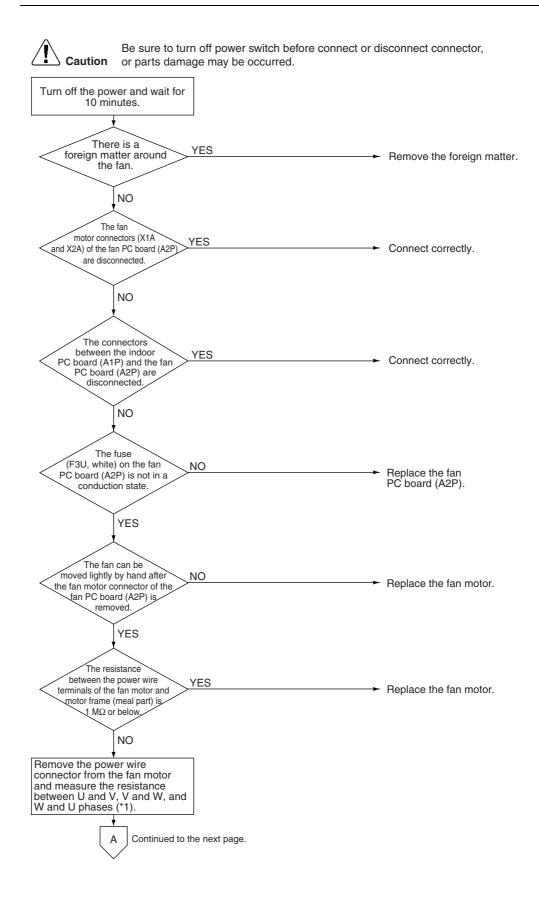

Remote Controller Display	81
Applicable Models	All indoor unit models
Method of Malfunction Detection	Check data from E ² PROM.
Malfunction Decision Conditions	When data could not be correctly received from the E ² PROM E ² PROM : Type of nonvolatile memory. Maintains memory contents even when the power supply is turned off.
Supposed Causes	Defect of indoor unit PC board
Troubleshooting	Image: Note that the system return is the system return is the system return is normal? Yes NO The indoor unit PC board is normal. External factor other than malfunction (for example, noise etc.). Replace the indoor unit PC

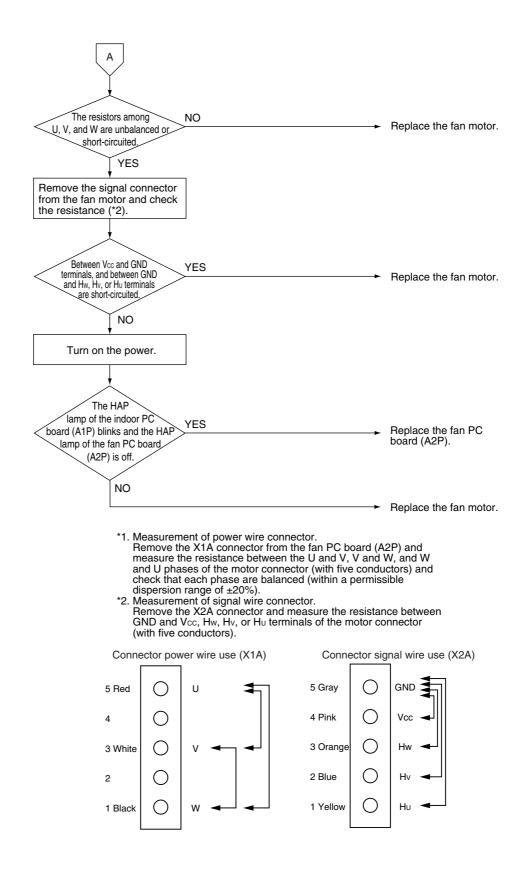
→ Replace the indoor unit PC board.

3.3 "유子" Indoor Unit: Malfunction of Drain Level Control System (S1L)

Remote Controller Display	83
Applicable Models	FXCQ, FXFQ, FXSQ, FXKQ, FXDQ, FXMQ, FXUQ, FXHQ (Option), FXMQ200,250M (Option), FXAQ (Option), FXMQ-MF (Option)
Method of Malfunction Detection	By float switch OFF detection
Malfunction Decision Conditions	When rise of water level is not a condition and the float switch goes OFF.
Supposed	220~240V power supply is not provided
Causes	Defect of float switch or short circuit connector
	Defect of drain pump
	Drain clogging, upward slope, etc.
	Defect of indoor unit PC board
	Loose connection of connector

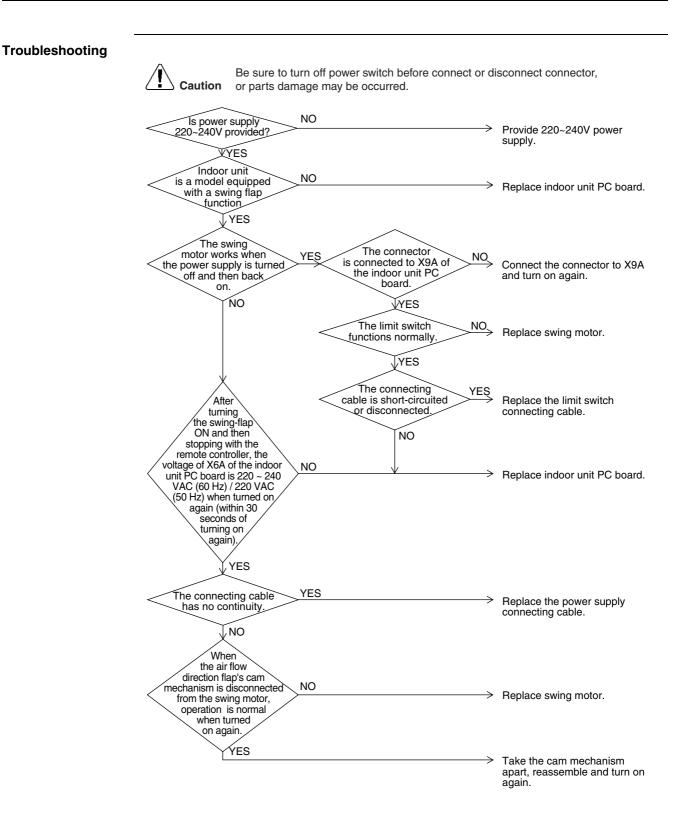
Troubleshooting




3.4 "85" Indoor Unit: Fan Motor (M1F) Lock, Overload

Remote Controller Display	88
Applicable Models	All indoor units (except FXMQ-P)
Method of Malfunction Detection	Detection by failure of signal for detecting number of turns to come from the fan motor
Malfunction Decision Conditions	When number of turns can't be detected even when output voltage to the fan is maximum
Supposed Causes	 Fan motor lock Disconnected or faulty wiring between fan motor and PC board
Troubleshooting	Image: NO Connect the wiring and turn on again. Image: NO Source the wiring and turn on again. Image: NO Source the wiring and turn on again.
	Does the fan motor run? YES Replace the indoor unit PC board.

Remote Controller Display	85
Applicable Models	FXMQ40~125P
Method of Malfunction Detection	Detection from the current flow on the fan PC board. Detection from the RPM of the fan motor in operation. Detection from the position signal of the fan motor. Detection from the current flow on the fan PC board when the fan motor starting operation.
Malfunction Decision Conditions	 An overcurrent flows. The RPM is less than a certain level for 6 seconds. A position error in the fan rotor continues for 5 seconds or more. An overcurrent flows.
Supposed Causes	 The clogging of a foreign matter. The disconnection of the fan motor connectors (X1A and X2A). The disconnection of the connectors between the indoor PCB (A1P) and fan PC board (A2P). A failure in fan PC board (A2P). A failure in the fan motor.


Troubleshooting

3.5 "String Flap Motor (M1S)

Remote Controller Display	87
Applicable Models	FXCQ, FXHQ, FXKQ
Method of Malfunction Detection	Utilizes ON/OFF of the limit switch when the motor turns.
Malfunction Decision Conditions	When ON/OFF of the microswitch for positioning cannot be reversed even though the swing flap motor is energized for a specified amount of time (about 30 seconds).
Supposed Causes	 Defect of swing motor Defect of connection cable (power supply and limit switch) Defect of air flow direction adjusting flap-cam Defect of indoor unit PC board

3.6 Abnormal Power Supply Voltage

Remote Controller Display	
Applicable Models	FXMQ40~125P
Method of Malfunction Detection	Detect malfunction checking the input voltage of fan motor.
Malfunction Decision Conditions	When the input voltage of fan motor is 150V and below, or 386V and above.
Supposed Causes	 The possible causes are: Power-supply voltage malfunction. Connection defect on signal line. Wiring defect. Instantaneous blackout, others.
Troubleshooting	Image: Note of the condition of prover supply using is 220V - 240V and the spore supply using is 220V - 240V and the spore supply using is 220V - 240V and the spore supply using is 220V - 240V and the spore supply using is supply using is a condition of power supply using is within eV. • Check if power supply using is conditioned to the power supply using is conditioned to the power supply using is within eV. • The problems on the power supply using is conditioned to the power supply using is within eV. • Check if power supply using is within eV. • The problems on the power supply using is within eV. • The problems on the power supply using is within eV. • The problems on the power supply using is within eV. • The problems on the power supply using is within eV. • The problems on the power supply using is within eV. • The problems on the power supply using is within eV. • The problems on the power supply using is within eV. • The problems on the power is within eV. • The problems on the power is within eV. • The problems on the power is within eV. • NO • NO

Electronic Expansion Valve (Y1E) 89 Remote Controller Display Applicable All indoor unit models Models Method of Use a microcomputer to check the electronic expansion valve for coil conditions. Malfunction Detection Malfunction When the pin input of the electronic expansion valve is not normal while in the initialization of Decision the microcomputer. Conditions Supposed Malfunction of moving part of electronic expansion valve Causes Defect of indoor unit PC board Defect of connecting cable Troubleshooting Be sure to turn off power switch before connect or disconnect connector, Caution or parts damage may be occurred. The electronic expansion valve is NO After connecting, turn the power supply off and then back on. connected to X7A of the indoor unit PC board, ¥YES Normal when coil check NO (*1) of the moving part of Replace the moving part of the the electronic expansion electronic expansion valve. valve is checked YES The connecting YES cable is short-circuited or \rightarrow Replace the connecting cable. disconnected NO If you turn the power supply off and turn on again, and it still does not help, replace the indoor unit PC board.

"85" Indoor Unit: Malfunction of Moving Part of 3.7

*1: Coil check method for the moving part of the electronic expansion valve Disconnect the electronic expansion valve from the PC board and check the continuity between the connector pins.

(Normal)

Pin No.	1. White	2. Yellow	3. Orange	4. Blue	5. Red	6. Brown
1. White		×	Ο Approx. 300Ω	×	Ο Approx. 150Ω	×
2. Yellow			×	O Approx. 300Ω	×	Ο Approx. 150Ω
3. Orange				×	O Approx. 150Ω	×
4. Blue					×	Ο Approx. 150Ω
5. Red						×
6. Brown						

O: Continuity

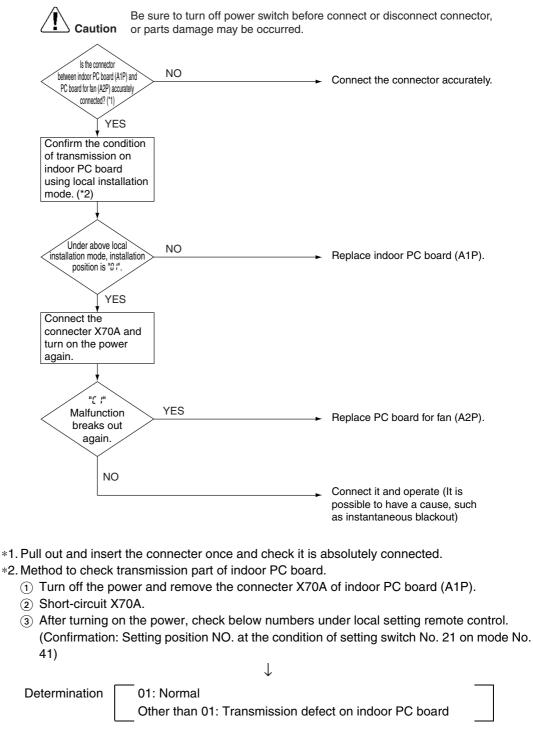
×: No continuity

3.8 *"??"* Indoor Unit: Drain Level above Limit

Remote Controller Display	86
Applicable Models	FXCQ, FXFQ, FXSQ, FXKQ, FXMQ, FXDQ, FXMQ-MF, FXUQ
Method of Malfunction Detection	Water leakage is detected based on float switch ON/OFF operation while the compressor is in non-operation.
Malfunction Decision Conditions	When the float switch changes from ON to OFF while the compressor is in non-operation.
Supposed Causes	 Humidifier unit (optional accessory) leaking Defect of drain pipe (upward slope, etc.) Defect of indoor unit PC board
Troubleshooting	Image: Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: Field drain or parts damage may be occurred. Image: Modify the drain piping. Image: Piping has a defect such as upward sloping. YES Image: NO Modify the drain piping. Image: NO Check if the humidifier unit is leaking. Image: NO Defect of indoor unit PC board.

3.9 "문고" Indoor Unit: Malfunction of Capacity Determination Device

Remote controller display	83		
Applicable Models	All indoor unit models		
Method of Malfunction Detection	Capacity is determined according to resistance of the capacity setting adaptor and the memory inside the IC memory on the indoor unit PC board, and whether the value is normal or abnormal is determined.		
Malfunction Decision Conditions	Operation and: When the capacity code is not contained in the PC board's memory, and the capacity setting adaptor is not connected.		
Supposed Causes	 You have forgotten to install the capacity setting adaptor. Defect of indoor unit PC board 		
Troubleshooting			
	Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.		
	unit PC board was replaced with a replacement PC board.		
	Was the capacity setting YES adapter mounted when replacing the PC board?		


NO

 \rightarrow Install a capacity setting adaptor.

3.10 "C !" Indoor Unit: Failure of Transmission (Between Indoor unit PC Board and Fan PC Board)

Remote Controller Display	[]
Applicable Models	FXMQ40~125P
Method of Malfunction Detecion	Check the condition of transmission between indoor PC board (A1P) and PC board for fan (A2P) using computer.
Malfunction Decision Conditions	When normal transmission is not conducted for certain duration.
Supposed Causes	 Connection defect of the connecter between indoor PC board (A1P) and PC board for fan (A2P). Malfunction of indoor PC board (A1P). Malfunction of PC board for fan (A2P). External factor, such as instantaneous blackout.

Troubleshooting

★ After confirmation, turn off the power, take off the short-circuit and connect X70A back to original condition.

3.11 "단부" Indoor Unit: Malfunction of Thermistor (R2T) for Heat Exchanger

Remote Controller Display	24
Applicable Models	All indoor unit models
Method of Malfunction Detection	Malfunction detection is carried out by temperature detected by heat exchanger thermistor.
Malfunction Decision Conditions	When the heat exchanger thermistor becomes disconnected or shorted while the unit is running.
Supposed Causes	 Defect of thermistor (R2T) for liquid pipe Defect of indoor unit PC board
Troubleshooting	$\underbrace{\text{Auton}}_{\text{best}} \text{ Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.} \\ \\ \hline \text{Benove the thermistor from the indoor unit PC board, and then insert it again.} \\ \hline \text{VES} \\ \hline \text{No} \\ \hline \text{Remove the thermistor normal?} \\ \hline \text{No} \\ \hline Remove the thermistor from the indoor unit PC board, and then make resistance measurement of the thermistor growther the thermistor from the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the indoor unit PC board, and then make resistance measurement of the thermistor trom the thermistor trom the thermistor trom the termistor trom termistor trom termistor termis$
	YES > Replace the indoor unit PC board. * Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

3.12 "[5" Indoor Unit: Malfunction of Thermistor (R3T) for Gas **Pipes**

Remote Controller Display	£5
pplicable Iodels	All indoor unit models
lethod of lalfunction etection	Malfunction detection is carried out by temperature detected by gas pipe thermistor.
lalfunction ecision onditions	When the gas pipe thermistor becomes disconnected or shorted while the unit is running.
upposed auses	 Defect of indoor unit thermistor (R3T) for gas pipe Defect of indoor unit PC board
roubleshooting	Image: Normal Chemistor from the indoor unit PC board, and then insert it again. VES Version VES Normal (The malfunction is caused by faulty contact.) Remove the thermistor from the indoor unit PC board, and then insert it again. Version VES Normal (The malfunction is caused by faulty contact.)
	* NO $5 \text{ k}\Omega \text{ to } 90 \text{ k}\Omega$ Replace the thermistor (R3T).
	YES → Replace the indoor unit PC board. * Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

3.13 "C5" Indoor Unit: Failure of Combination (Between Indoor unit PC Board and Fan PC Board)

	<u>ee</u>
Remote Controller Display	28
Applicable Models	FXMQ40~125P
Method of Malfunction Detection	Conduct open line detection with PC board for fan (A2P) using indoor PC board (A1P).
Malfunction Decision Conditions	When the communication data of PC board for fan (A2P) is determined as incorrect.
Supposed Causes	 The possible causes are: Malfunction of PC board for fan (A2P). Connection defect of capacity setting adapter. Setting mistake on site.
Troubleshooting	Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.
	for indoor and outdoor, diagnose the operation again.

3.14 "[9" Indoor Unit: Malfunction of Thermistor (R1T) for **Suction Air**

Remote Controller Display	8	
Applicable Models	All indoor unit models	
Method of Malfunction Detection	Malfunction detection is carried out by temperature detected by suction air temperature thermistor.	
Malfunction Decision Conditions	When the suction air temperature thermistor becomes disconnected or shorted while the unit is running.	
Supposed Causes	 Defect of indoor unit thermistor (R1T) for air inlet Defect of indoor unit PC board 	
Troubleshooting	Image: Non-Water Stress Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: Non-Water Stress Remove the thermistor from the indoor unit PC board, and then insert it again. Image: Non-Water Stress VES Image: Non-Water Stress Normal (The malfunction is caused by faulty contact.) Image: Non-Water Stress Normal (The malfunction is caused by faulty contact.)	
	$5 \text{ k}\Omega \text{ to } 90 \text{ k}\Omega \longrightarrow \text{Replace the thermistor (R1T).}$ $YES \longrightarrow \text{Replace the indeer unit BC heard}$	
	 Replace the indoor unit PC board. * Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427. 	

3.15 "CC" Indoor Unit: Malfunction of Humidity Sensor System

Remote Controller	
Display	22
Applicable Models	FXFQ
Method of Malfunction Detection	Even if a malfunction occurs, operation still continues. Malfunction is detected according to the moisture (output voltage) detected by the moisture sensor.
Malfunction Decision Conditions	When the moisture sensor is disconnected or short-circuited
Supposed Causes	Faulty sensorDisconnection
	Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.
	Remove the humidity sensor from the indoor PC board and insert it again. Does it function normally? NO Delete the malfunction code record from the remote controller. (*1)

*3: If "*CC*" is displayed even after replacing the humidity sensor PC board ASS'Y (A2P) and taking the steps *1 and 2, replace the indoor PC board ASS'Y (A1P).

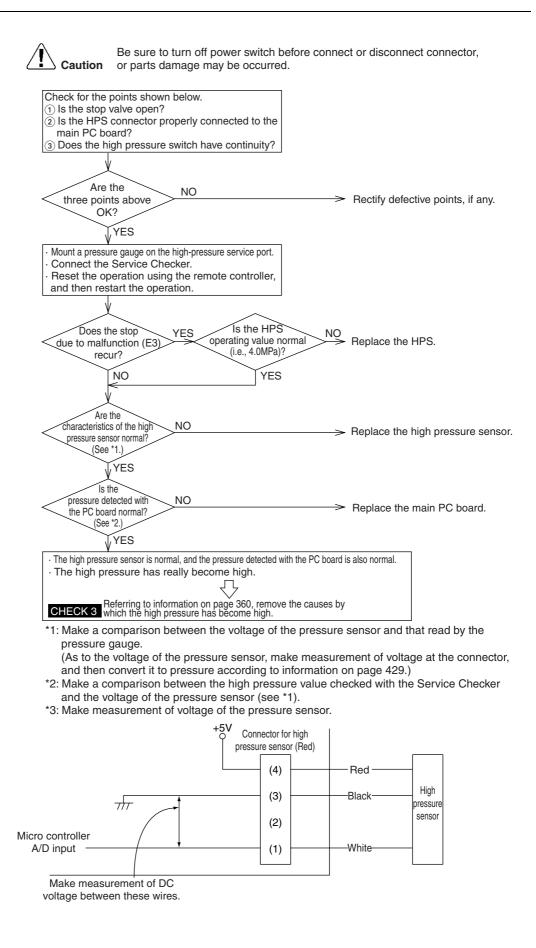
3.16 "Cd" Indoor Unit: Malfunction of Thermostat Sensor in Remote Controller

<i>CU</i>
All indoor unit models
Malfunction detection is carried out by temperature detected by remote controller air temperature thermistor. (Note:)
When the remote controller air temperature thermistor becomes disconnected or shorted while the unit is running.
 Defect of remote controller thermistor Defect of remote controller PC board
Image: Note of the second s

 In case of remote controller thermistor malfunction, unit is still operable by suction air thermistor on indoor unit.

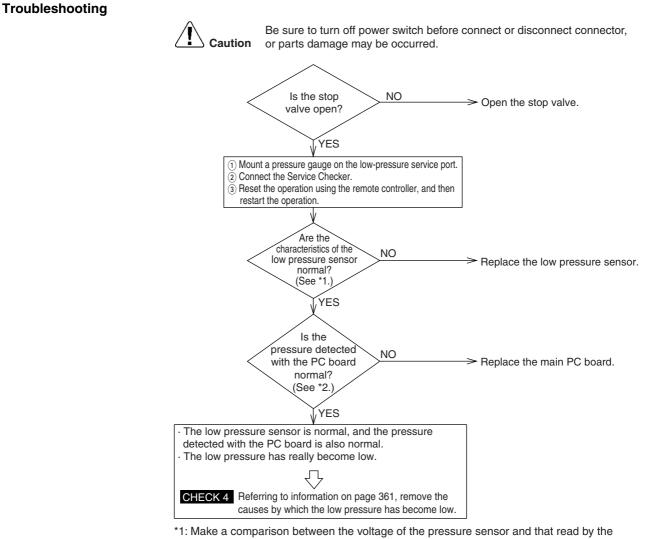
* Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

3.17 "E " Outdoor Unit: PC Board Defect


Remote Controller Display	81
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Check data from E ² PROM
Malfunction Decision Conditions	When data could not be correctly received from the E ² PROM E ² PROM : Type of nonvolatile memory. Maintains memory contents even when the power supply is turned off.
Supposed Causes	Defect of outdoor unit PC board (A1P)
Troubleshooting	Image: Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: Caution Turn off the power once and turn on again. Image: Caution YES Return to normal? YES Image: NO External factor other than malfunction (for example, noise etc.).
	NO Replace the outdoor unit

 Replace the outdoor unit main PC Board (A1P).

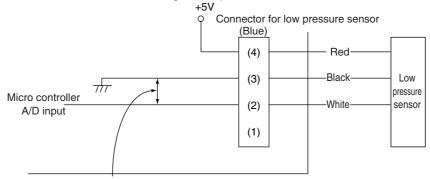
3.18 "E3" Outdoor Unit: Actuation of High Pressure Switch


Remote Controller Display	83	
Applicable Models	RXYQ5P(A)~54P(A)	
Method of Malfunction Detection	Abnormality is detected when the contact of the high pressure protection switch opens.	
Malfunction Decision Conditions	Error is generated when the HPS activation count reaches the number specific to the operation mode. (Reference) Operating pressure of high pressure switch Operating pressure: 4.0MPa Reset pressure: 2.85MPa	
Supposed Causes	 Actuation of outdoor unit high pressure switch Defect of High pressure switch Defect of outdoor unit PC board Instantaneous power failure Faulty high pressure sensor 	

Troubleshooting

3.19 "EY" Outdoor Unit: Actuation of Low Pressure Sensor

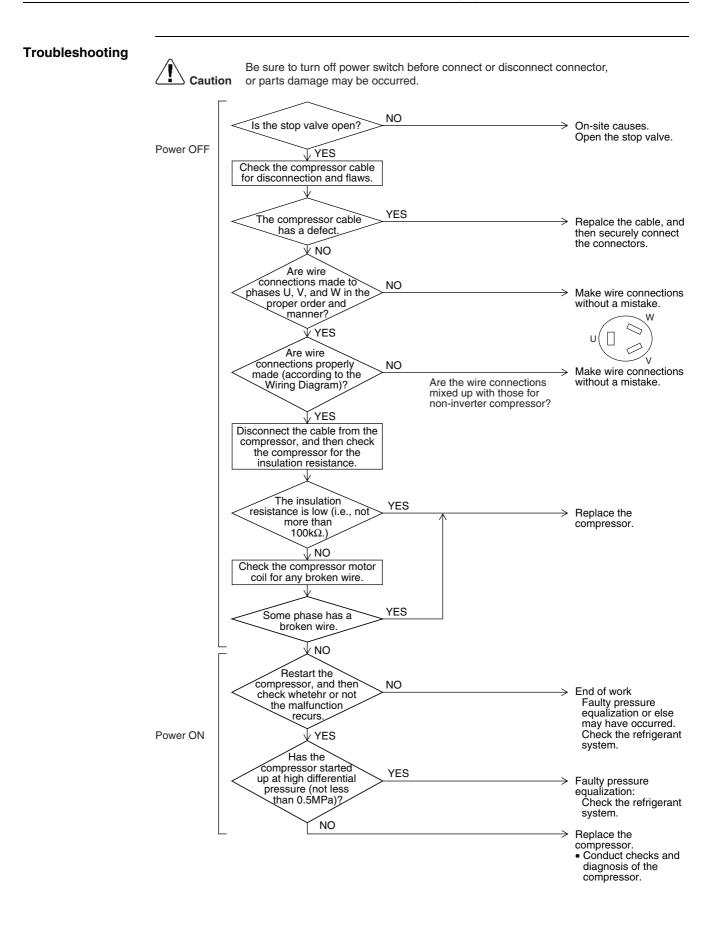
Remote Controller Display	84
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Abnormality is detected by the pressure value with the low pressure sensor.
Malfunction Decision Conditions	Error is generated when the low pressure is dropped under specific pressure. Operating pressure:0.07MPa
Supposed Causes	 Abnormal drop of low pressure (Lower than 0.07MPa) Defect of low pressure sensor Defect of autology with DC beard
	 Defect of outdoor unit PC board Stop valve is not opened.



pressure gauge. (As to the voltage of the pressure sensor, make measurement of voltage at the connector,

and then convert it to pressure according to information on page 429.)

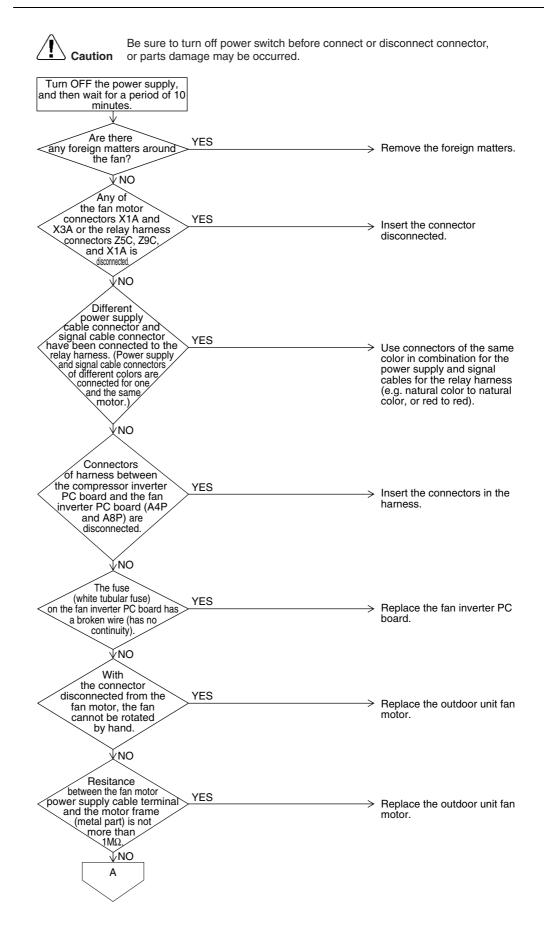
*2: Make a comparison between the low pressure value checked with the Service Checker and the voltage of the pressure sensor (see *1).


*3: Make measurement of voltage of the pressure sensor.

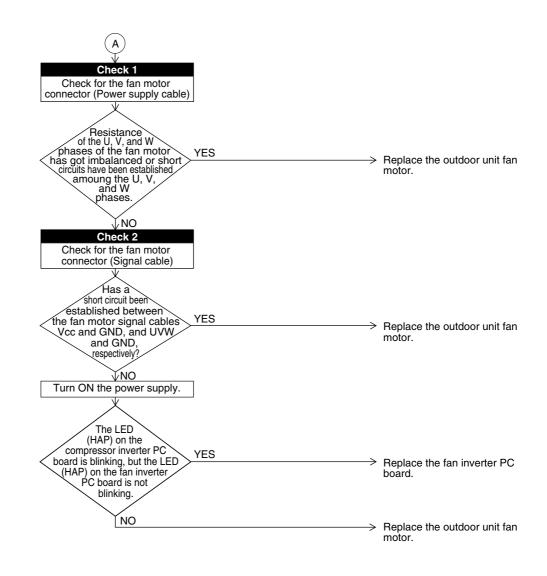
Make measurement of DC voltage between these wires.

3.20 "E5" Outdoor Unit: Inverter Compressor Motor Lock

Remote Controller Display	85
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Inverter PC board takes the position signal from UVW line connected between the inverter and compressor, and the malfunction is detected when any abnormality is observed in the phase-current waveform.
Malfunction Decision Conditions	This malfunction will be output when the inverter compressor motor does not start up even in forced startup mode.
Supposed Causes	 Inverter compressor lock High differential pressure (0.5MPa or more) Incorrect UVW wiring Faulty inverter PC board Stop valve is left in closed.


3.21 "E5" Outdoor Unit: STD Compressor Motor Overcurrent/ Lock

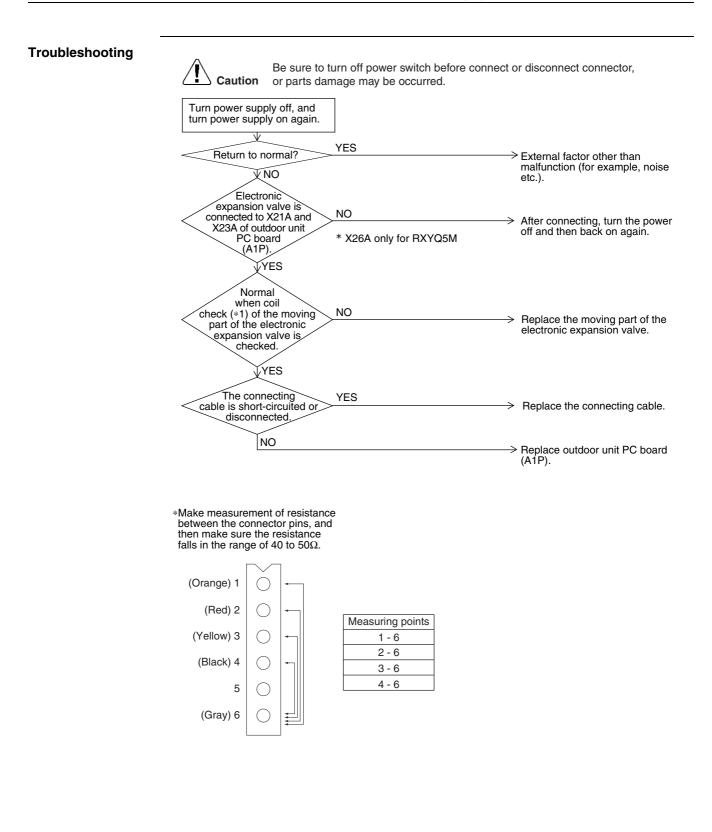
LOOK		
Remote Controller Display	88	
Applicable Models	RXYQ5P(A)~54P(A)	
Method of Malfunction Detection	Detects the overcurrent with current sensor (CT).	
Malfunction Decision Conditions	Malfunction is decided when the detected current value exceeds 2 seconds. 400 V class unit : 15.0 A 200 V class unit : 28.8 A	the below mentioned value for
Supposed Causes	 Closed stop value Obstacles at the air outlet Improper power voltage Faulty magnetic switch Faulty compressor Faulty current sensor (A6P, A7P) 	
Troubleshooting	V YES Obstacle YES	 or disconnect connector, Open the stop valve. Remove the obstacle.
	V YES Is the magnetic switch (K2M, K3M) normal? V YES Check the wiring from power supply ~ current sensor (A6P, A7P) ~	 Correct the power voltage. Replace the magnetic switch.
	VYES Is current sensor correct? *1	 Correct wiring. Replace the corresponding current sensor (A6P or A7P).
	YES	Replace compressor.
Note:	 *1 Abnormal case The current sensor value is 0 during STD compressor operat The current sensor value is more than 15.0A during STD con 	


3.22 "E" Outdoor Unit: Malfunction of Outdoor Unit Fan Motor

Remote Controller Display	E7
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Malfunction of fan motor system is detected according to the fan speed detected by hall IC when the fan motor runs.
Malfunction Decision Conditions	 When the fan runs with speed less than a specified one for 6 seconds or more when the fan motor running conditions are met When connector detecting fan speed is disconnected When malfunction is generated 4 times, the system shuts down.
Supposed Causes	 Malfunction of fan motor The harness connector between fan motor and PC board is left in disconnected, or faulty connector Fan does not run due to foreign matters tangled Clearing condition: Operate for 5 minutes (normal)

Troubleshooting

Troubleshooting



: Refer to check 1 and 2 on P.359.

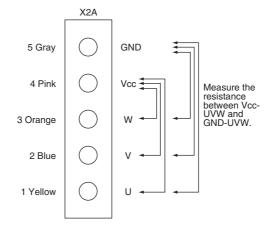
3.23 "ES" Outdoor Unit: Malfunction of Moving Part of Electronic Expansion Valve (Y1E, Y2E)

Remote Controller Display	83
Applicable Models	RXYQ5P(A)~54P(A)Y1
Method of Malfunction Detection	Check disconnection of connector Check continuity of expansion valve coil
Malfunction Decision Conditions	Error is generated under no common power supply when the power is on.
Supposed Causes	 Defect of moving part of electronic expansion valve Defect of outdoor unit PC board (A1P) Defect of connecting cable

3.24 "F3" Outdoor Unit: Abnormal Discharge Pipe Temperature

83
RXYQ5P(A)~54P(A)
Abnormality is detected according to the temperature detected by the discharge pipe temperature sensor.
When the discharge pipe temperature rises to an abnormally high level When the discharge pipe temperature rises suddenly
 Faulty discharge pipe temperature sensor Faulty connection of discharge pipe temperature sensor Faulty outdoor unit PC board
Image: Note of the discharge pipe thermistor normal? Note of the discharge pipe thermistor normal? Image: Note of the discharge pipe thermistor normal? Note of the discharge pipe thermistor normal? Image: Note of the discharge pipe thermistor normal? Note of the discharge pipe thermistor normal? Image: Note of the discharge pipe thermistor normal? Note of the discharge pipe thermistor normal? Image: Note of the discharge pipe thermistor normal? Note of the discharge pipe thermistor normal? Image: Note of the discharge pipe thermistor normal? Note of the discharge pipe thermistor normal? Image: Note of the discharge pipe thermistor normal? Note of the discharge pipe thermistor normal? Image: Note of the discharge pipe thermistor normal? Replace the discharge pipe thermistor.

* Refer to "Thermistor Resistance / Temperature Characteristics" table on P.428.


3.25 "F5" Outdoor Unit: Refrigerant Overcharged

Remote Controller Display	88
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Excessive charging of refrigerant is detected by using the outside air temperature, heat exchanging deicer temperature and liquid pipe temperature during a check run.
Malfunction Decision Conditions	When the amount of refrigerant, which is calculated by using the outside air temperature, heat exchanging deicer temperature and liquid pipe temperature during a check run, exceeds the standard.
Supposed Causes	 Refrigerant overcharge Misalignment of the outside air thermistor Misalignment of the heat exchanging deicer thermistor Misalignment of the liquid pipe thermistor
Troubleshooting	Image: Notice of the series of the provided of the series of the provided of the series of the provided of the
	Is the characteristic of the above thermistor normal? VES
	YES → Refrigerant overcharged. * Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

3.26 "H"?" Outdoor Unit: Abnormal Outdoor Fan Motor Signal

Remote Controller Display	87
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Detection of abnormal signal from fan motor.
Malfunction Decision Conditions	In case of detection of abnormal signal at starting fan motor.
Supposed Causes	 Abnormal fan motor signal (circuit malfunction) Broken, short or disconnection connector of fan motor connection cable Fan Inverter PC board malfunction
Troubleshooting	Image: Notice of the second

 \star 1: Disconnect connector (X2A) and measure the following resistance.

3.27 "남옷" Outdoor Unit: Malfunction of Thermistor (R1T) for Outdoor Air

Remote Controller Display	88
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Malfunction is detected from the temperature detected by the outdoor air thermistor.
Malfunction Decision Conditions	When the outside air temperature thermistor has short circuit or open circuit.
Supposed Causes	 Defect of thermistor (R1T) for outdoor air Defect of outdoor unit PC board (A1P)
Troubleshooting	Image: No connected to X18A of outdoor PC board (A1P). No VYES Resistance is sormal when measured after disconnecting the thermistor (R1T) (NO) (R1T) from the outdoor unit PC board (1.8kΩ to 800kΩ)
L	* Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

3.28 " **Je**" Outdoor Unit: Current Sensor Malfunction

Remote Controller	
Display	
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Malfunction is detected according to the current value detected by current sensor.
Malfunction Decision Conditions	When the current value detected by current sensor becomes 5A or lower, or 40A or more during standard compressor operation.
Supposed Causes	 Faulty current sensor (A6P, A7P) Faulty outdoor unit PC board
Troubleshooting	Image: No current sensor inversely ves Ves Correct the connector, and operate unit again. Vesting of the the current sensor inversely ves Vesting of the current sensor inversely of the

3.29 "J∃" Outdoor Unit: Malfunction of Discharge Pipe Thermistor (R3, R31~33T)

Remote Controller Display	33	
Applicable Models	RXYQ5P(A)~54P(A)	
Method of Malfunction Detection	Malfunction is detected from the temperature detected by discharge pipe temperature thermistor.	
Malfunction Decision Conditions	When a short circuit or an open circuit in the discharge pipe temperature thermistor is detected	∍d.
Supposed Causes	 Defect of thermistor (R31T, R32T or R33T) for outdoor unit discharge pipe Defect of outdoor unit PC board (A1P) Defect of thermistor connection 	
Troubleshooting	Image: Note of the second s	
Note:	5 HP class R3T 8~12 HP class R31T, R32T 14, 16Hp class R31T, R32T and R33T	

* Refer to "Thermistor Resistance / Temperature Characteristics" table on P.428.

5

3.30 "45" Outdoor Unit: Malfunction of Thermistor (R2T, R7T) for Suction Pipe

Remote Controller Display	JS
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Malfunction is detected from the temperature detected by the suction pipe temperature thermistor.
Malfunction Decision Conditions	When a short circuit or an open circuit in the suction pipe temperature thermistor is detected.
Supposed Causes	 Defect of thermistor (R2T), (R7T) for outdoor unit suction pipe Defect of outdoor unit PC board (A1P) Defect of thermistor connection
Troubleshooting	Image: NO Connector is connected to X30A, of outdoor unit PC board. VYES Resistance is normal when measured after disconnecting the thermistor (R2T), (R7T) from the outdoor unit PC board.
	 Replace outdoor unit PC board (A1P). * Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

3.31 "45" Outdoor Unit: Malfunction of Thermistor (R4T) for **Outdoor Unit Heat Exchanger**

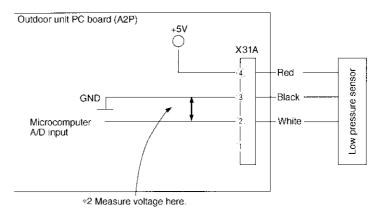
.15
RXYQ5P(A)~54P(A)
Malfunction is detected from the temperature detected by the heat exchanger thermistor.
When a short circuit or an open circuit in the heat exchange thermistor is detected.
 Defect of thermistor (R4T) for outdoor unit coil Defect of outdoor unit PC board (A1P) Defect of thermistor connection
Image: No Secure the thermistor R4T from the indoor unit PC board. VES Replace the thermistor R4T. VES Replace outdoor unit PC board. VES Replace outdoor unit PC board.

* Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

3.32 "" Outdoor Unit: Malfunction of Liquid Pipe Thermistor (R6T)

emote ontroller isplay	
oplicable odels	RXYQ5P(A)~54P(A)
ethod of alfunction etection	Malfunction is detected according to the temperature detected by liquid pipe thermistor.
alfunction ecision onditions	When the liquid pipe thermistor is short circuited or open.
upposed auses	 Faulty liquid pipe thermistor (R6T) Faulty outdoor unit PC board Defect of thermistor connection
roubleshooting	
roubleshooting	Image: NO Secure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: NO Secure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: NO Secure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: NO Secure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: NO Secure to turn off power switch before connect or disconnect connector and operate unit again. Image: NO Secure to turn off power switch before connect or disconnect or disconnect connector and operate unit again. Image: NO Image: NO Image: NO Secure to turn off power switch before connect or disconnect or disconnect or disconnector and operate unit again. Image: NO Image: NO Image: NO Image: NO<

3.33 "JE" Outdoor Unit: Malfunction of Subcooling Heat **Exchanger Gas Pipe Thermistor (R5T)**

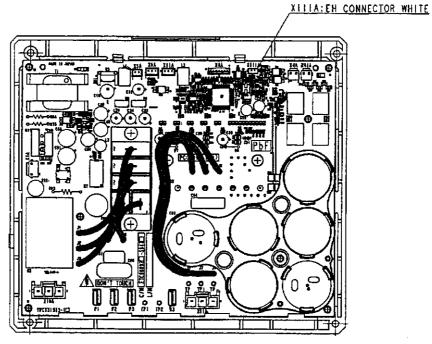

Remote Controller Display	33
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Malfunction is detected according to the temperature detected by subcooling heat exchanger gas pipe thermistor.
Malfunction Decision Conditions	When the subcooling heat exchanger gas pipe thermistor is short circuited or open.
Supposed Causes	 Faulty subcooling heat exchanger gas pipe thermistor (R5T) Faulty outdoor unit PC board
Troubleshooting	
G	 Replace outdoor unit PC board (A1P). * Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

3.34 "48" Outdoor Unit: Malfunction of High Pressure Sensor

Remote Controller Display	38
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Malfunction is detected from the pressure detected by the high pressure sensor.
Malfunction Decision Conditions	When the high pressure sensor is short circuit or open circuit.
Supposed Causes	 Defect of high pressure sensor system Connection of low pressure sensor with wrong connection. Defect of outdoor unit PC board.
	Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Image: Connected to X32A or outdoor unit PC board (A1P). NO Image: VES Connect the high pressure sensor and turn on again. Image: VES The relationship between the *1 Image: VH and high pressure between the *1 YES Image: Voltage is measured between to voltage is measured between the *1. Pressure sensor. Image: Voltage measurement point Replace the high pressure sensor. *1: Voltage measurement point YES Image: Voltage measurement point YES <
Ŀ	Wicrocomputer Microcomputer *2 Measure DC voltage here. *2: Refer to "Pressure Sensor, Pressure / Voltage Characteristics" table on P.429.

3.35 "....." Outdoor Unit: Malfunction of Low Pressure Sensor

Remote Controller Display	
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Malfunction is detected from pressure detected by low pressure sensor.
Malfunction Decision Conditions	When the low pressure sensor is short circuit or open circuit.
Supposed Causes	 Defect of low pressure sensor system Connection of high pressure sensor with wrong connection. Defect of outdoor unit PC board.
Troubleshooting	Image: Notice of the sum
	neplace the low pressure sensor.
	*1: Voltage measurement point

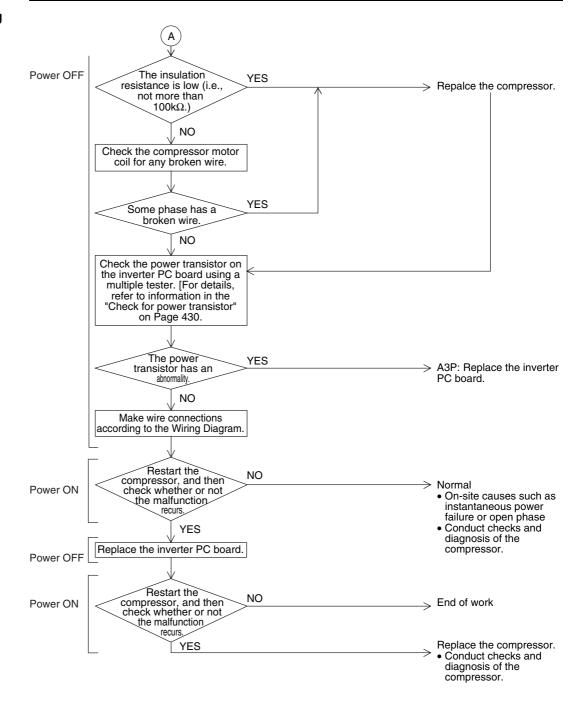


*2: Refer to "Pressure Sensor, Pressure / Voltage Characteristics" table on P.429.

3.36 "난 낙" Outdoor Unit: Malfunction of Inverter Radiating Fin Temperature Rise

Remote Controller Display	14					
Applicable Models	RXYQ5P(A)~54P(A)					
Method of Malfunction Detection	Fin temperature is detected by the thermistor of the radiation fin.					
Malfunction Decision Conditions	When the temperature of the inverter radiation fin increases above 93°C.					
Supposed Causes	 Actuation of fin thermal (Actuates above 93°C) Defect of inverter PC board Defect of fin thermistor 					
Troubleshooting	Power OFF Power ON	Be sure to turn off power switch be or parts damage may be occurred Fin temperature of the compressor inverter is high. NO Remove and insert the fin thermistor connector "X111A". Turn ON the power supply, YES and then check whether or not the malfunction recurs. NO		 Faulty radiation from the switch box: Conduct the checks shown below. Radiation fin for stains Airflow for interference Fan propeller for damage Whether or not outdoor temperature is too high > Replace the inverter PC board. > End of measures It is supposed that radiation fin for stains radiation fin for stains the emperature has risen due to on-site causes. Conduct the checks shown below. Radiation fin for stains Airflow for interference Fan propeller for damage Whether or not outdoor temperature is too high 		

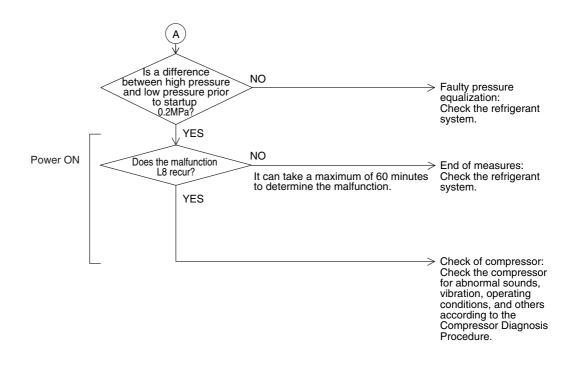
Inverter PC board for compressor


5

* Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

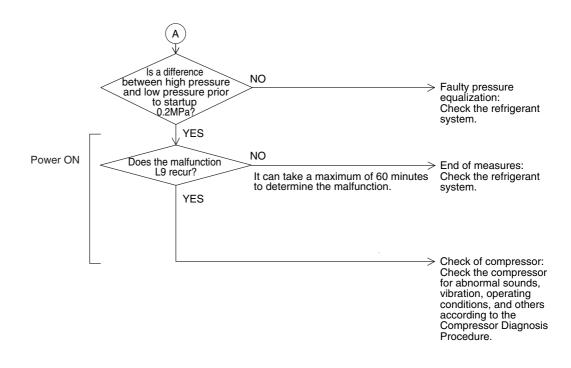
3.37 "15" Outdoor Unit: Inverter Compressor Abnormal

Remote Controller Display	LS				
Applicable Models	RXYQ5P(A)~54P(A)				
Method of Malfunction Detection	Malfunction is detected from current flowing in the power transistor.				
Malfunction Decision Conditions	When an excessive current flows in the power transistor. (Instantaneous overcurrent also causes activation.)				
Supposed Causes	 Defect of compressor coil (disconnected, defective insulation) Compressor start-up malfunction (mechanical lock) Defect of inverter PC board 				
Troubleshooting	Compressor inspection Description Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. On-site causes. Open the stop valve. Power OFF Power OFF Check the compressor cable for disconnection and flaws. The YES Check the compressor cable has a defect. NO Disconnect the cable from the compressor for the insulation resistance. A				


Troubleshooting

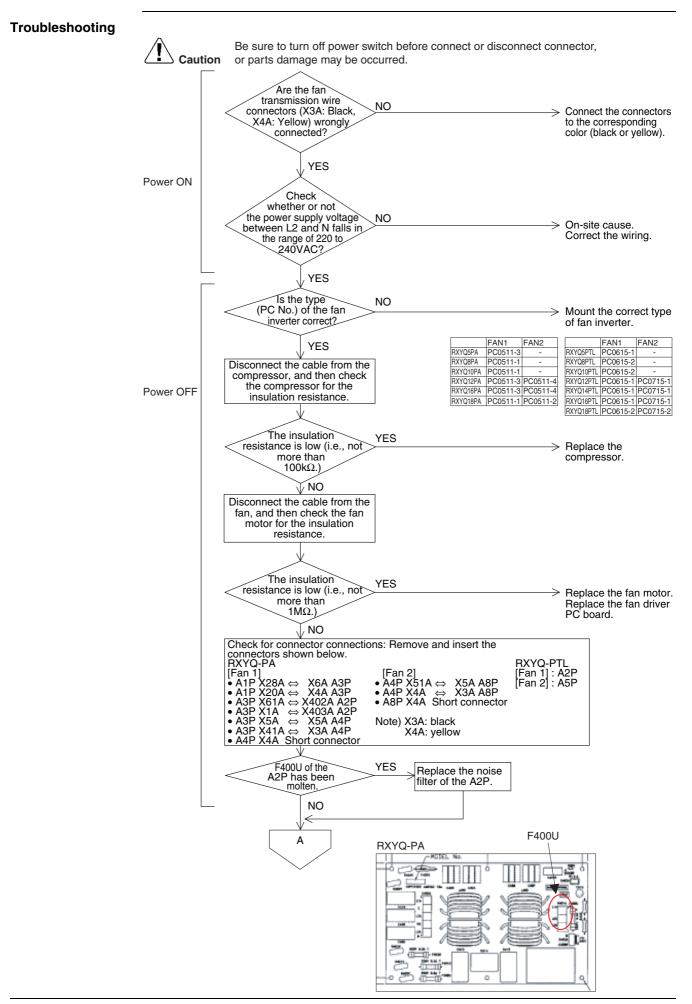
3.38 "L8" Outdoor Unit: Inverter Current Abnormal

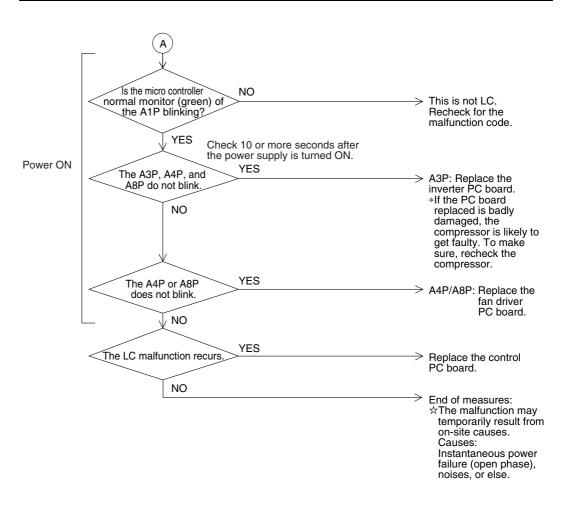
Remote Controller Display	18				
Applicable Models	RXYQ5P(A)~54P(A)				
Method of Malfunction Detection	Malfunction is detected by current flowing in the power transistor.				
Malfunction Decision Conditions	When overload in the compressor is detected. (Inverter secondary current 16.1A (Y1, YL) and 27.6A (TL))				
Supposed Causes	 Compressor overload Compressor coil disconnected Defect of inverter PC board Faulty compressor 				
Troubleshooting	Output curr Power ON Power OFF	Be sure to turn off power switch before connect or disconnect of or parts damage may be occurred.	 Overcurrent: Check the compressor and refrigerant system (in the same manner as that for E3). Open the stop valve. Rectify the wire connetions. Replace the inverter Since the compressor. Replace the inverter PC board. * The inverter is likely to have got faulty due to the malfunction of the compressor. 		
		A	compresssor.		


Troubleshooting

3.39 "L 5" Outdoor Unit: Inverter Start up Error

Remote Controller Display	13		
Applicable Models	RXYQ5P(A)	o~54P(A)	
Method of Malfunction Detection	This malfun	ction code will be output if overcurrent occurs at the time of st	tartup.
Malfunction Decision Conditions		artup control is failed. rercurrent is passed to the inverter due to the malfunction of a stem.	compressor or
Supposed Causes	Pressure	f compressorFailure to open the stop valvee differential startFaulty compressor connectionf inverter PC boardFaulty compressor connection	
Troubleshooting	Power OFF	Is the stop valve open? NO YES Are wire connections properly NO Made (according to the Wiring Diagram)? Check the compressor cable for any disconnection or flaws. Disconnect the cable from the compressor, and then check the compressor for the insulation resistance. YES Disconnect the cable from the compressor for the insulation resistance. YES NO NO Check the power transistor on the inverter PC board using a multiple tester. YES	 Connector, Open the stop valve. Rectify the wire connections. Replace the compressor. Replace the inverter PC board. The inverter is likely to have got faulty due to the malfunction of the compressor. After the completion of replacement, be sure to check the compressor.

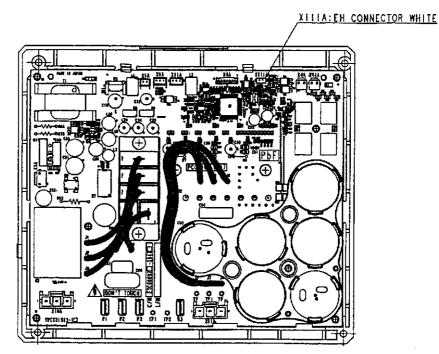

Troubleshooting


3.40 "LC" Outdoor Unit: Malfunction of Transmission Between Inverter and Control PC Board

Remote Controller Display	
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Check the communication state between inverter PC board and control PC board by micro- computer.
Malfunction Decision Conditions	When the correct communication is not conducted in certain period.
Supposed Causes	 Malfunction of connection between the inverter PC board and outdoor control PC board Defect of outdoor control PC board (transmission section) Defect of inverter PC board Defect of noise filter Faulty fan inverter Incorrect type of fan inverter Faulty compressor

Faulty fan motor

Troubleshooting



3.41 "? ?" Outdoor Unit: Inverter Over-Ripple Protection

Remote Controller Display	<i>P</i> ;
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Imbalance in supply voltage is detected in PC board. Imbalance in the power supply voltage causes increased ripple of voltage of the main circuit capacitor in the inverter. Consequently, the increased ripple is detected.
Malfunction Decision Conditions	 When the resistance value of thermistor becomes a value equivalent to open or short circuited status. ★ Malfunction is not decided while the unit operation is continued. "P1" will be displayed by pressing the inspection button. When the amplitude of the ripple exceeding a certain value is detected for consecutive 4 minutes.
Supposed Causes	 Open phase Voltage imbalance between phases Defect of main circuit capacitor Defect of inverter PC board Defect of K2 relay in inverter PC board Improper main circuit wiring
Troubleshooting	Funding Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. Imbalance YES In excess of 14 V NO In excess of 14 V NO Imbalance applied to the VES NO Imbalance applied to the VES Part or wiring defect After turning the power supply voltage inbalance applied to the VES Imbalance applied to the VES NO Imbalance applied to the voltage monitoring is possible: 10 cose or disconnected nigosition. Tusion or contact is poor. Imbalance applied to the voltage the voltage to the voltage at the X1M power supply voltage to cost and recording of power supply voltage imbalance Imbalance are only the imbalance in voltage to the diode module inside the inverter PC board. Mo abnormallies are observed i

3.42 "" Outdoor Unit: Malfunction of Inverter Radiating Fin Temperature Rise Sensor

Remote Controller Display	P4	
Applicable Models	RXYQ5P(A)~54P(A)	
Method of Malfunction Detection	Resistance of radiation fin thermistor is detected when the compressor is not op	perating.
Malfunction Decision Conditions	 When the resistance value of thermistor becomes a value equivalent to open or status. ★ Malfunction is not decided while the unit operation is continued. "P4" will be displayed by pressing the inspection button. 	short circuited
Supposed Causes	 Defect of radiator fin temperature sensor Defect of inverter PC board 	
Troubleshooting	100kΩ.) comp NO Disconnect the cable from the fan, and then check the fan motor for the insulation resistance. resistance. The insulation YES resistance is low (i.e., not more than 1MΩ.) YES NO Remove and insert the fin thermistor connector [X111A].	tor, lace the pressor. lace the fan motor lace the fan driver poard.
		lace the inverter board.

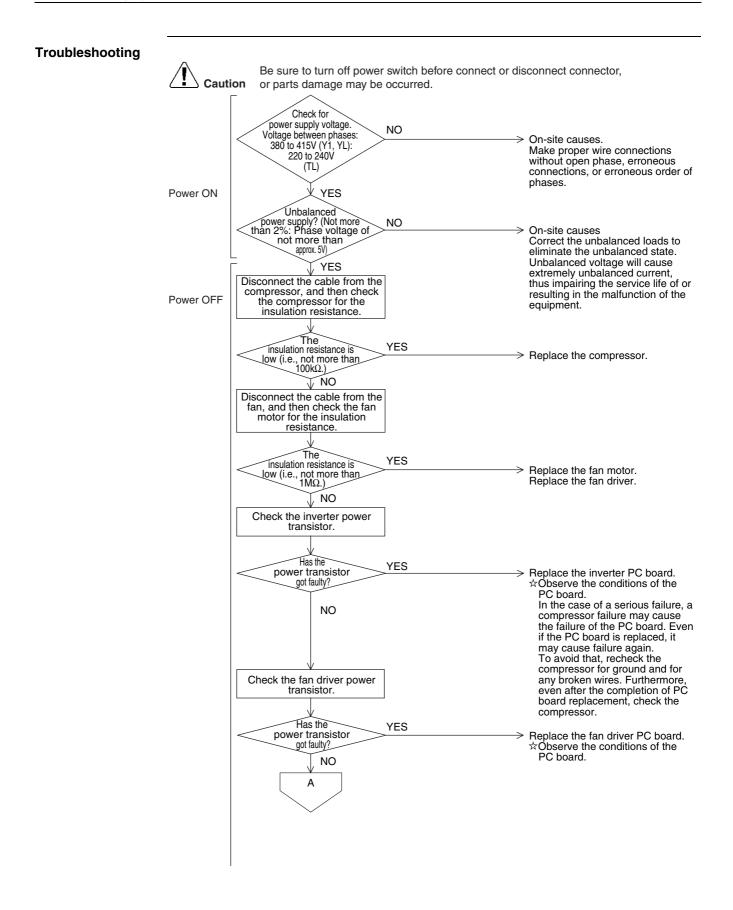
Inverter PC board for compressor

* Refer to "Thermistor Resistance / Temperature Characteristics" table on P.427.

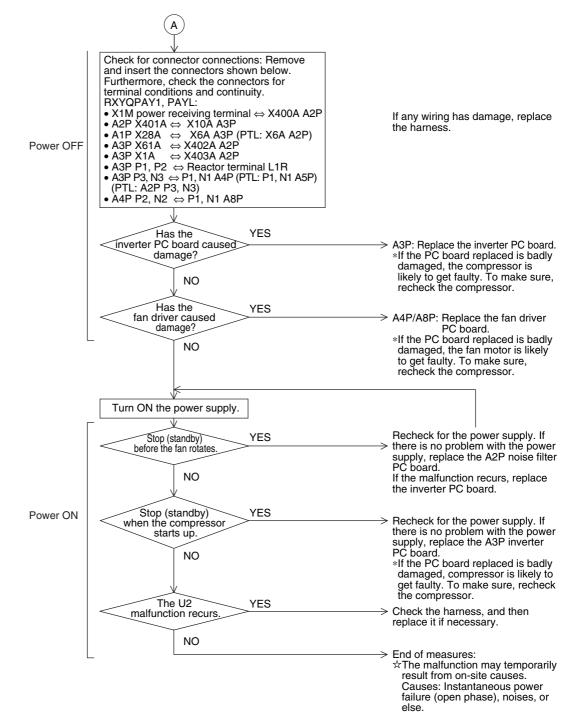
3.43 "PL" Outdoor Unit: Faulty Field Setting after Replacing Main PC Board or Faulty Combination of PC Board

Remote Controller Display	P.J
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	The faulty (or no) field setting after replacing PC board or faulty PC board combination is detected through communications with the inverter.
Malfunction Decision Conditions	Whether or not the field setting or the type of the PC board is correct through the communication date is judged.
Supposed Causes	 Faulty (or no) field setting after replacing main PC board Mismatching of type of PC board
Troubleshooting	E sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.
	YES *Note) Type of PC board mismatching includes; Main PC board Inverter PC board (for compressor) Fan driver PC board

3.44 "出了" Outdoor Unit: Low Pressure Drop Due to Refrigerant Shortage or Electronic Expansion Valve Failure


	•	
Remote Controller Display		
Applicable Models	RXYQ5P(A)~54P(A)	
Method of Malfunction Detection	Short of gas malfunction is detected by discharge pipe temperature	e thermistor.
Malfunction Decision Conditions	Microcomputer judge and detect if the system is short of refrigerant \star Malfunction is not decided while the unit operation is continued.	t.
Supposed Causes	 Out of gas or refrigerant system clogging (incorrect piping) Defect of pressure sensor Defect of outdoor unit PC board (A1P) Defect of thermistor R7T or R4T 	
Troubleshooting		
	pipe temperature minus YES	 Out of gas, closing of stop valve or refrigerant system is clogged. Requires check of refrigerant system. Replace main outdoor unit PC board (A1P). Replace low pressure sensor. Out of gas or refrigerant system is clogged. Requires
	NO Resistance is normal when measured with the suction pipe thermistor (R7T) and coil thermistor (R4T) disconnected from the outdoor unit PC board. *1 YES	check of refrigerant system. Replace the thermistor. Replace the outdoor unit PC board (A1P).
L	 *1: Refer to "Thermistor Resistance / Temperature Characteristics" *2: Refer to "Pressure Sensor, Pressure / Voltage Characteristics" 	

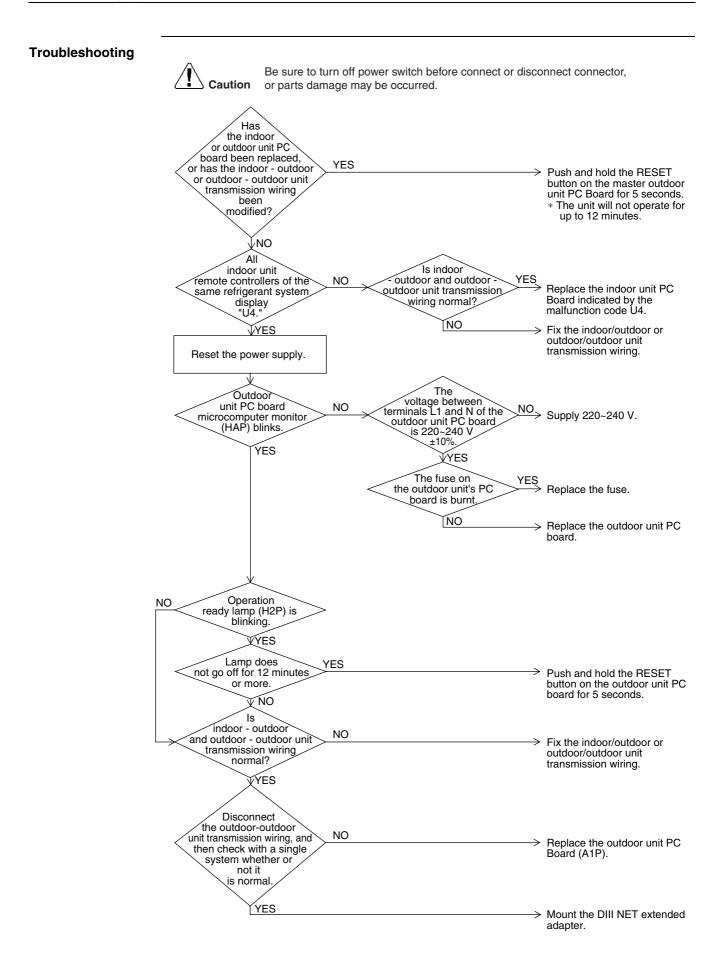
3.45 "Ut" Reverse Phase, Open Phase


Remote Controller Display	U 1
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	The phase of each phase are detected by reverse phase detection circuit and right phase or reverse phase are judged.
Malfunction Decision Conditions	When a significant phase difference is made between phases.
Supposed Causes	 Power supply reverse phase Power supply open phase Defect of outdoor PC board (A1P)
Troubleshooting	Image: Note of the power supply line phase is replaced. YES Fix the open phase is replaced. Fix the open phase counters inspection of field power supply section. NO NO Section Section of field power supply section. NO PES Place of power supply YES Section of field power supply Section of field power supply section. NO PES Section of place of power supply Section. NO PES Section of place of power supply Section. NO PES Section of place of power supply Section. NO PES Section of place of power supply Section. NO PES Section of place of power supply Section. NO PES Section of place outdoor unit PC board
	is normal if one YES Place of power supply line phase is replaced. NO

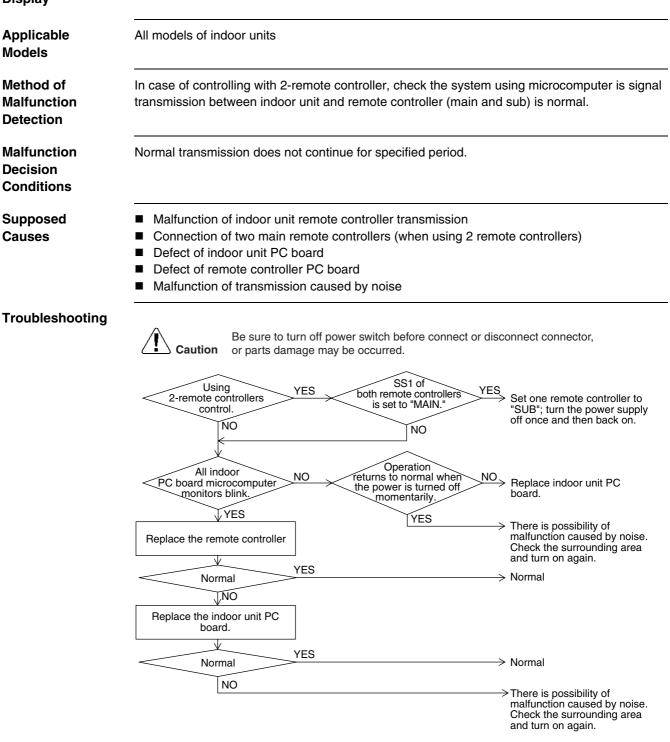
3.46 "LE" Outdoor Unit: Power Supply Insufficient or Instantaneous Failure

Remote Controller Display	<u>U2</u>
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Detection of voltage of main circuit capacitor built in the inverter and power supply voltage.
Malfunction Decision Conditions	When the voltage aforementioned is not less than 780V or not more than 320V, or when the current-limiting voltage does not reach 200V or more or exceeds 740V.
Supposed Causes	 Power supply insufficient Instantaneous power failure Open phase Defect of inverter PC board Defect of outdoor control PC board Main circuit wiring defect Faulty compressor Faulty fan motor Faulty connection of signal cable

Troubleshooting

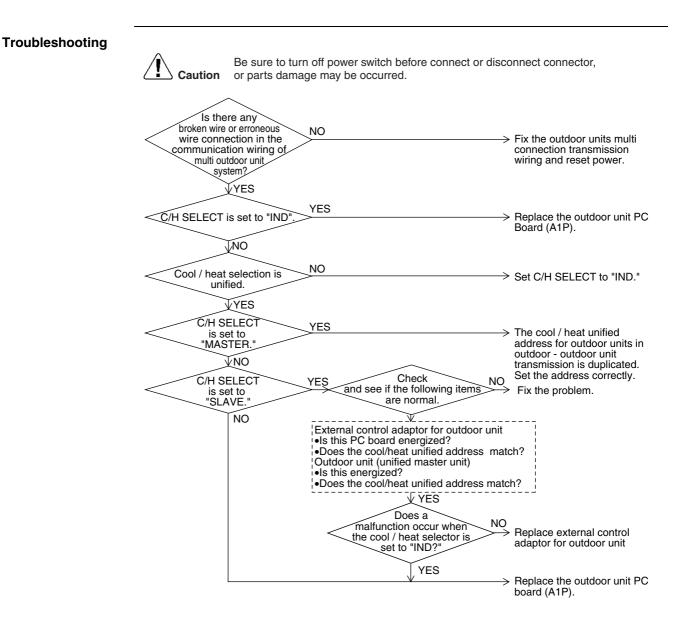


3.47 "UE" Outdoor Unit: Check Operation not Executed


Remote Controller Display	U3
Applicable Models	RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Check operation is executed or not
Malfunction Decision Conditions	Malfunction is decided when the unit starts operation without check operation.
Supposed Causes	Check operation is not executed.
Troubleshooting	Image: NO performed on Outdoor unit PC board? NO performed on Outdoor Types YES Press and hold BS4 on the outdoor master PC board for 5 seconds or more, or turn ON the local setting mode 2-3 to conduct a check operation. Performs the check operation gain and completes the check operation during the check operation again and completes the check operation.

3.48 "2"+" Malfunction of Transmission Between Indoor Units

Remote Controller Display	89
Applicable Models	All model of indoor unit RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Microcomputer checks if transmission between indoor and outdoor units is normal.
Malfunction Decision Conditions	When transmission is not carried out normally for a certain amount of time
Supposed Causes	 Indoor to outdoor, outdoor to outdoor transmission wiring F1, F2 disconnection, short circuit or wrong wiring Outdoor unit power supply is OFF System address doesn't match Defect of indoor unit PC board Defect of outdoor unit PC board

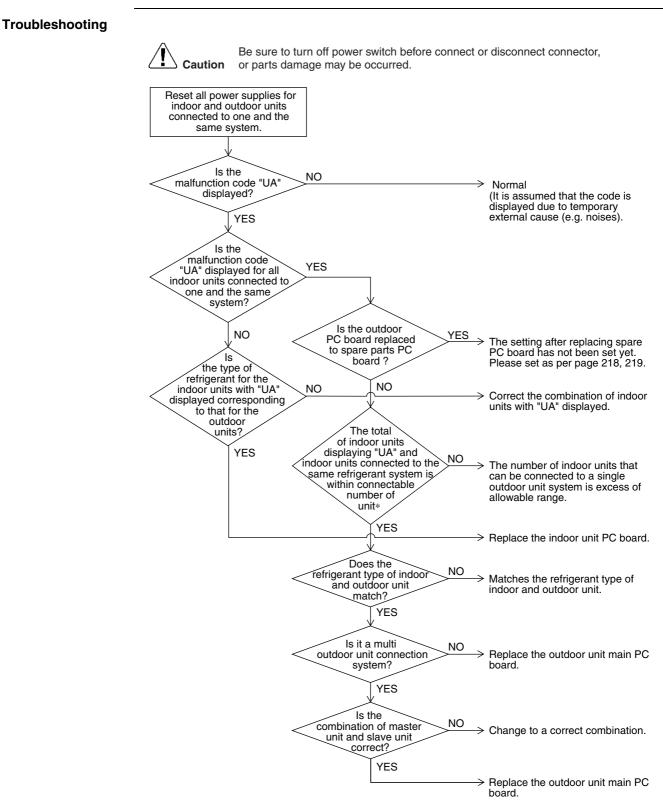

3.49 "步" Indoor Unit: Malfunction of Transmission Between **Remote Controller and Indoor Unit** 115 Remote Controller Display

3.50 "U"" Indoor Unit: Malfunction of Transmission Between Outdoor Units

Remote Controller Display	
Applicable Models	All models of indoor units
Method of Malfunction Detection	Microcomputer checks if transmission between outdoor units.
Malfunction Decision Conditions	When transmission is not carried out normally for a certain amount of time
Supposed Causes	 Improper connection of transmission wiring between outdoor unit and external control adaptor for outdoor unit Improper connection of transmission wiring between outdoor units. Improper cool/heat selection Improper cool/heat unified address (outdoor unit, external control adaptor for outdoor unit) Defect of outdoor unit PC board (A1P)

Defect of external control adaptor for outdoor unit

3.51 "UB" Indoor Unit: Malfunction of Transmission Between Main and Sub Remote Controllers


Remote Controller Display	<u>U8</u>
Applicable Models	All models of indoor units
Method of Malfunction Detection	In case of controlling with 2-remote controller, check the system using microcomputer if signal transmission between indoor unit and remote controller (main and sub) is normal.
Malfunction Decision Conditions	Normal transmission does not continue for specified period.
Supposed Causes	 Malfunction of transmission between main and sub remote controller Connection between sub remote controllers Defect of remote controller PC board
Troubleshooting	Image: No of premote controller PC boards NO of remote controller PC boards Set SS1 to "MAIN"; the power supply off once and then back on. Vising 2-remote controllers control VES VES Sistent of the power off and then back on. Vising 2-remote controllers is set to "SUB." NO VES Turn the power off and then back on. Vising 2-remote controllers is set to "SUB." VES Set on the power off and then back on. Set on the power off and then back on. Visit Visit Visit Set on the power off and then back on. Set on the power off and then back on. Visit Visit Visit Set one remote controller PC boards Set one remote controller to "MAIN"; the power supply off once and then back on.

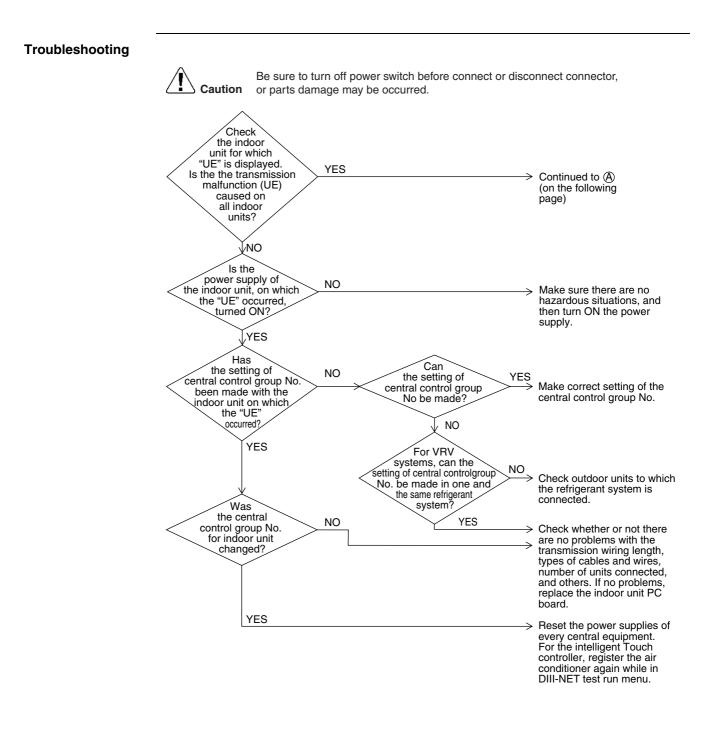
3.52 "US" Indoor Unit: Malfunction of Transmission Between Indoor and Outdoor Units in the Same System

Remote Controller Display	US
Applicable Models	All models of indoor units
Method of Malfunction Detection	Detect the malfunction signal of any other indoor unit within the system concerned.
Malfunction Decision Conditions	When the malfunction decision is made on any other indoor unit within the system concerned.
Supposed Causes	 Malfunction of transmission within or outside of other system Malfunction of electronic expansion valve in indoor unit of other system Defect of PC board of indoor unit in other system Improper connection of transmission wiring between indoor and outdoor unit
Troubleshooting	Image: No spectrum of the second s

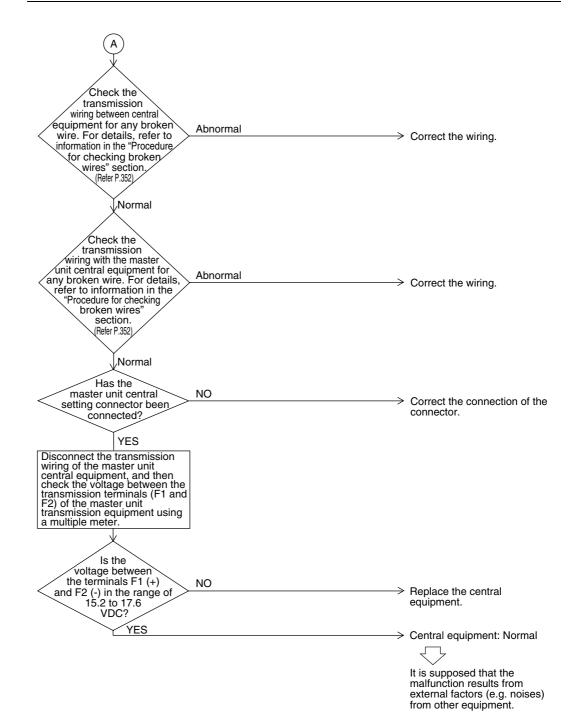
3.53 "出" Improper Combination of Indoor and Outdoor Units, Indoor Units and Remote Controller

Remote Controller Display	<u>UR</u>
Applicable Models	All models of indoor unit RXYQ5P(A)~54P(A)
Method of Malfunction Detection	A difference occurs in data by the type of refrigerant between indoor and outdoor units. The number of indoor units is out of the allowable range.
Malfunction Decision Conditions	The malfunction decision is made as soon as either of the abnormalities aforementioned is detected.
Supposed Causes	 Excess of connected indoor units Defect of outdoor unit PC board (A1P) Mismatching of the refrigerant type of indoor and outdoor unit. Setting of outdoor PC board was not conducted after replacing to spare parts PC board.

* The number of indoor units that can be connected to a single outdoor unit system depends on the model of outdoor unit.


3.54 "UE" Address Duplication of Centralized Controller

Remote Controller Display	UC
Applicable Models	All models of indoor unit Centralized controller
Method of Malfunction Detection	The principal indoor unit detects the same address as that of its own on any other indoor unit.
Malfunction Decision Conditions	The malfunction decision is made as soon as the abnormality aforementioned is detected.
Supposed Causes	 Address duplication of centralized controller
Troubleshooting	Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred. The centralized address is duplicated. Make setting change so that the centralized address will not be duplicated.

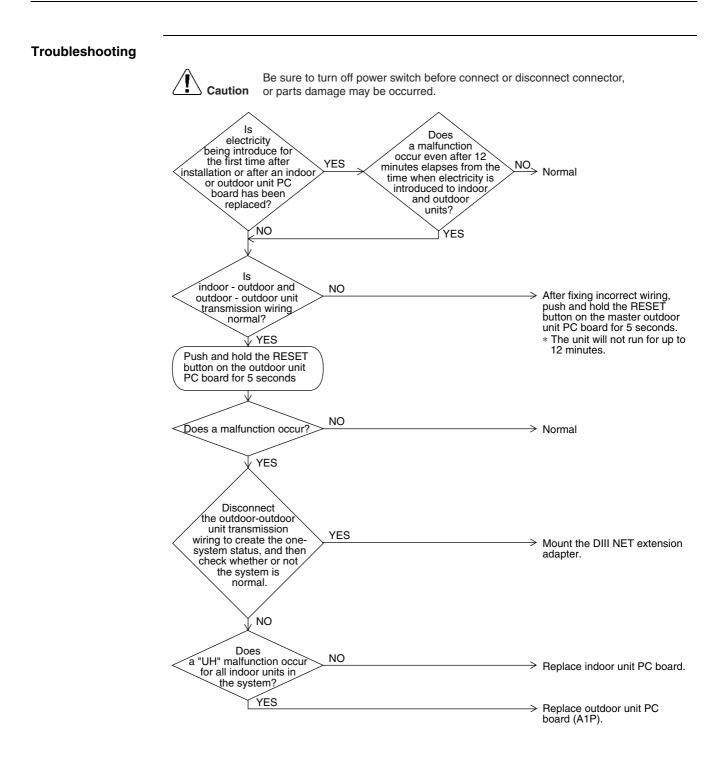

3.55 "LE" Malfunction of Transmission Between Centralized Controller and Indoor Unit

Remote Controller Display	UE
Applicable Models	All models of indoor units Intelligent Touch Controller Centralized controller Schedule timer
Method of Malfunction Detection	Microcomputer checks if transmission between indoor unit and centralized controller is normal.
Malfunction Decision Conditions	When transmission is not carried out normally for a certain amount of time
Supposed Causes	 Malfunction of transmission between optional controllers for centralized control and indoor unit Connector for setting master controller is disconnected. (or disconnection of connector for independent / combined use changeover switch.) Failure of PC board for central remote controller Defect of indoor unit PC board

Troubleshooting

Troubleshooting

3.56 *"LIF"* System is not Set yet

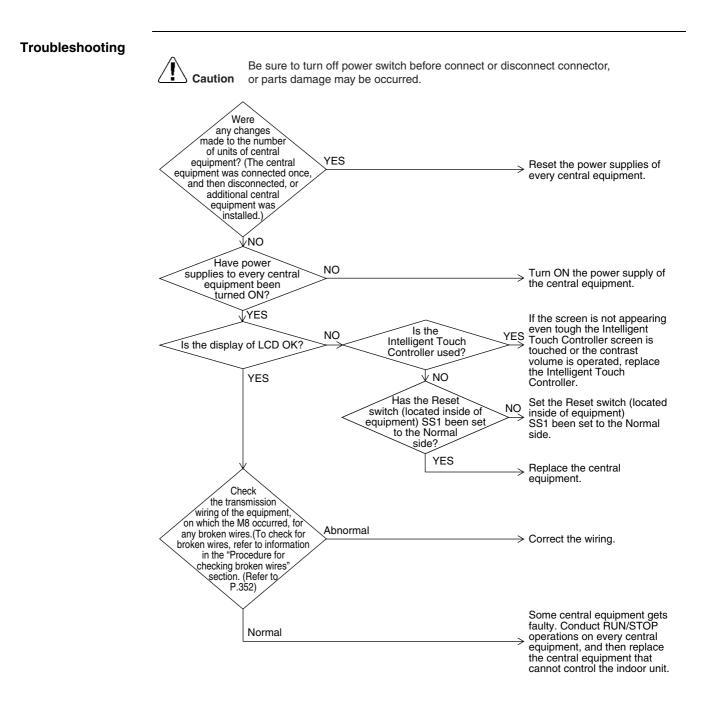

Remote Controller Display	<u>;;;</u> ;
Applicable Models	All models of indoor units RXYQ5P(A)~54P(A)
Method of Malfunction Detection	On check operation, the number of indoor units in terms of transmission is not corresponding to that of indoor units that have made changes in temperature.
Malfunction Decision Conditions	The malfunction is determined as soon as the abnormality aforementioned is detected through checking the system for any erroneous connection of units on the check operation.
Supposed Causes	 Improper connection of transmission wiring between indoor-outdoor units and outdoor-outdoor units Failure to execute check operation Defect of indoor unit PC board Stop valve is left in closed
Troubleshooting	Image: No provide the stop

Note:

: Wiring check operation may not be successful if carried out after the outdoor unit has been off for more than 12 hours, or if it is not carried out after running all connected indoor units in the fan mode for at least an hour.

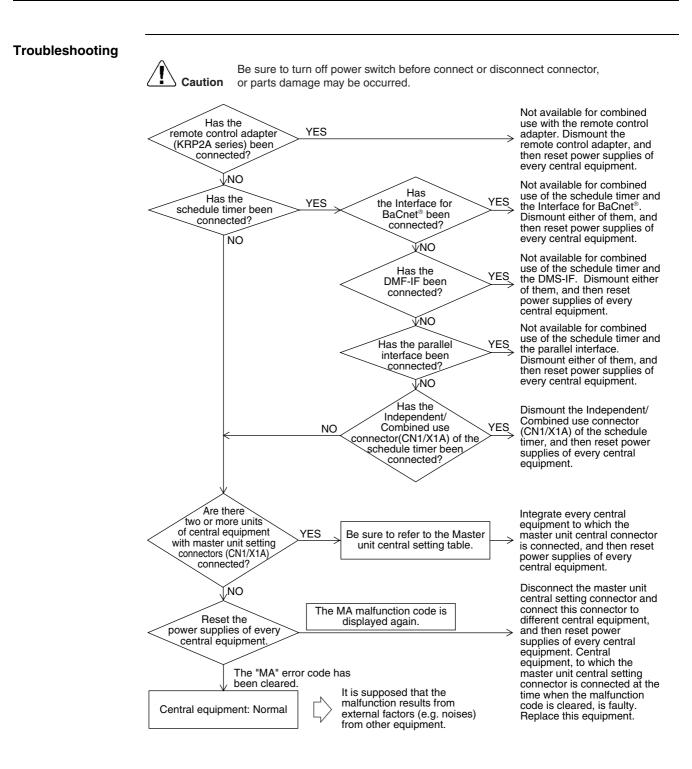
3.57 "LH" Malfunction of System, Refrigerant System Address Undefined

Remote Controller Display	<u>UR</u>
Applicable Models	All models of indoor units RXYQ5P(A)~54P(A)
Method of Malfunction Detection	Detect an indoor unit with no address setting.
Malfunction Decision Conditions	The malfunction decision is made as soon as the abnormality aforementioned is detected.
Supposed Causes	 Improper connection of transmission wiring between indoor-outdoor units and outdoor-outdoor units Defect of indoor unit PC board Defect of outdoor unit PC board (A1P)



4. Troubleshooting (OP: Central Remote Controller) 4.1 "M" PC Board Defect

Remote Controller Display	M11
Applicable Models	Central remote controller Schedule timer
Method of Malfunction Detection	Detect an abnormality in the DIII-NET polarity circuit.
Malfunction Decision Conditions	When + polarity and - polarity are detected at the same time.
Supposed Causes	 Defect of central remote controller PC board Defect of Schedule timer PC board
Troubleshooting	Replace the central remote controller.
Ŭ	Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.
	Turn ON the power supply of the central equipment with M1 displayed once again.
	Is the M1 displayed again? With M1 displayed Replace the central equipment.
	Without M1 displayed Central equipment: Normal It is supposed that the malfunction results from external factors (e.g. noises) from other equipment.


4.2 "MB" Malfunction of Transmission Between Optional Controllers for Centralized Control

Remote Controller Display	<u>M8</u>
Applicable Models	Central remote controller Intelligent Touch Controller Schedule timer
Method of Malfunction Detection	Detect the malfunction according to DIII-NET transmission data. (The system will be automatically reset.)
Malfunction Decision Conditions	When no master controller is present at the time of the startup of slave controller. When the centralized controller, which was connected once, shows no response.
Supposed Causes	 Malfunction of transmission between optional controllers for centralized control Defect of PC board of optional controllers for centralized control

4.3 "해구" Improper Combination of Optional Controllers for Centralized Control

Remote Controller Display	118
Applicable Models	Central remote controller Intelligent touch controller Schedule timer
Method of Malfunction Detection	Detect the malfunction according to DIII-NET transmission data.
Malfunction	When the schedule timer is set to individual use mode, other central component is present.
Decision	When multiple master controller are present.
Conditions	When the remote control adapter is present.
Supposed	 Improper combination of optional controllers for centralized control
Causes	More than one master controller is connected
	Defect of PC board of optional controller for centralized control

ME

Central remote controller

Schedule timer

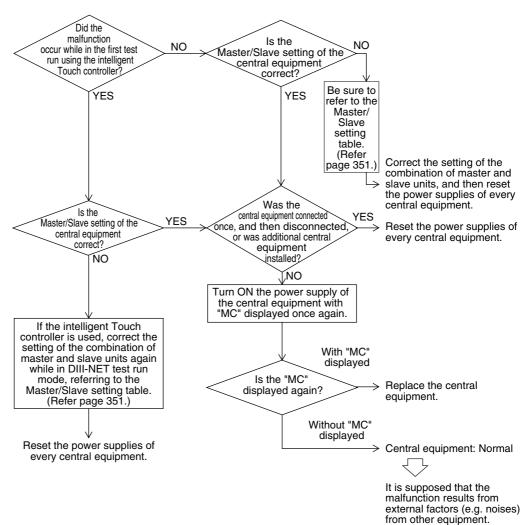
4.4 "M:" Address Duplication, Improper Setting

Remote Controller Display	
Applicable Models	

Method of Malfunction Detection

Malfunction Decision Conditions

Supposed Causes


Troubleshooting

Detect the malfunction according to DIII-NET transmission data.
Two or more units of central remote controllers and Intelligent Touch Controllers are connected, and all of them are set to master unit central setting or slave unit central setting.
Two units of schedule timers are connected.

Intelligent Touch Controller

Address duplication of centralized controller

Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.

Slave

Master/

Slave

Slave

Master-Slave Unit Setting Table	Combination	of Intelligent		Controller an	d Centra	/	ilave) #4	
	*	#1		#2		#3		#4
	Pattern	(1-00~4-15)	Master/ Slave	5-00~8-15	Master/ Slave	(1-00~4-15)	Master/ Slave	5-00~8-15
	1	CRC	Master	CRC	Master	CRC	Slave	CRC
	2	CRC	Master	_	—	CRC	Slave	
	3	Intelligent Touch controller	Master	_	_	Intelligent Touch controller	Slave	_
	4	CRC	Master	_	_	Intelligent Touch controller	Slave	_

Intelligent (5) Touch Master CRC controller 6 CRC Master Intelligent (7)Touch Master controller

CRC: Central remote controller <DCS302C1>

Intelligent Touch controller: <(DCS601C51)>

The patterns marked with "" have nothing to do with those described in the list of Setting of master unit central setting connector.

The master unit central setting connector (CN1/X1A) is mounted at the factory.

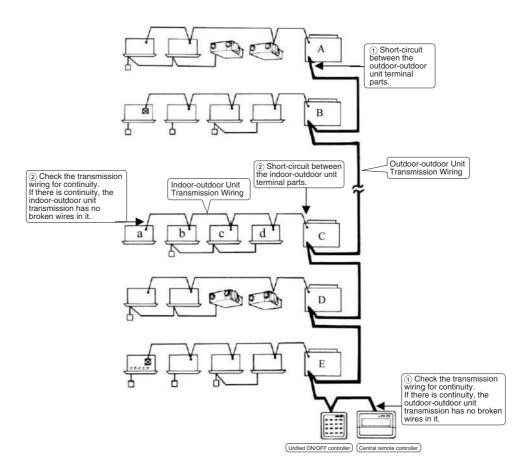
- To independently use a single unit of the intelligent Touch controller or a single unit of the • central remote controller, do not dismount the master unit central setting connector (i.e., use the connector with the factory setting unchanged).
- To independently use the schedule timer, insert an independent-use setting connector. No independent-use setting connector has been mounted at the factory. Insert the connector, which is attached to the casing of the main unit, in the PC board (CN1/X1A). (Independent-use connector=Master unit central setting connector)
- To use two or more central equipment in combination, make settings according to the table shown below.

	Central equipment connection pattern			Setting of master unit central setting connector(*2)				
Pattern	Intelligent Touch controller	Central remote controller	Unified ON/OFF controller	Schedule timer	Intelligent Touch controller	Central remote controller	Unified ON/OFF controller	Schedule timer
1	1 to 2 units			× (*1)	Only a single unit: "Provided", Others: "Not provided"			
2				× (*1)				
3	1 unit	1 unit		× (*1)	Provided	Not provided		
(4)	1 to 2 units		1 to 8 units	× (*1)	Only a single unit: "Provided", Others: "Not provided"		All "Not provided"	
5						Only a		
6		1 to 4	1 to 16	1 unit		single unit: "Provided",	All "Not	Not provided
\overline{O}		units	units			Others: "Not	provided"	
8				1 unit		provided"		Not provided
9							Only a	
10			1 to 16 units	1 unit			single unit: "Provided", Others: "Not provided"	Not provided
(1)	\nearrow		\nearrow	1 unit				Provided

(*1) The intelligent Touch controller and the schedule timer are not available for combined use.

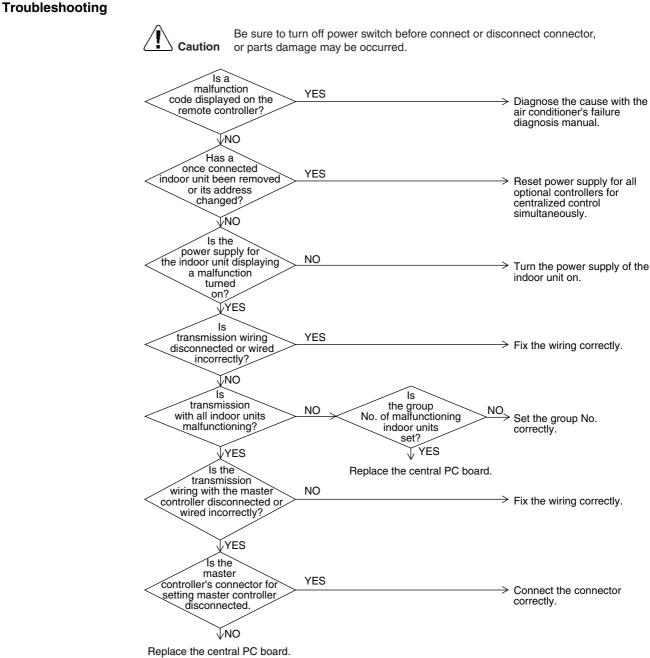
(*2) The intelligent Touch controller, central remote controller, and the unified ON/OFF controller have been set to "Provided with the master unit central setting connector" at the factory. The schedule timer has been set to "Not provided with the master unit central setting connector" at the factory, which is attached to the casing of the main unit.

Master Unit Central Connector **Setting Table**

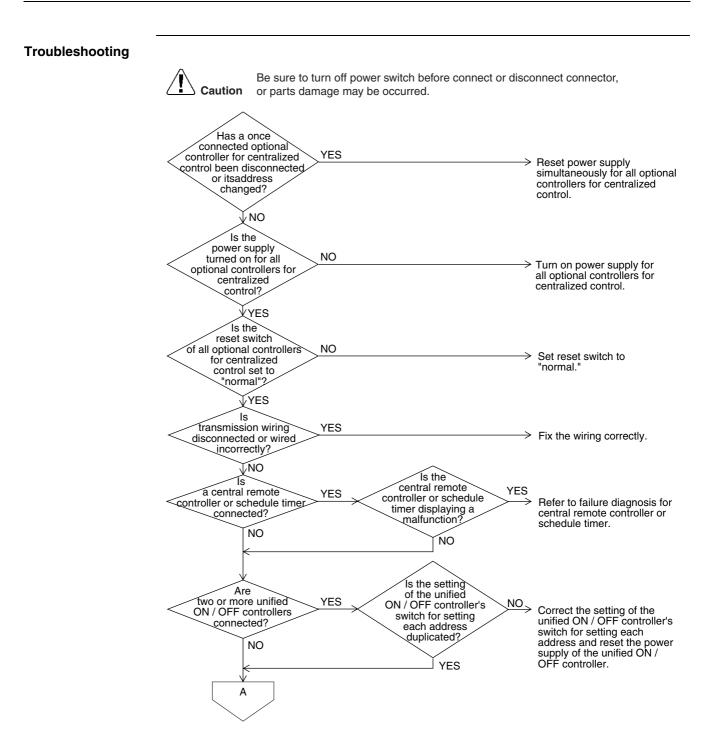

Procedures for 1. Procedure for checking outdoor-outdoor unit transmission wiring for broken wires **Detecting Broken** On the system shown below, turn OFF the power supply to all equipment, short-circuit between the outdoor-outdoor unit terminal parts F1 and F2 in the "Outdoor Unit A" that is Wires in farthest from the central remote controller, and then conduct continuity checks between the Transmission transmission wiring terminal blocks F1 and F2 of the central remote controller using a Wiring for Control multiple meter. If there is continuity between the said terminal blocks, the outdoor-outdoor unit transmission wiring has no broken wires in it. If there is no continuity, the transmission wiring may have broken wires. With the outdooroutdoor unit terminal parts of the "Outdoor Unit A" short-circuited, conduct continuity checks between the transmission wiring terminal blocks F1 and F2 of the unified ON/OFF controller. If there is no continuity as well, conduct continuity checks between the outdoor-outdoor unit terminal parts of the "Outdoor Unit E", between the outdoor-outdoor unit terminal parts of the "Outdoor Unit D", between the outdoor-outdoor unit terminal parts of the "Outdoor Unit C", ... in the order described, thus identifying the place with continuity.

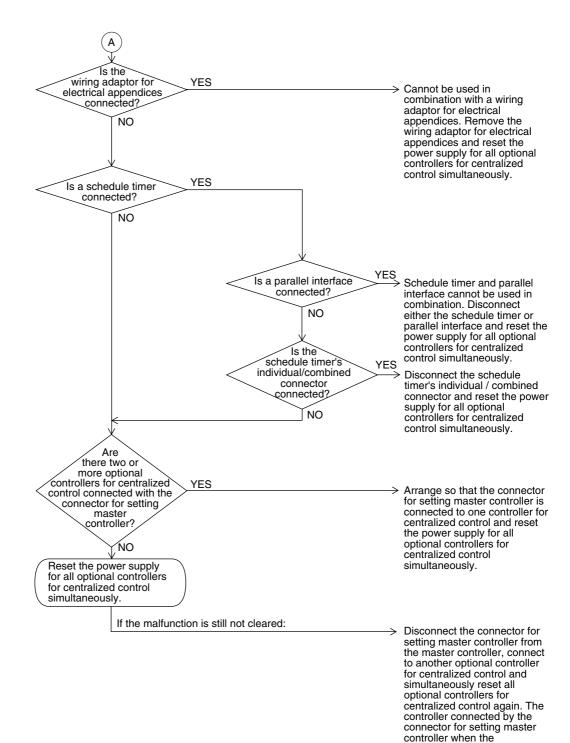
If the place with continuity can be identified, there may be broken wires in places before the said place with continuity.

 Procedure for checking indoor-outdoor unit transmission wiring for broken wires (for checking the indoor-outdoor unit transmission wiring of the "Outdoor Unit C" for broken wires)


Turn OFF the power supply to all equipment, short-circuit between the indoor-outdoor unit terminal parts F1 and F2 in the "Outdoor Unit C, and then conduct continuity checks between the transmission wirings F1 and F2 of the "Indoor Unit a" that is farthest from the "Outdoor Unit C" using a multiple meter. If there is continuity between the said transmission wirings, the indoor-outdoor unit transmission wiring has no broken wires in it. If there is no continuity, the transmission wiring may have broken wires. With the indoor-outdoor unit terminal parts of the "Outdoor Unit C" short-circuited, identify the place with continuity in the transmission wiring of the "Indoor Unit b", transmission wiring of the "Indoor Unit c", and transmission wiring of the "Indoor Unit d" in the order described.

If the place with continuity can be identified, there may be broken wires in places before the said place with continuity.


5. Troubleshooting (OP: Unified ON/OFF Controller)5.1 Operation Lamp Blinks


Remote Controller Display	Operation lamp blinks
Applicable	All model of indoor units
Models	Unified ON/OFF controller
Method of Malfunction Detection	Detect the malfunction according to DIII-NET transmission data.
Malfunction Decision Conditions	
Supposed	Malfunction of transmission between optional central controller and indoor unit
Causes	 Connector for setting master controller is disconnected
	Defect of unified ON/OFF controller PC board
	Defect of indoor unit PC board
	Malfunction of air conditioner

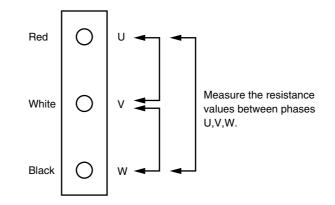
5.2 Display "Under Centralized Control" Blinks (Repeats Single Blink)

Remote Controller Display	"under centralized control" (Repeats single blink)
Applicable Models	Unified ON/OFF controller Central remote controller, Schedule timer
Method of Malfunction Detection	Detect the malfunction according to DIII-NET transmission data.
Malfunction Decision Conditions	When the centralized controller, which was connected once, shows no response. The control ranges are overlapped. When multiple master central controller are present. When the schedule timer is set to individual use mode, other central controller is present. When the wiring adaptor for electrical appendices is present.
Supposed Causes	 Address duplication of optional controllers for centralized control Improper combination of optional controllers for centralized control Connection of more than one master controller Malfunction of transmission between optional controllers for centralized control Defect of PC board of optional controllers for centralized control

malfunction is cleared is defective and must be

replaced.

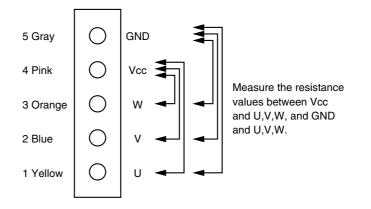
5.3 Display "Under Centralized Control" Blinks (Repeats Double Blink)

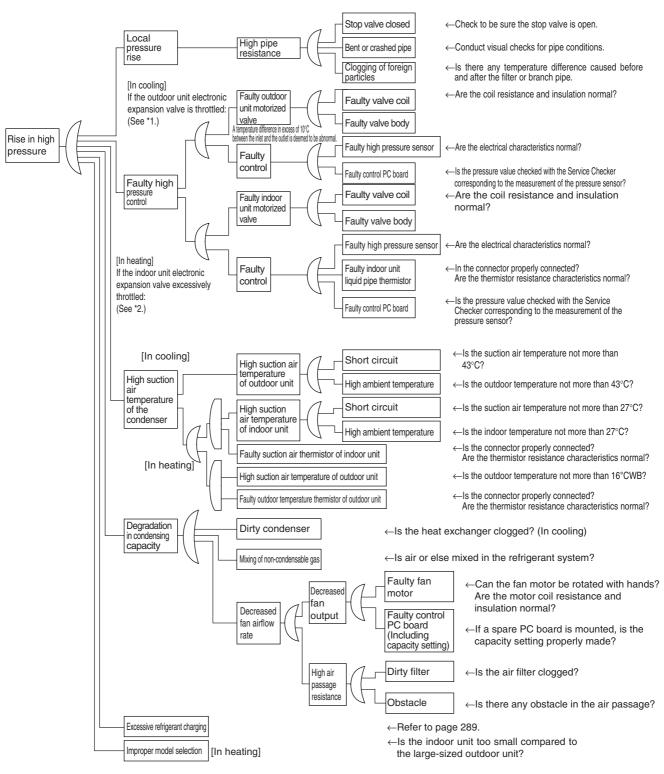

Remote Controller Display	"under centralized control" (Repeats double blink)
Applicable Models	Unified ON/OFF controller
Method of Malfunction Detection	Detect the malfunction according to DIII-NET transmission data.
Malfunction Decision Conditions	When no central control addresses are set to indoor units. When no indoor units are connected within the control range.
Supposed Causes	 Central control address (group No.) is not set for indoor unit. Improper control range setting switch Improper wiring of transmission wiring
Troubleshooting	Image: Set of the control address (group No.) NO Set by remote controller the central control address for all indoor unit? VES Set the control line. Set the control line. VES Set the control range setting switch set correctly? Set the control range setting switch set correctly? VES Set the control range setting switch set correctly? Set the control range setting switch set correctly? VES Set the control range setting switch set correctly? Set the control range setting switch correctly and simultaneously reset the power supply for all optional controllers VES Fix the wiring correctly. VES Fix the wiring correctly.
	NO Replace the unified ON/OFF controller.

[Check No. 1]

Check on connector of fan motor (Power supply cable)

(1) Turn off the power supply.


Measure the resistance between phases of U,V,W at the motor side connectors (three-core wire) to check that the values are balanced and there is no short circuiting, while connector or relay connector is disconnected.

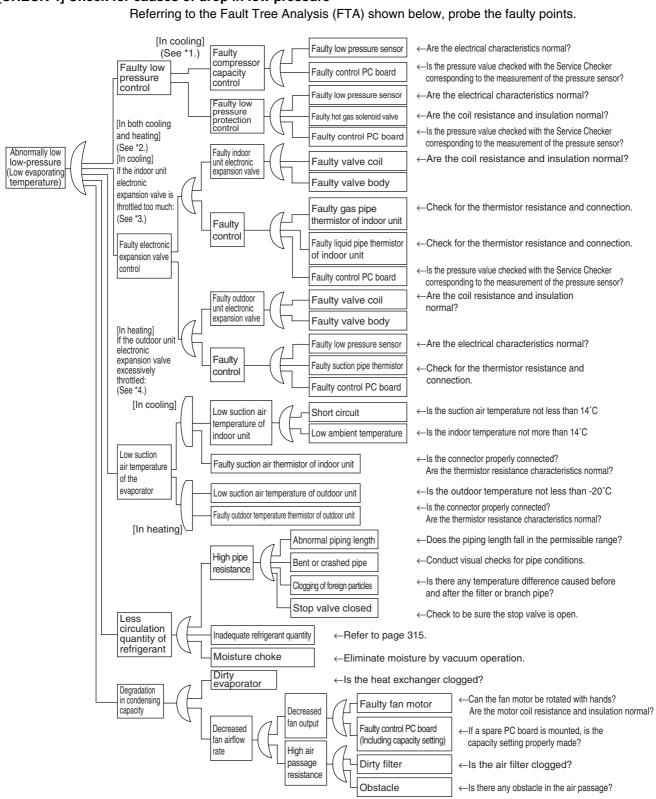


[Check No. 2]

- (1) Turn off the power supply.
- (2) Measure the resistance between Vcc and each phase of U,V,W, and GND and each phase at the motor side connectors (five-core wire) to check that the values are balanced within the range of \pm 20 %, while connector or relay connector is disconnected.

Furthermore, to use a multiple meter for measurement, connect the probe of negative pole to Vcc and that of positive pole to GND.

[CHECK 3] Check for causes of rise in high pressure


Referring to the Fault Tree Analysis (FTA) shown below, probe the faulty points.

*1: In cooling, it is normal if the outdoor unit electronic expansion valve (EV1) is fully open.

*2: In heating, the indoor unit electronic expansion valve is used for "subcooled degree control".

(For details, refer to "Electronic Expansion Valve Control" on page 171.)

SDK04009

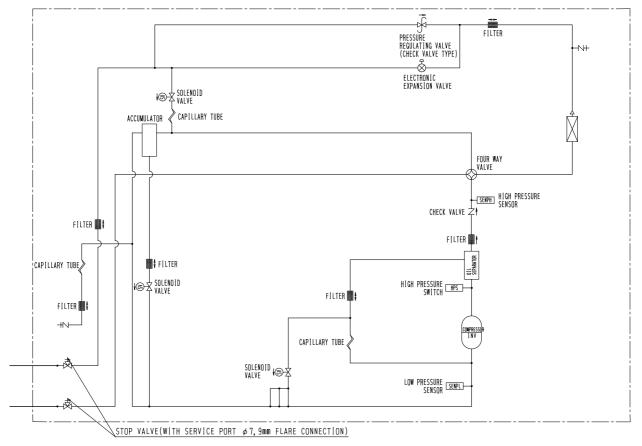
[CHECK 4] Check for causes of drop in low pressure

*1: For details of the compressor capacity control while in cooling, refer to "Compressor PI Control" on page 113.

*2: The "low pressure protection control" includes low pressure protection control and hot gas bypass control. For details, refer to page 153.

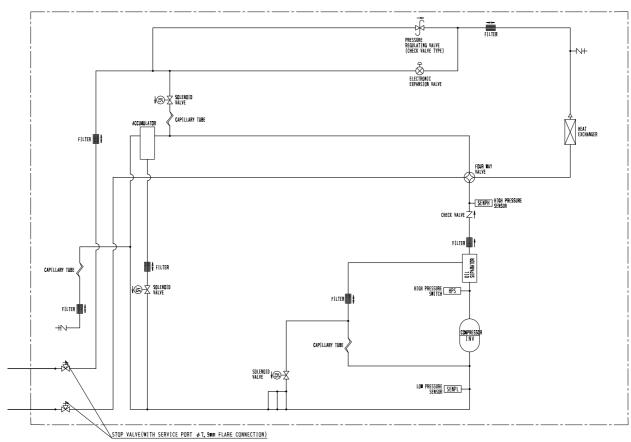
*3: In cooling, the indoor unit electronic expansion valve is used for "superheated degree control". (For details, refer to page 171.)

*4: In heating, the outdoor unit electronic expansion valve (EV1) is used for "superheated degree control of outdoor unit heat exchanger". (For details, refer to page 141.)

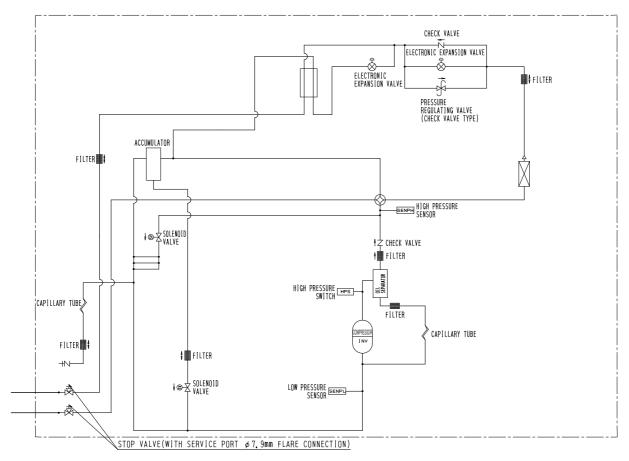

SDK04009

Part 7 Appendix

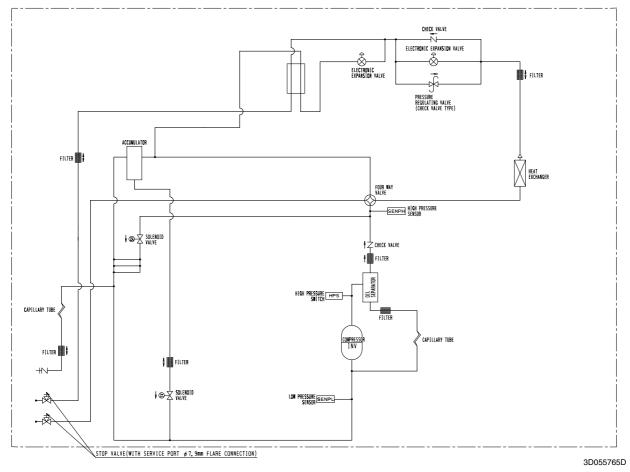
1.	Piping Diagrams	
	1.1 Outdoor Unit	
	1.2 Indoor Unit	371
2.	Wiring Diagrams for Reference	
	2.1 Outdoor Unit	375
	2.2 Field Wiring	
	2.3 Indoor Unit	
3.	List of Electrical and Functional Parts	406
	3.1 Outdoor Unit	
	3.2 Outdoor Unit - 60Hz	409
	3.3 Indoor Side	412
4.	Option List	419
	4.1 Option List of Controllers	
	4.2 Option Lists (Outdoor Unit)	421
5.	Piping Installation Point	423
	5.1 Piping Installation Point	
	5.2 The Example of a Wrong Pattern	424
6.	Example of connection (R-410A Type)	425
7.	Thermistor Resistance / Temperature Characteristics	
8.	Pressure Sensor	429
9.	Method of Checking The Inverter's Power Transistors and	
•	Diode Modules	430
	9.1 Method of Checking The Inverter's Power Transistors and	
	Diode Modules	430


1. Piping Diagrams 1.1 Outdoor Unit

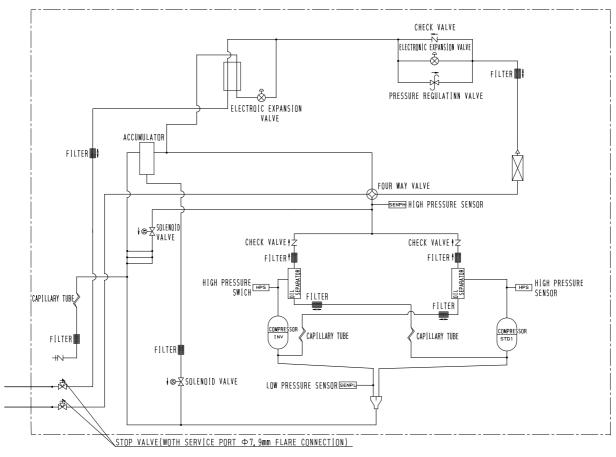
RXYQ5PAY1


3D050782B

RXYQ5PTL RXYQ5PAYL

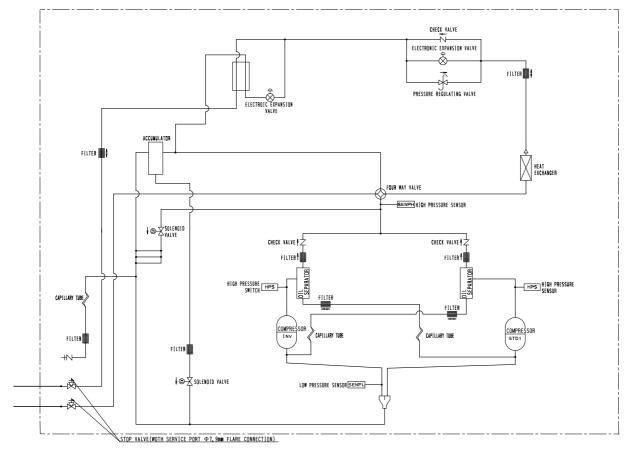

3D055764D

RXYQ8PAY1

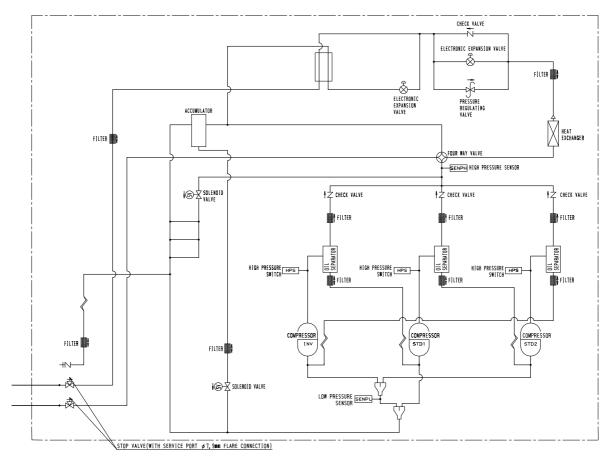


3D050783C

RXYQ8PTL RXYQ8PAYL

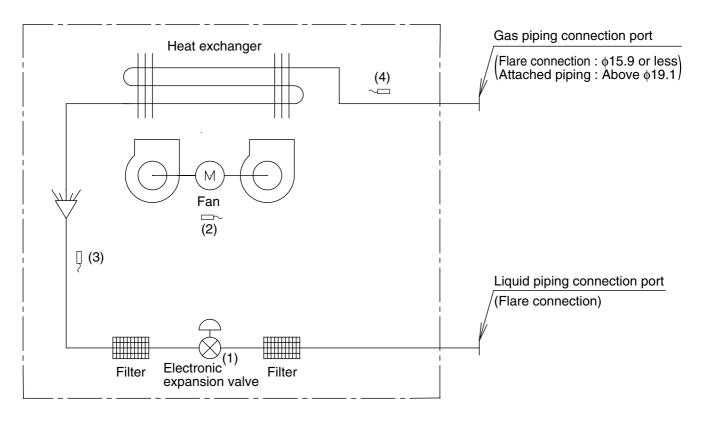


RXYQ10PA / 12PAY1


3D050784C

RXYQ10P / 12PTL RXYQ10PA / 12PAYL

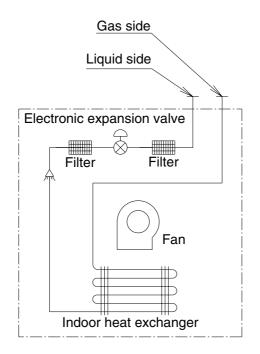
3D055766E


RXYQ14P / 16P / 18PTL RXYQ14PA / 16PA / 18PAY1 RXYQ14PA / 16PA / 18PAYL

3D050785C

1.2 Indoor Unit

FXCQ, FXFQ, FXKQ, FXSQ, FXMQ, FXHQ, FXAQ, FXLQ, FXNQ

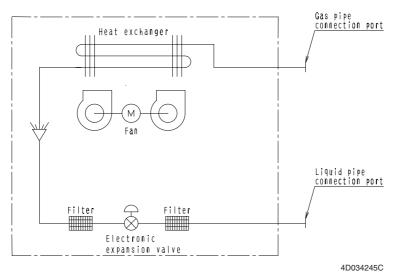


DU220-602J

Code	Name	Code	Main function
(1)	Electronic expansion valve	Y1E	Used for gas superheated degree control while in cooling operation or subcooled degree control while in heating operation.
(2)	Suction air temperature thermistor	R1T	Used for thermostat control.
(3)	Liquid pipe	R2T	Used for gas superheated degree control while in cooling operation or subcooled degree control while in heating operation.
(4)	Gas pipe	R3T	Used for gas superheated degree control while in cooling operation.

		(mm)
Capacity	GAS	Liquid
20 / 25 / 32 / 40 / 50M(A)	φ 12.7	φ 6.4
63 / 80 / 100 / 125M(A)	φ 15.9	φ 9 .5
200M(A)	φ19.1	φ 9 .5
250M(A)	φ22.2	φ 9 .5

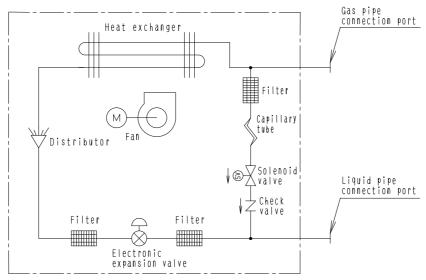
FXDQ



4D060927

Refrigerant pipe connection port diameters

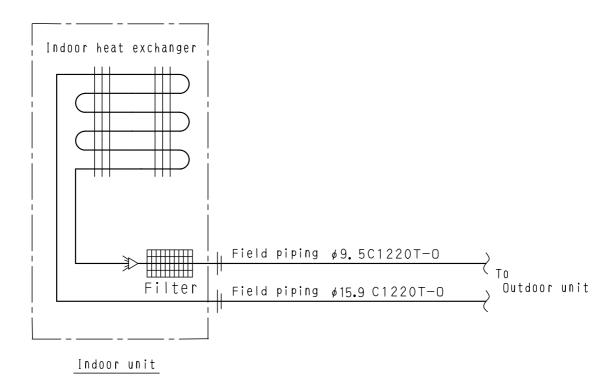
		(mm)
Model	Gas	Liquid
FXDQ20PB / 25PB / 32PB / 40NB / 50NBVE(T)	φ12.7	φ 6 .4
FXDQ63NBVE(T)	φ 15.9	φ9.5


FXMQ40P / 50P / 63P / 80P / 100P / 125PVE

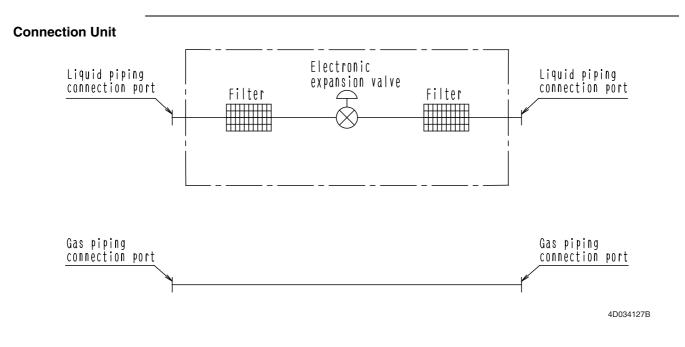
Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXMQ40P / 50PVE	φ12.7	φ 6.4
FXMQ63P / 80P / 100P / 125PVE	φ 1 5.9	φ9.5

FXMQ125MF / 200MF / 250MFV1

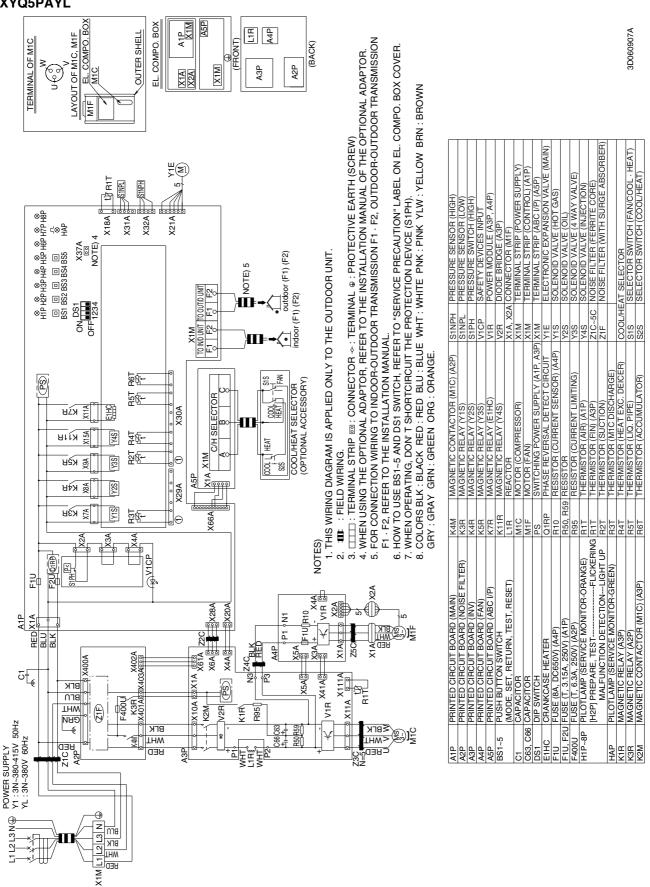

4D018650B

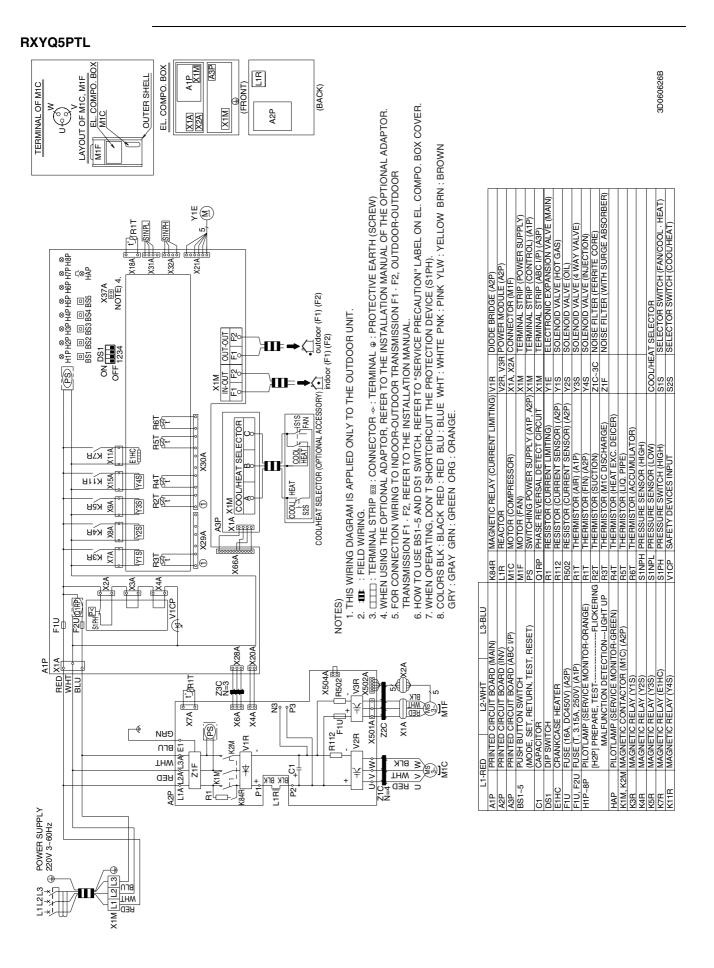
■ Refrigerant pipe connection port diameters


		(mm)
Model	Gas	Liquid
FXMQ125MFV1	φ 15 .9	φ9.5
FXMQ200MFV1	φ 19.1	φ9.5
FXMQ250MFV1	φ22.2	φ 9 .5

FXUQ + BEVQ

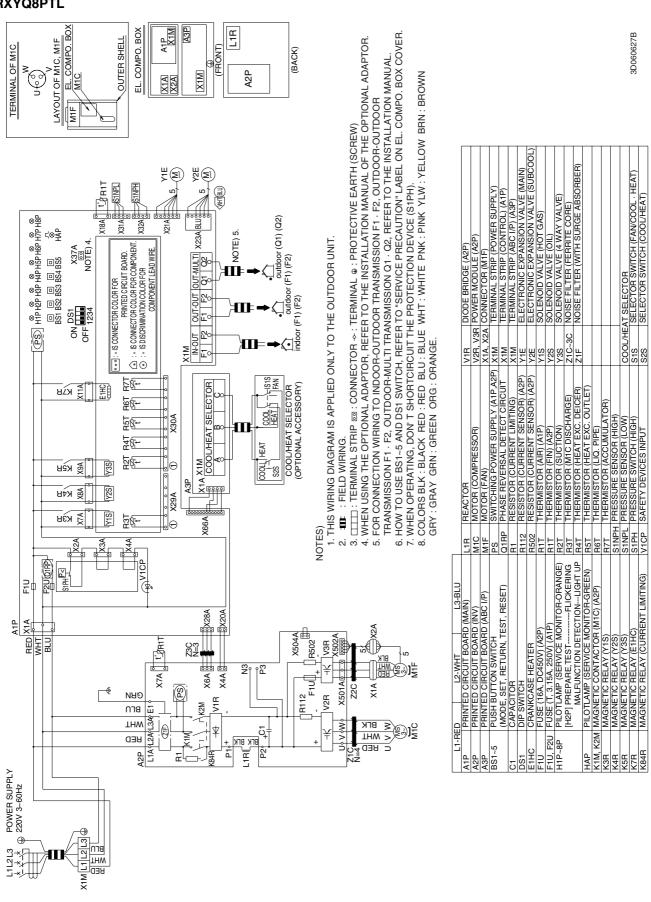
Indoor unit

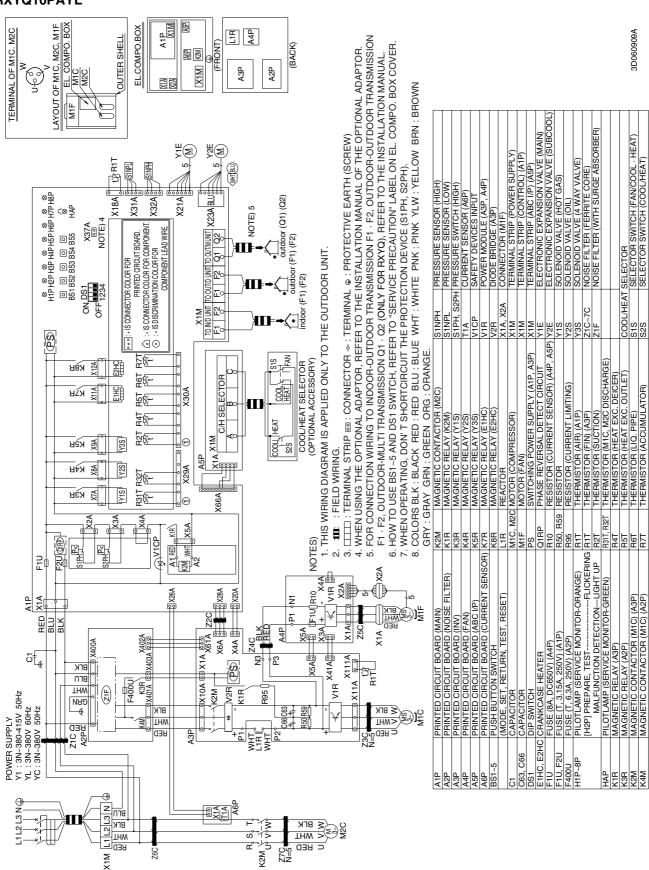

4D037995H

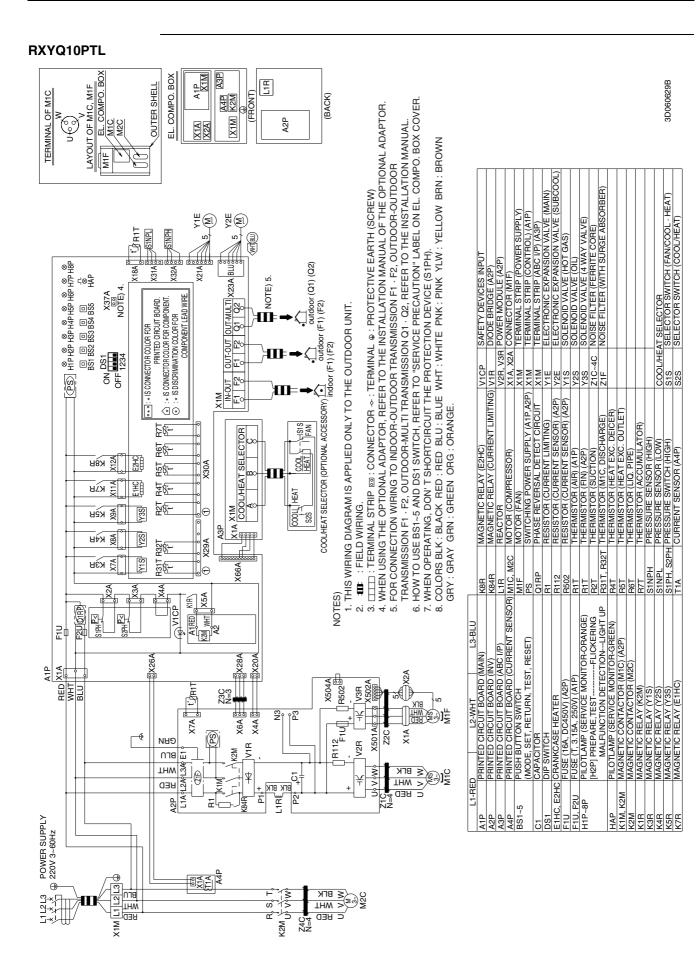


2. Wiring Diagrams for Reference

2.1 Outdoor Unit

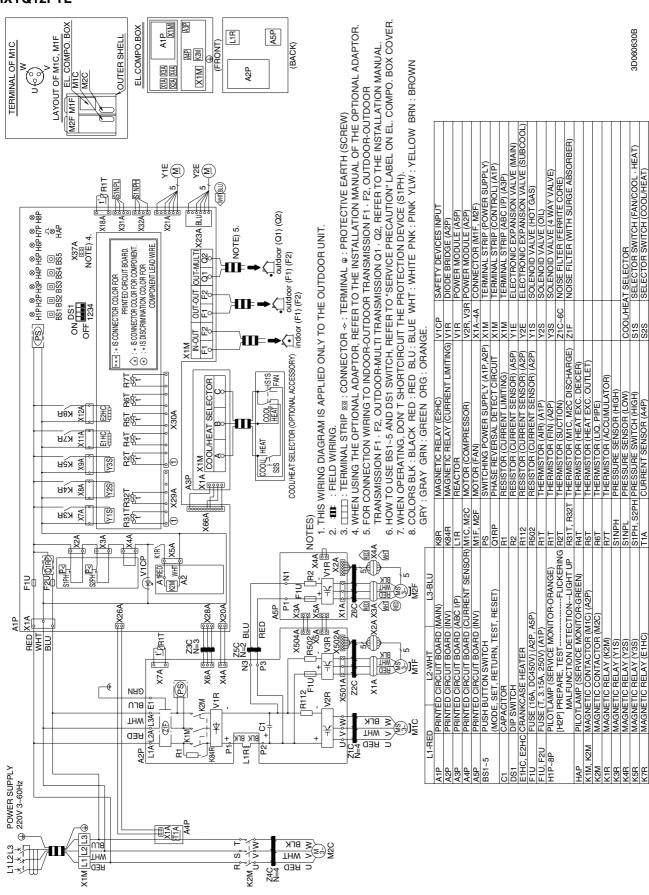

RXYQ5PAY1 RXYQ5PAYL

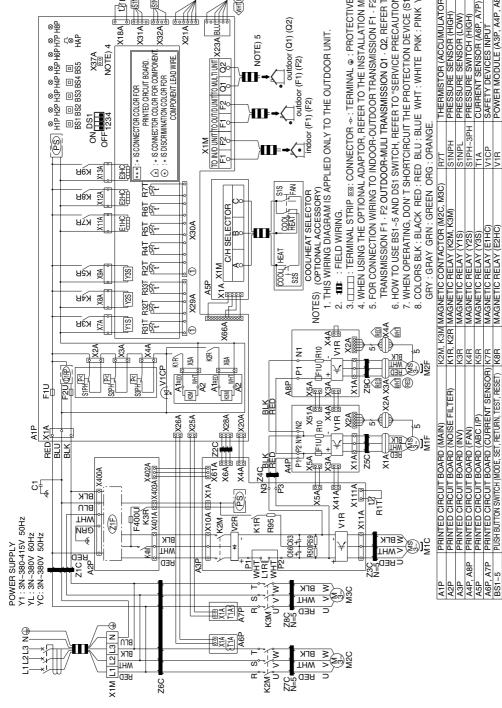




RXYQ8PAYL		
U U U MIF ANDUT OF MIC, MIF ANDUT OF MIC, MIF EL. COMPO. BOX EL. COMPO. BOX EL. COMPO. BOX MIF MIF MIF MIF MIF MIF MIF MIF MIF MIF		3D060908A
OWNERSMERT OWNERSMERT <th>GRY K4M K3R K5R K5R K5R K5R K5R M1C M1C M1C M1C M1C M1C M1C M1C M1C M1C</th> <th>MAGNETIC RELAY (A3P) MAGNETIC RELAY (A2P) MAGNETIC CONTACTOR (M1C) (A3P)</th>	GRY K4M K3R K5R K5R K5R K5R K5R M1C M1C M1C M1C M1C M1C M1C M1C M1C M1C	MAGNETIC RELAY (A3P) MAGNETIC RELAY (A2P) MAGNETIC CONTACTOR (M1C) (A3P)

RXYQ8PTL




RXYQ12PAY1 **RXYQ12PAYL** A1P X1M LAYOUT OF M1C, M2C, M1F, M2F COMPO. BOX A4P L1R A8P 5. FOR CONNECTION WIRING TO INDOOR-OUTDOOR TRANSMISSION F1 · F2, OUTDOOR-OUTDOOR TRANSMISSION 3D060910A M2F_M1F A K2M (FRONT) 6. HOW TO USE BS1~5 AND DS1 SWITCH, REFER TO "SERVICE PRECAUTION" LABEL ON EL. COMPO. BOX COVER TERMINAL OF M1C, M2C (BACK) 4. WHEN USING THE OPTIONAL ADAPTOR, REFER TO THE INSTALLATION MANUAL OF THE OPTIONAL ADAPTOR. OUTER SHELL X1A X3A X2A X4A X1M АЗР A2P 8. COLORS BLK : BLACK RED : RED BLU : BLUE WHT : WHITE PNK : PINK YLW : YELLOW BRN : BROWN G) Ц M2C ELECTRONIC EXPANSION VALVE (MAIN) ELECTRONIC EXPANSION VALVE (SUBCOOL) SOLENOID VALVE (HOT GAS) F1 · F2, OUTDOOR-MULTI TRANSMISSION Q1 · Q2, REFER TO THE INSTALLATION MANUAL SOLENOID VALVE (4 WAY VALVE) NOISE FILTER (FERRITE CORE) NOISE FILTER (WITH SURGE ABSORBER) COOL/HEAT SELECTOR S1S SELECTOR SWITCH (FAN/COOL · HEAT) S2S SELECTOR SWITCH (COOL/HEAT) 7. WHEN OPERATING, DON' T SHORTCIRCUIT THE PROTECTION DEVICE (S1PH, S2PH) PRESSURE SENSOR (HIGH) PRESSURE SENSOR (HOW) A PRESSURE SWICH (HIGH) CURRENT SENSOR (ABP) SAFETY DEVICES INPUT SAFETY DEVICES INPUT DIODE BRIDGE (A3P) DIODE BRIDGE (A3P) CONNECTOR (MIT, M2F) DIODE BRIDGE (A3P) CONNECTOR MIT, M2F) TERMINAL STRIP (FOWER SUPLY) X21A ी R1T TERMINAL STRIP (ABC I/P) (A5P) X31A (UHT BLU) X18A PS R R R R R H1P H2P H3P H4P H5P H6P H7P H8P outdoor (Q1) (Q2) SOLENOID VALVE (OIL NOTE) 5 ¢⊗Å 1. THIS WIRING DIAGRAM IS APPLIED ONLY TO THE OUTDOOR UNIT. X37A 00 NOTE) 4 : IS CONNECTOR COLOR FOR COMPONENT. : IS DISCRIMINATION COLOR FOR COMPONENT LEAD WIRE. DOUT/D UNIT TO MULTI UNIT PRINTED CIRCUIT BOARD. 0 0 0 0 0 0 851 852 853 854 855 outdoor (F1) (F2) • * •] : • IS CONNECTOR COLOR FOR indoor (F1) (F2) 11 S1NPH S1NPL S1PH, S2PH ON DS1 OFF 1234 E ~7C, Z9C : ORANGE X1M F0 ND UNIT V2R X1A~4A T1A V1CP ╢ XIM XIM X1M V1R <u>Y2E</u> 71S Y2S Y3S PHASE REVERSAL DETECT CIRCUIT RESISTOR (CURRENT SENSOR) (A4P, A8P) RESISTOR COOL/HEAT SELECTOR (OPTIONAL ACCESSORY) GRY : GRAY GRN : GREEN ORG THERMISTÓR (AIR) (A1P) THERMISTOR (FIN) (A3P) THERMISTOR (SUCTION) TTHERMISTOR (AITC, M2C DISCHARGE) THERMISTOR (HAT EXC. DEICER) THERMISTOR (HEAT EXC. OUTLET) THERMISTOR (LIO, PIPE) THERMISTOR (ACCUMULATOR) MOTOR (COMPRESSOR) MOTOR (FAN) SWITCHING POWER SUPPLY (A1P, A3P) ₽ E S1S FAN EHC X12A яяя ₽ E C/H SELECTOR RESISTOR (CURRENT LIMITING) 턢 (11A 2. and : FIELD WIRING (M2C) вźя X30A RST MAGNETIC RELAY (K2M) MAGNETIC RELAY (K2M) MAGNETIC RELAY (K1S) MAGNETIC RELAY (Y1S) MAGNETIC RELAY (Y3S) MAGNETIC RELAY (E1HC) MAGNETIC RELAY (E1HC) RAGNETIC RELAY (E2HC) REACTOR ١. ₩ COOLL HEAT X1A X1M R2 къв X9A Y3S .IF SSS A5P в₽́я X8A Y2S x29A NOTES) 228 X4A X4A д кзв Y1S R31 X66A .lΘ V1R 0
 R1T R1T R2T R31T, R32T R4T ₹ Z WZF MZF MZF MZF X3A X4A MILE MILE K2M PRINTED CIRCUIT BOARD (MAIN) K2M PRINTED CIRCUIT BOARD (INO)SE FILTER) K1R RAM PRINTED CIRCUIT BOARD (INO) K3R WAP PRINTED CIRCUIT BOARD (INO) K4R PRINTED CIRCUIT BOARD (FAN) K4R PRINTED CIRCUIT BOARD (FAN) K4R PRINTED CIRCUIT BOARD (FAN) K4R PRINTED CIRCUIT BOARD (CURRENT SENSOR) K7R PRINTED CIRCUIT BOARD (CURRENT SENSOR) K7R PRINTED CIRCUIT BOARD (CURRENT SENSOR) K1R FOURH DON SWITCH K8R CONTINED CIRCUIT ROARD (CURRENT SENSOR) K1R M1C, M2C M1F, M2F PS Q1RP R10 R50, R59 ΠF1U NR10 <u>ک</u>ک A2 A2 F2U Car VICP **B**95 R5T R6T R7T SiPH^C T Ě A8P _ ₩ X5A 문 N N N N N N HIZPI PREPARE, TEST-------ELICKERING MALFUNCTION DETECTION---LIGHT UP PILOTLAMP (SERVICE MONITOR-GREEN) 뜄 A F1U R10 A + - X4A V1R X2A FUSE (T, 6.3A, 2001 (A2P) PILOTLAMP (SEENOICE MONITOR-ORANGE) (H2P) PREPARE TFST-∯ ئ ∰% [3]X26A 13X20A X6A 📴 👖 🖏 X28A ŝ ۱'n X1A X1A MAGNETIC RELAY (A2P) MAGNETIC CONTACTOR (M1C) (A3P) MAGNETIC CONTACTOR (M1C) (A2P) ¢ P2 N16 ∮ BLUB Z20 1116 E2HC CRANKCASE HEATER 110 FUSE (8A, DC650V) (A4P) (A8P) 110, F2U FUSE (1, 3.15A, 250V) (A1P) 1400U FUSE (T, 6.3A, 250V) (A2P) Z4C BLK RED Z5CI X4A 📴 _ 数5A A4P ĥ X3A X1A 회X10A 학 X1A 640 X61A X400A MAGNETIC RELAY (A3P) ΰĘ R11 X5A阱 S ñ ł۳ X41A말 X111A BLK BLU F400U <u>ه م</u> X11A V1R THW (ZHE) /2R - JK2M K1R R95 50Hz CAPACITOR CAPACITOR DIP SWITCH GВИ DWER SUPPLY 1 : 3N~380-415V 501 - : 3N~380V 60Hz C : 3N~380V 50Hz 1480 350 R59 ≶ Brk Ð) E THW> ₩¥ ZIC E THAT HHT THAT THAT ٦Ŧ٢ A3P RED ZIC Z3C N=5 C1 C63, C66 DS1 E1HC E2HC A8P POWER H1P~8P A1P A2P A3P A4P, A8 A5P A6P BS1~5 =400U K1R K3R K2M K2M 5 ő ۲ Ð A6P L2 L3 N D F ഗ് ŝ K2MU щ Z7C N=5 Z6C X1M

RXYQ12PTL

RXYQ14PA / 16PA / 18PAYL AYOUT OF M1C ~ M3C, M1F, M2F EL. COMPO. BOX M1C M2C M3C TERMINAL OF M1C ~ M3C 6. HOW TO USE BS1~5 AND DS1 SWITCH, REFER TO "SERVICE PRECAUTION" LABEL ON EL. COMPO. BOX COVER. WHEN USING THE OPTIONAL ADAPTOR, REFER TO THE INSTALLATION MANUAL OF THE OPTIONAL ADAPTOR. FOR CONNECTION WIRING TO INDOOR-OUTDOOR TRANSMISSION F1 - F2, OUTDOOR-OUTDOOR OUTER SHELL L K2M K3M L K2M K3M L (FRONT) COMPO. BOX A1P XIM TRANSMISSION F1 · F2 OUTDOOR-MULI TRANSMISSION Q1 · Q2, REFER TO THE INSTALLATION MANUAL. L1R A4P A8P 8. COLORS BLK: BLACK RED : RED BLU : BLUE WHT : WHITE PNK : PINK YLW : YELLOW BRN : BROWN (BACK) i G X1A X3A X2A X4A X1M M2F M1FI/ A2P АЗР Ш 3. (SUBCOOL 7. WHEN OPERATING, DON' T SHORTCIRCUIT THE PROTECTION DEVICE (S1PH~S3PH). ELECTRONIC EXPANSION VALVE (MAIN) ELECTRONIC EXPANSION VALVE (MAIN) ELECTRONIC EXPANSION VALVE (MAIN) SOLENOID VALVE (HOT GAS) SOLENOID VALVE (HOT GAS) 2 X23A Built Y2E 5 M DIODE BRIDGE (A3P) CONNECTOR (M1F, M2F) TERMINAL STRIP (POWER SUPPLY) TERMINAL STRIP (CONTROL) (A1P) X18A TIRIT X31A STINT X31A STINT X32A STINT ប់វិR1T THERMISTOR (ACCUMULATOR) PRESSURE SENSOR (HIGH) PRESSURE SENSOR (LOW) H PRESSURE SWITCH (HIGH) CURRENT SENSOR (A6P, A7P) (4 WAY VALVE) (UHERU) SAFETY DEVICES INPUT POWER MODULE (A3P, A4P, A8P) X21A TERMINAL STRIP (CONTRC TERMINAL STRIP (ABC I/P) outdoor (Q1) (Q2) ⊗₽ TES) (OPTIONAL ACCESSORY) THIS WIRING DIAGRAM IS APPLIED ONLY TO THE OUTDOOR UNIT. ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ H1P H2P H3P H4P H5P H6P H7P I ¢⊗₽ NOTE) 5 X37A 00 NOTE) 4 EINTED CIRCUIT BOARD IN IS CONNECTOR COLOR FOR COMPONENT IN IS DISCRIMINATION COLOR FOR SOLENOID VALVE COMPONENT LEAD WIRE. · (F1) (F2) MULTIUNIT 21 Q2 0 0 0 0 0 0 0 851 BS2 BS3 BS4 BS5 ╢┠ b * IS CONNECT OR COLOR FOR .JUNITTO outdo indoor (F1) (F2) 1000TIP ON DS1 OFF 1234 S1NPL S1PH~3PH GRY : GRAY GRN : GREEN ORG : ORANGE X1M TO IN/D UNIT F1 F2 Sd X1A~4A X1M S1NPH 71A /1CP /1R ╞ Ī X1M /2R 겐 Y2E Y2S Y3S F7 * 꾋 SWITCHING FOWER SUPPLY (A1P, A3P) PHASE REVERSAL DETECT CIRCUIT RESISTOR (CURRENT SENSOR) (A4P, A8P) ЯgR ∢⊗ - FAN ₽£§₽= SIS K2M, K3M MAGNETIC CONTACTOR (M2C, M3C) K1R, K2R | MAGNETIC RELAY (K2M, K3M) EHC หริย 12A COOL/HEAT SELECTOR RESISTOR (CURRENT LIMITING) 192 C/H SELECTOR 2. and : FIELD WIRING. COOL HFAT 韻 вźя 11A MAGNETIC RELAY (Y2S) MAGNETIC RELAY (Y3S) MAGNETIC RELAY (E1HC) MAGNETIC RELAY (E2HC) X30A 5 MAGNETIC RELAY (E3HC) MOTOR (COMPRESSOR) MOTOR (FAN) THERMISTOR (AIR) (A1P) THERMISTOR (FIN) (A3P) THERMISTOR (SUCTION) MAGNETIC RELAY (Y1S) MAGNETIC RELAY (Y2S) <u></u> COOL HEAT X1A X1M 28]e 1 ੋਡ ਨਤੇਸ਼ Y3S S2S A5P <u>н</u>о RESISTOR NOTES) X29A К4В Y2S X8A ţ 202 REACT ыбя Y1S A7 X4A X4A X66A Ьe - X4A V1R দ্বি M1F. M2F M1C~3C B59 ₹ क€₿ Q1RP X4A X3A X 2A ź DF1U NR10 R50. K9R K2H ATRED KIR FLICKERING R9 Ē ¢ ¢ X5A X6A X1A 💿 👌 🔊 V1CP Ē FZUG A2 Stell R ¥ R A1RED Z9C 30 MALFUNCTION DETECTION----LIGHT UP A8P ____ ₩22₩ 문 FUSE (8A, DC650V) (A4P, A8P) FUSE (T, 3.15A, 250V) (A1P) FUSE (T, 6.3A, 250V) (A2P) PLUSE (T, 6.3A, 250V) (A2P) PLUCTLAMP (SEPVICE MONITOR-OPANGE) [H2P] PREPARE, TEST-------FLICKEF No. BLK ¥2∰ ેર∰ LC,

RXYQ14PA / 16PA / 18PAY1

3D060911A

NOISE FILTER (FERRITE CORE) NOISE FILTER (WITH SURGE ABSORBER)

SELECTOR SELECTOR SWITCH (FAN/COOL · HEAT) SELECTOR SWITCH (COOL/HEAT)

/HEAT

THERMISTOR (M1C~3C DISCHARGE) THERMISTOR (HEAT EXC. DEICER) THERMISTOR (HEAT EXC. OUTLET) THERMISTOR (LIQ. PIPE)

THERMISTOR

R2T T R31~33T T R4T T R5T T R6T T

ĥ

PILOTLAMP (SERVICE MONITOR-GREEN)

CRANKCASE HEATER

E1HC~3HC

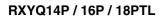
F2U

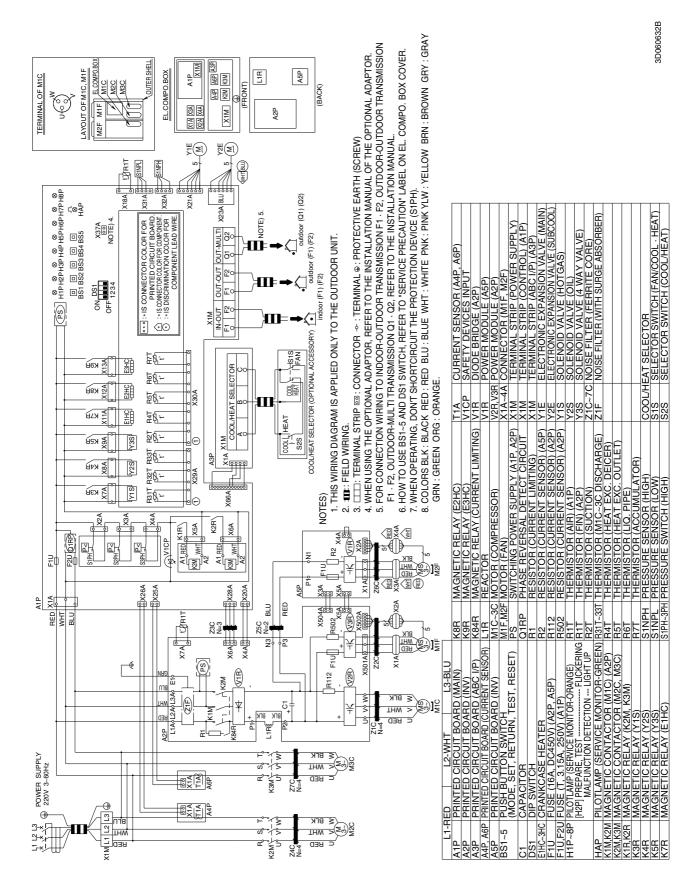
F1U, F2U F400U H1P~8P

CAPACITOR SWITCH

CAPACITOR

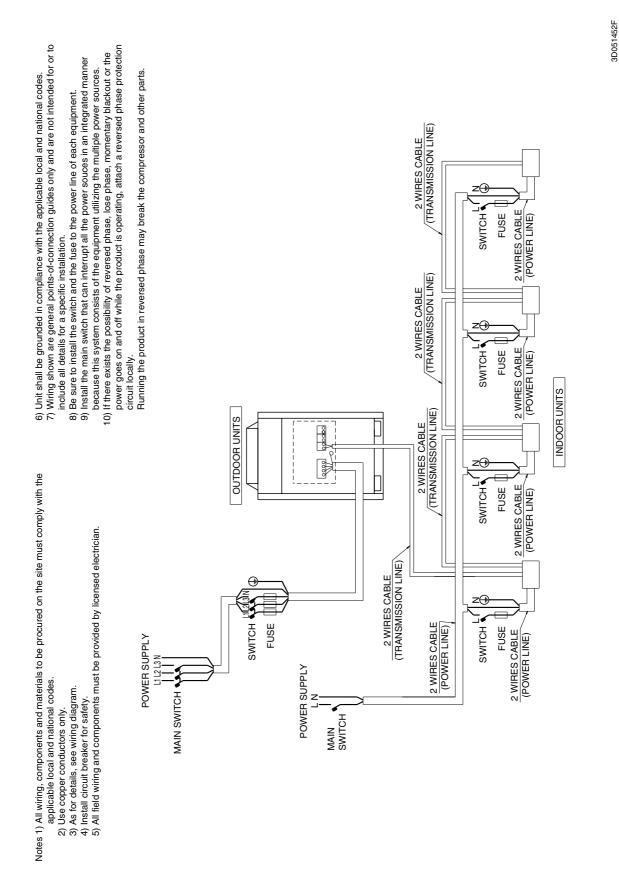
C66

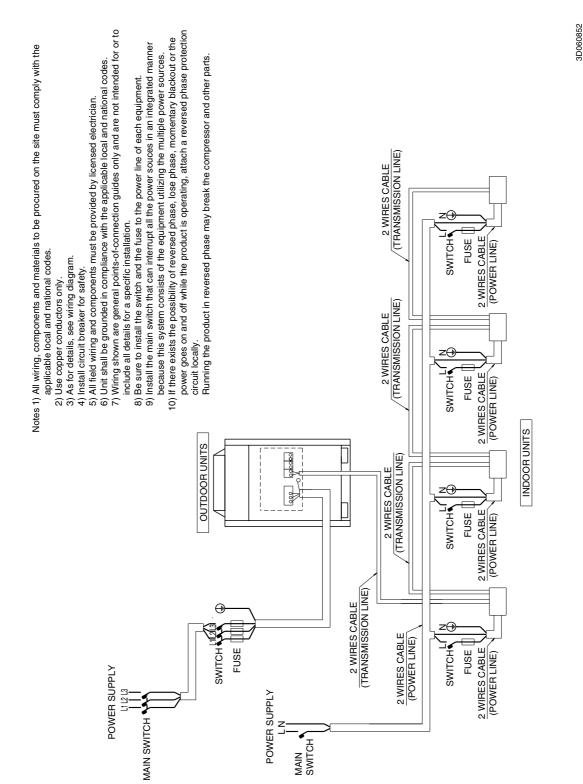

C1 C63, DS1


<u>E</u>

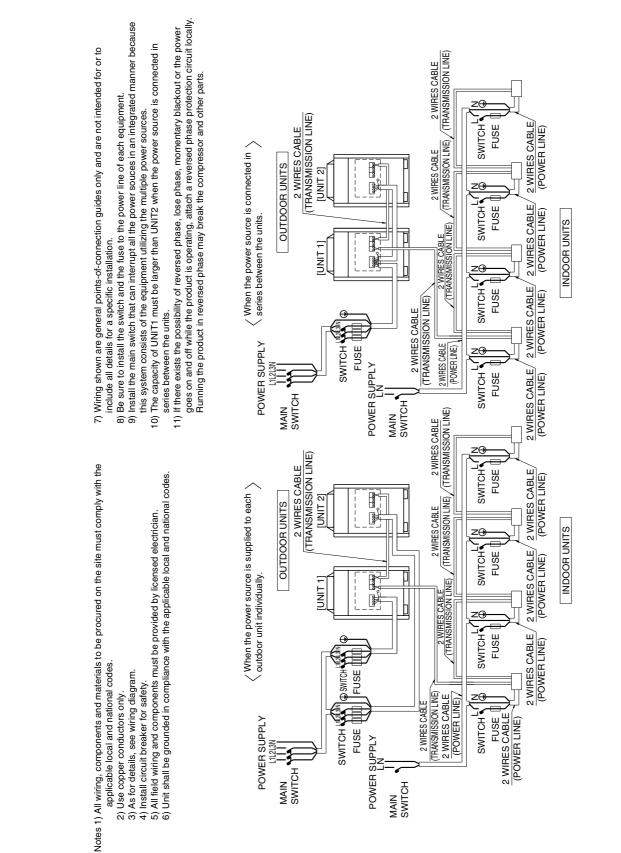
MAGNETIC RELAY (A3P) MAGNETIC RELAY (A3P) MAGNETIC RELAY (A2P) MAGNETIC CONTACTOR (MIC) (A3P) MAGNETIC CONTACTOR (MIC) (A2P)

K1R K3R K2M K2M


COOL/ S1S S2S



2.2 Field Wiring


RXYQ5PA / 8PA / 10PA / 12PA / 14PA / 16PA / 18PAY1 RXYQ5PA / 8PA / 10PA / 12PA / 14PA / 16PA / 18PAYL

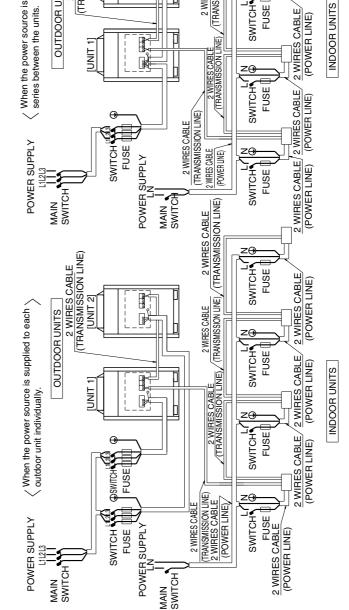
RXYQ5P / 8P / 10P / 12P / 14P / 16P / 18PTL

3D052261D

RXYQ20PA / 22PA / 24PA / 26PA / 28PA / 30PA / 32PAY1 RXYQ20PA / 22PA / 24PA / 26PA / 28PA / 30PA / 32PAYL

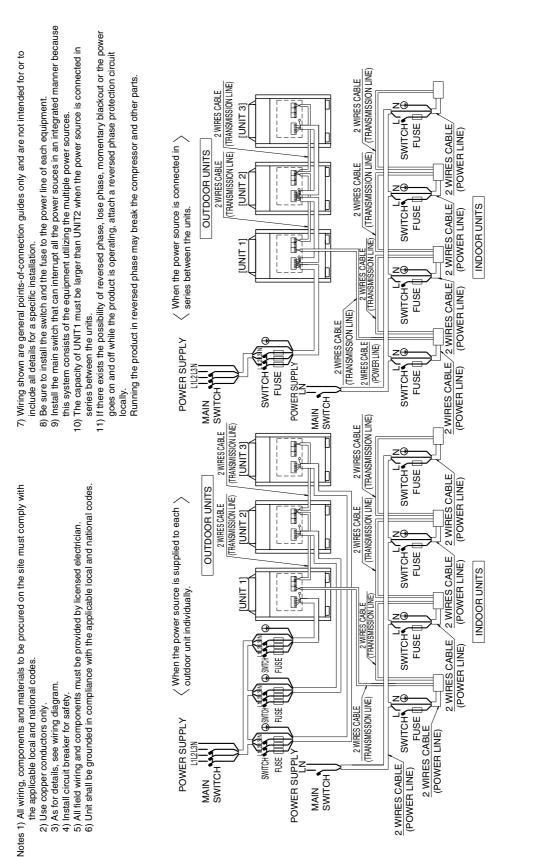
RXYQ20P / 22P / 24P / 26P / 28P / 30P / 32PTL

6) Unit shall be grounded in compliance with the applicable local and national codes.

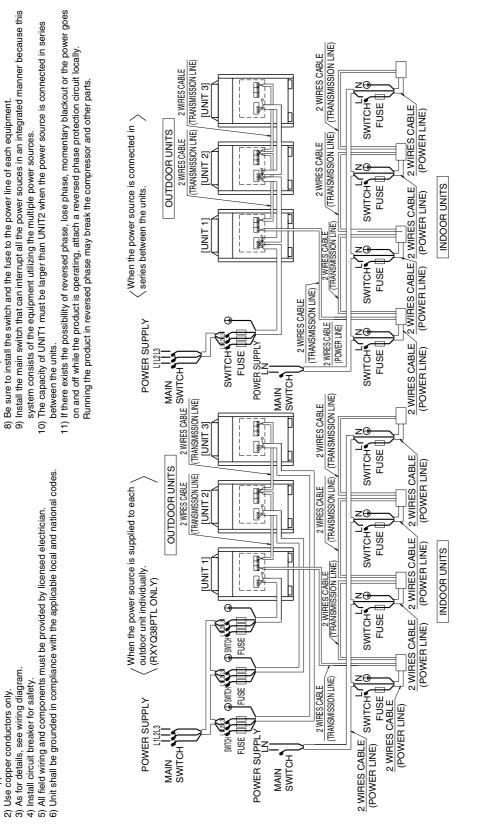

5) All field wiring and components must be provided by licensed electrician.

Notes 1) All wiring, components and materials to be procured on the site must comply with

the applicable local and national codes


3) As for details, see wiring diagram. Install circuit breaker for safety.

2) Use copper conductors only


Si34-803

(POWER LINE)

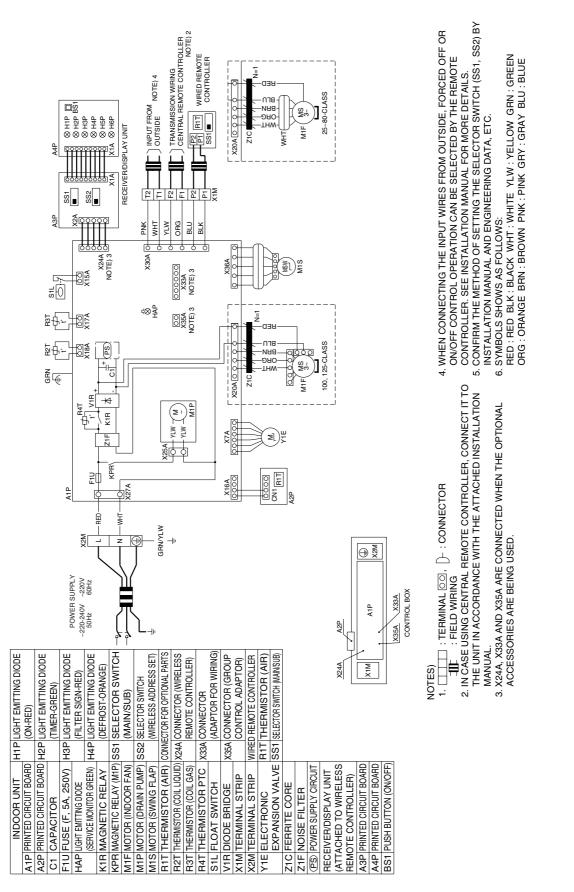
RXYQ34PA / 36PA / 38PA / 40PA / 42PA / 44PA / 46PA / 48PA / 50PA / 52PA / 54PAY1 RXYQ34PA / 36PA / 38PA / 40PA / 42PA / 44PA / 46PA / 48PA / 50PA / 52PA / 54PAYL

3D052262D

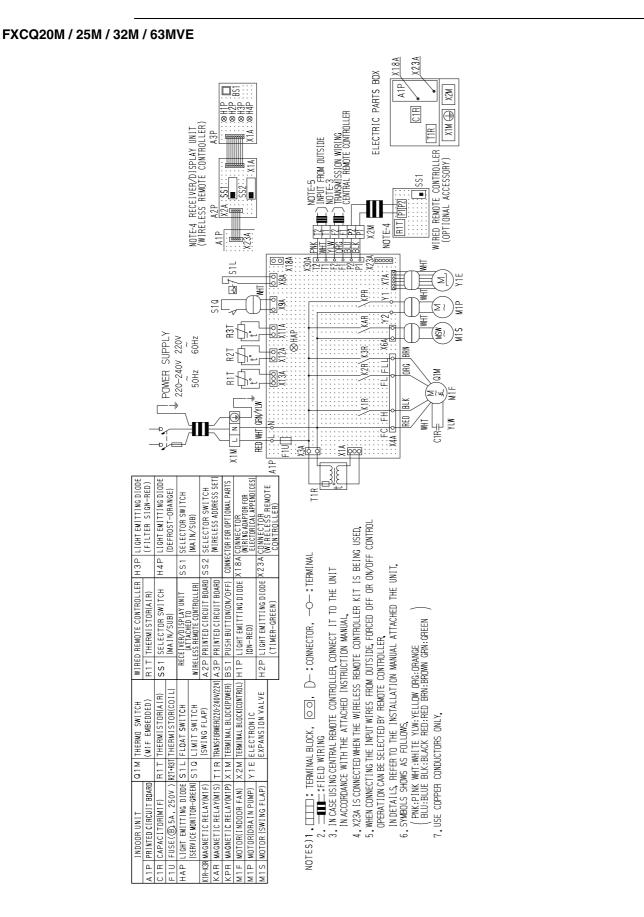
RXYQ34P / 36P / 38P / 40P / 42P / 44P / 46P / 48P / 50P / 52P / 54PTL

7) Wiring shown are general points-of-connection guides only and are not intended for or to include all

details for a specific installation.

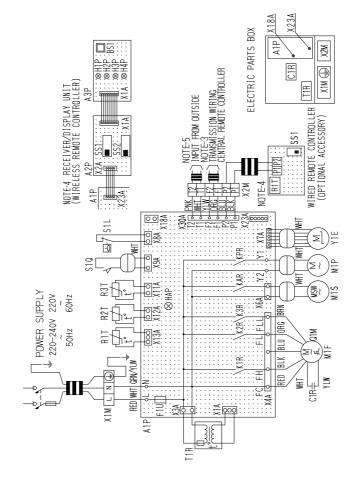

3D060854

- Notes 1) All wiring, components and materials to be procured on the site must comply with the applicable local and national codes.
- All field wiring and components must be provided by licensed electrician.


3D059890

2.3 Indoor Unit

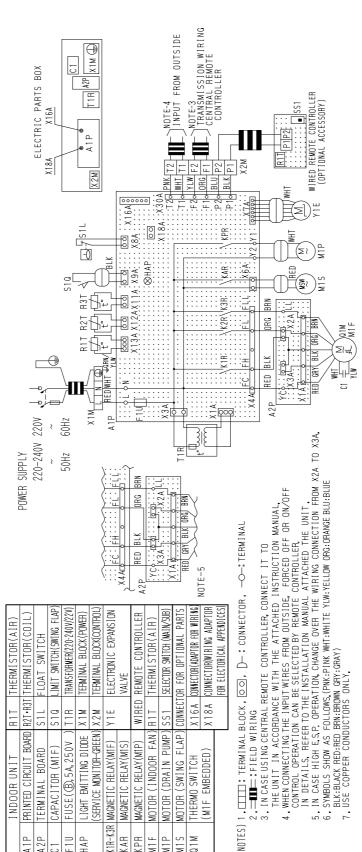
FXFQ25P / 32P / 40P / 50P / 63P / 80P / 100P / 125PVE

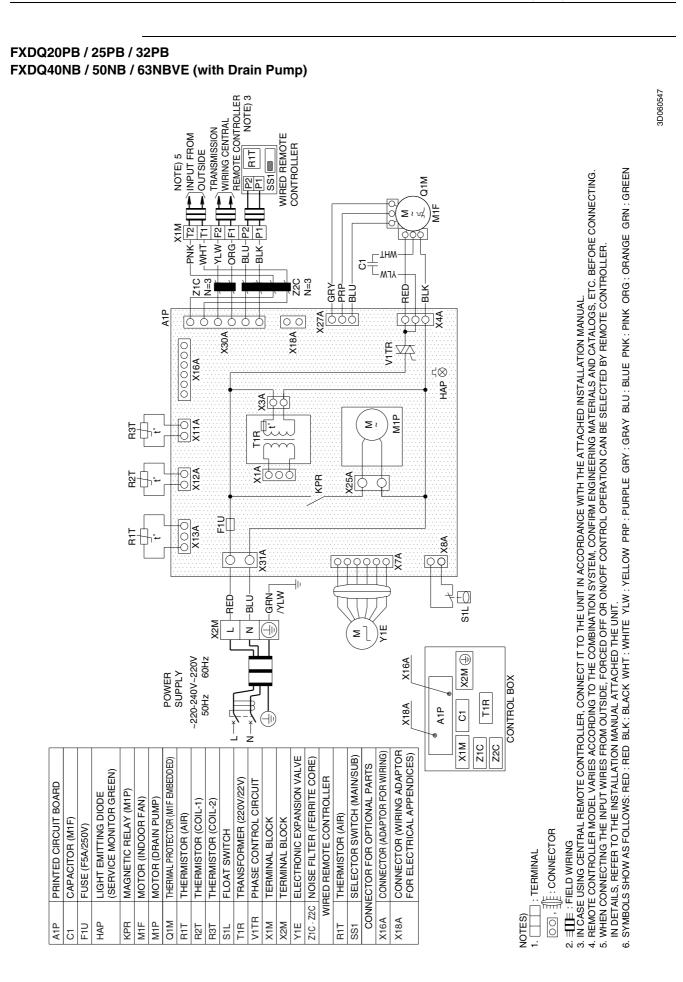


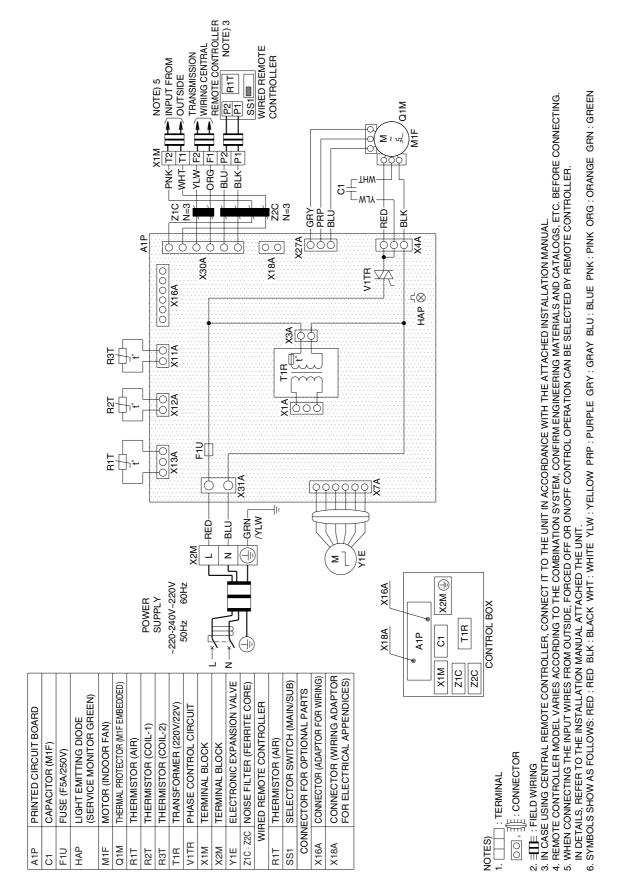
3D039556A

3D039557A

FXCQ40M / 50M / 80M/ 125MVE


	INDOOR UNIT	S1L	S1L FLOAT SWITCH	H1P	H1P LIGHT EMITTING DIODE
A1P	A 1 P PRINTED CIRCUIT BOARD S 1 Q LIMIT SWITCH	S10	LIMIT SWITCH		(ON-RED)
C1R	C1R CAPACITOR(M1F)		(SWING FLAP)	H2P	H2P LIGHT EMITTING DIODE
F1U	F1U FUSE(🕰 5A, 250V) Τ1 R TRANSFORMER(220-240V/22V)	T1R	TRANSFORMER(220-240V/22V)		(TIMER-GREEN)
HAP	LIGHT EMITTING DIODE	X 1 M	HAP LIGHT EMITTING DIDDE X1M TERMINAL BLOCK(POWER) H3P LIGHT EMITTING DIDDE	НЗР	LIGHT EMITTING DIODE
	(SERVICE MONITOR-GREEN) X 2 M TERMINAL BLOCK(CONTROL)	X2M	TERMINAL BLOCK(CONTROL)		(FILTER SIGN-RED)
K1R-K3R	KIR-K3R MAGNETIC RELAY(MIF) Y 1 E ELECTRONIC	Υ1Ε	ELECTRONIC	H4P	H4P LIGHT EMITTING DIODE
KAR	KAR MAGNETIC RELAY(M1S)		EXPANSION VALVE		(DEFROST-ORANGE)
КРК	MAGNETIC RELAY(M1P)	WIREI	KPR MAGNETIC RELAY(MIP) WIRED REMOTE CONTROLLER SS1 SELECTOR SWITCH	5 S 1	SELECTOR SWITCH
M1F	M1 F MOTOR(INDOOR FAN)	R1T	R1T THERMISTOR(AIR)		(MAIN/SUB)
M1P	M1P M0T0R(DRAIN PUMP)	SS 1	SS1 SELECTOR SWITCH	S S 2	SS2 SELECTOR SWITCH
M1S	M1S MOTOR (SWING FLAP)		(MAIN/SUB)		(WIRELESS ADDRESS SET)
01M	Q 1 M THERMO SWITCH	RE(RECEIVER/DISPLAY UNIT	CONNE	CONNECTOR FOR OPTIONAL PARTS
	(M1F EMBEDDED)	WIREL	(H	X18A	X 1 8 A CONNECTOR
R1T	R 1 T THERMISTOR(AIR)	A2P	A 2 P PRINTED CIRCUIT BOARD		ELECTORICAL APPENDICES
R2T+R3T	R2T+R3T THERMISTOR(COIL)	АЗР	A 3 P PRINTED CIRCUIT BOARD X 2 3 A CONNECTOR	X23A	CONNECTOR
		BS1	BS1 PUSH BUTTON(ON/OFF)		CONTROLLER)
NOTE	S)1.TTT: TER	MINAL	NOTES)1. TTTT : TERMINAL BLOCK. 00. D-: CONNECTOR.	 L	CONNECTORC


:TERMINAL	
oo, D-: connector,	
-ES)1. TERMINAL BLOCK,	

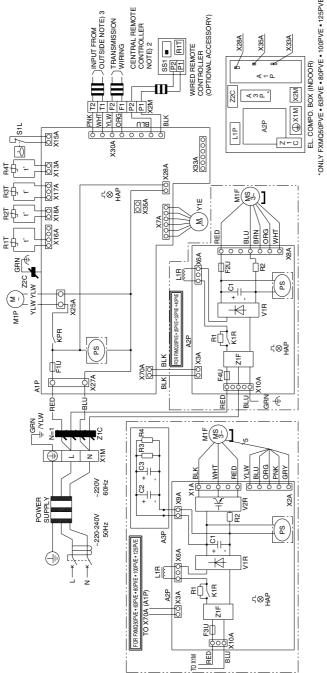

- Z: _____SFIELD WIRING
 IN CASE USING CENTRAL REMOTE CONTROLLER, CONNECT IT TO THE UNIT IN ACCORDANCE WITH THE ATTACHED INSTRUCTION MANUAL
- 4. X23A IS CONNECTED WHEN THE WIRELESS REMOTE CONTROLLER KIT IS BEING USED.
- 5, WHEN CONNECTING THE INPUT WIRES FROM OUTSIDE, FORCED OFF OR ON/OFF CONTROL OPERATION CAN BE SELECTED BY REMOTE CONTROLLER.
 - IN DETAILS, REFER TO THE INSTALLATION MANUAL ATTACHED THE UNIT. 6. SYMBOLS SHOWS AS FOLLOWS.
 - 'PNK:PINK WHT:WHITE YLW:YELLOW ORG:OPANGE BLU:BLUE BLK:BLACK RED:RED BRN:BROWN GRN:GREEN
 - -

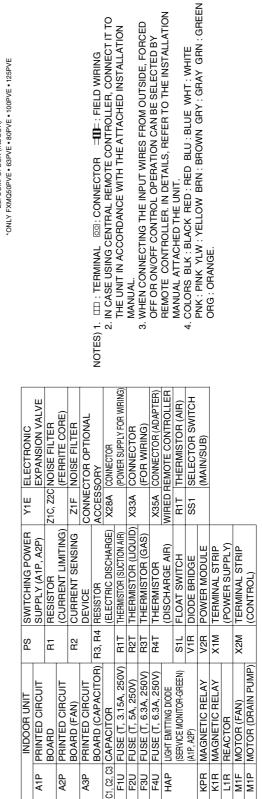
USE COPPER CONDUCTORS ONLY.

3D039564C

3D060548

POWER SUPPL 2002.400.2200 2002.400.2200 2002.400.2200 2002.400.2200 2002.400.2200 2002.400.400 2002.4000 2002.400 2002.4000 2002.400 2002.4000 2002.400 2002.40	
ATTON ATTON	IINAL
AIP INDOOR UNIT AZP TERMINAL BOARD CI CAPOUTOR (INDOOR UNIT) F1 CAPOUTOR (INDOOR UNIT) F1 CAPOUTOR (INDOOR GERWICE MONTON GREEN) HAP UGHT EMITTIND DIOE GERWICE MONTON GREEN) MIF MOODEN (INDOOR FAIN) MIF MOOTOR (NOTES) 1. □□□ : TERMINAL BLOCK,


Si34-803


2. JIL: FIELD WIRING
3. IN CASE USING CENTRAL REMOTE CONTROLLER, CONNECT IT TO THE UNIT IN ACCORDANCE WITH THE ATTACHED INSTRUCTION MANUAL.
4. WHEN CONNECTING THE INPUT WIRES FROM OUTSIDE. FDRCED OFF OR ON/OFF CONTROL OPERATION CAN BE SELECTED BY REMOTE CONTROLLER. IN DETAILS, REFER TO THE UNIT.
4. WHEN CONNECTING THE ELECTRIC HEATER, EXECUTE THE ADDITIONAL WIRING FOR HEATER CIRCUIT (K1M, E1H). IN THIS CASE, THE MAIN POWER SUPPLY HAS TO BE SUPPLIED IN DEFENDENTLY.
5. IN CASE INSTALLATION MANUAL.
6. IN CASE INSTALLATION MANUER ELECTRIC HEATER, EXECUTE THE ADDITIONAL WIRING FOR HEATER CIRCUIT (K1M, E1H). IN THIS CASE, THE MAIN POWER SUPPLY HAS TO BE SUPPLIED IN DEFENDENTLY.
6. IN CASE HIGH OR LOW E.S.P. OPERATION, CHANGE OVER THE WIRING CONNECTION FROM X4A (OF A2P) TO X3A OR X5A.
7. SYMBOLS SHOW AS FOLLOWS. (PNK: PINK WHT: WHITE YLW: YELLOW GRY: GRAY ORG: ORANGE BLU: BLU: BLUE BLK: BLACK RED: RED BRN: BROWN GRN: GREN)
8. UNLY 80. 100. 125 TYPE.
9. ONLY 80. 100. 125 TYPE.

3D039561B

FXMQ40P / 50P / 63P / 80P / 100P / 125PVE

3D058783

OPTIONAL ACCESSOR

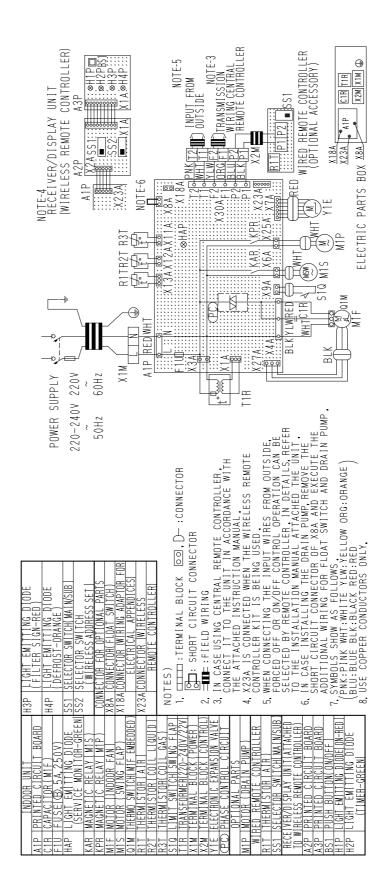
4

ЧF

ta 5

Q1M

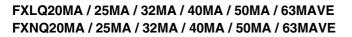
REWOTE

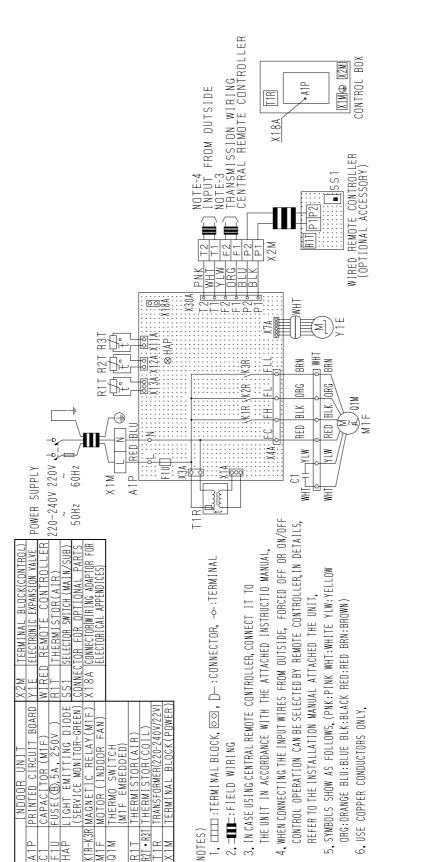

B

FXMQ200MA / 250MAVE SSION WIRING FROM OUTSIDE C1R C2R X3M X2M E ELECTRIC PARTS BOX r R0L XIM K1M K2M K3M SS ⊕ TIR X4M P1 <u>YLW F2</u> 0RG F1 BLU P2 BLK P1 X4M S X18A X8A THW PNK M-1 : 🗗 liXi ⊡ NOTE-5 EI)# Ð 8 MP :⊗HAP μ 3 BRN 5 ß RC (82) Y Ξ ' R1T <u>8</u>₹ ER/ ŧ (A) (N (A2) (IA1) XAAC MIX AlP ~ × 220-240V 220V (SN) 2 2 ED [1] 50Hz POWER SUPPLY Ş RED 8 RFI WHTWH Ν WHT X2M SW ED 3 RED RED (3) Ξ HMTHW HTWH Ц

THERMISTOR(AIR)	_	SELECTOR SWITCH	(STATIC PRESSURE)	TRANSFORMER(220-240V/22V)	TERMINAL BLOCK(POWER)		TERMINAL BLOCK(CONTROL)	ELECTRONIC EXPANSION VALVE	OPTIONAL PARTS	MOTOR (DRAIN PUMP)	WIRED REMOTE CONTROLLER	THERMISTOR(AIR)	SELECTOR SWITCH (MAIN/SUB)	CONNECTOR FOR OPTIONAL PARTS	CONNECTOR(FLOAT SWITCH)		ELECTORICAL APPENDICES)	CONNECT IT TO THE	ED INSTRUCTION MANUAL	WHEN CONNECTING THE INPUT WIRES FROM OUTSIDE, FORCED OFF, OR ON/OFF, CONTROL	NTROLLER IN DETAILS, REFER TO	Τ. Τυν ουροτ οίρουιτ σουνεστορ	ITE SHUKI LIKUUI LUNNELIUK EAD EIAAT SWITCH AND DRAIN DIMD		V:BROWN) :: X8A		HE SWITCH(SS) FOR "H".	
R1T	R2T • R3T	SS		T1R	X1M	X2M-X3M	X4M	<u>Ч</u> 1Е		М1Р	M	R1T	551	CONN	X8A	X18A		TROLLER	ATTACH	-ROM OU	ADTE COI	THE UNIT	WIDINC WIDINC	THW: THW	RED BR		HANGE TH	
INDOOR UNIT	A1P PRINTED CIRCUIT BOARD	CIR • C2R CAPACITOR (MIF•2F)	F1U FUSE(@, 5A, 250V)	HAP LIGHT EMITTING DIODE	(SERVICE MONITOR-GREEN)	K1M MAGNETIC CONTACTOR(M1F·2F)	K2M MAGNETIC CONTACTOR(M1F·2F)	K3M MAGNETIC CONTACTOR(M1F+2F)	K1R-K3R MAGNETIC RELAY (M1F·2F)	KPR MAGNETIC RELAY (M1P)	WIF • W2F MOTOR (INDOOR FAN)	01M • 02M THERMO SWITCH	(M1F·2F EMBEDDED)	NOTES)	1. TITL: TERMINAL BLOCK	©⊴, D→: CONNECTOR	80 : SHORT CIRCUIT CONNECTOR	3. IN CASE USING CENTRAL REMOTE CONTROLLER, CONNECT IT TO THE	THE UNIT IN ACCORDANCE WITH THE ATTACHED INSTRUCTION MANUAL	4, WHEN CONNECTING THE INPUT WIRES F	OPERATION CAN BE SELECTED BY REMOTE CONTROLLER IN DETAILS REFER TO	THE INSTALLATION MANUAL ATTACHED THE UNIT.	5. IN CASE INSTALLING THE URAIN FUMF, DE VRA AND EVECTITE THE ADDITIONAL	6. SYMBOLS SHOW AS FOLLOWS (PNK:PINK WHT:WHITE YLW:YELLOW		7. USE COPPER CONDUCTORS ONLY.	8. IN CASE HIGH E.S.P. OPERATION, CHANGE THE SWITCH(SS) FOR "H".	

3D039621B

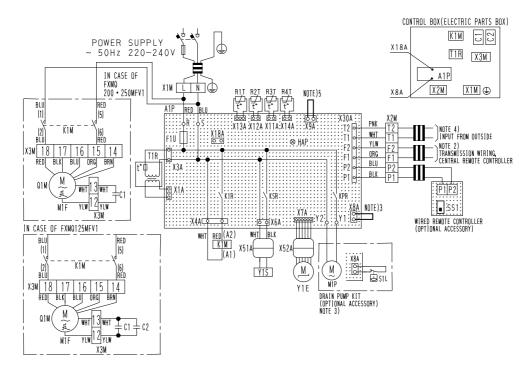

FXHQ32MA / 63MA / 100MAVE



3D034206D

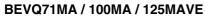
AT AP AP <td< th=""><th>ATION MANUAL AND ENGINEERING DATA, ETC. 8. X24A IS CONNECTED WHEN THE WIRELESS</th><th>REMOTE CONTROLLER KIT IS BEING USED.</th></td<>	ATION MANUAL AND ENGINEERING DATA, ETC. 8. X24A IS CONNECTED WHEN THE WIRELESS	REMOTE CONTROLLER KIT IS BEING USED.
GRN R3T R2T R1 PC PC PC PC PC PC PC PC PC PC		X35A CONNECTOR (GROUP CONTROL ADAPTOR)
		SS1 SELECTOR SWITCH (MAIN/SUB)
INDOOR UNIT A1P PRINTED CIRCUIT BOARD F1U FUSE(B), 3A, 250V) HAP LIGHT EMITTING DIODE M1F MOTOR (INDOOR FAN) M15 MOTOR (INDOOR FAN) M16 MOTOR (INDOOR FAN) R21 THERMISTOR (COIL LIQUID PIPE) R21 THERMISTOR (COIL GAS PIPE) R21 THERMISTOR (COIL GAS PIPE) Y16 ELECTRONIC EXPANSION VALVE PC POWER CIRCUIT BOARD A3P PRINTED CIRCUIT BOARD A3P PRINTED CIRCUIT BOARD A3P PRINTED CIRCUIT BOARD A3P PRINTED CIRCUIT BOARD B31 PUSH BUTTON (ON/OFF) H1P LIGHT EMITT	SS1 SELECTOR SWITCH (MAIN/SUB) SS2 SELECTOR SWITCH	(WIRELESS ADDRESS SET)

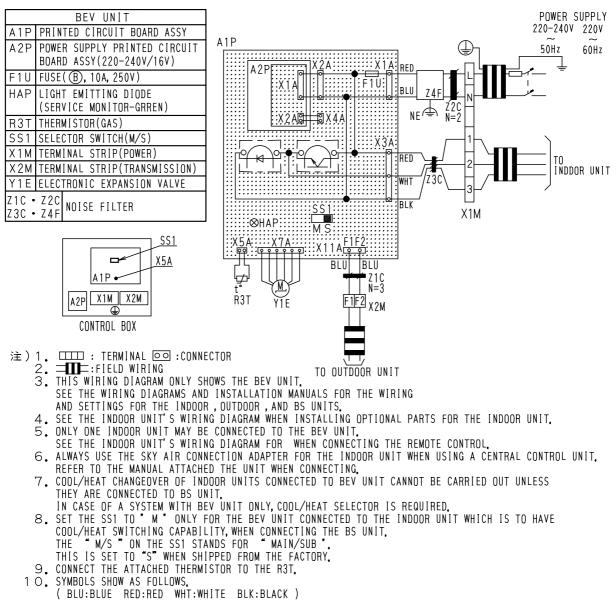
FXAQ20MA / 25MA / 32MAVE / 40MA / 50MA / 63MAVE



3D044973A

FXUQ71MA / 100MA / 125MAV1 ≪H1P □ ≪H2P BS1 ≪H3P WIRED REMOTE CONTROLLER ⊗H4P CONTROL BOX RECEIVER/DISPLAY UNIT AlP 5 A4P 000000000 E2 /w15 _____S10 A2P 2 N MSW) -THW 23 X1M A3P :00000 REI Ē X35A X24A X30A X14A0 A1P A1P X24A X24A NOTE)5 :X29A ENERG, NORM, RYA ₿® ₩₩ 8 2 00 -BLU-MIP X33A:..:X X19Abodi R1T ВЧР: UNIT 1010 NDOOR ¢¢ ALLER KIT IS BEING USED DULER KIT IS BEING USED COMBINATION SYSTEM, FFORE CONNECTING, MATROLLER / RED-CRN/YLW Image: Control of the second ┌᠊ᠿ _⇒ POWER SUPPLY 50 220-240V -Ð Ϋ́́ E1E2 69 <u>.</u> UNIT NOTE)3 8 > ₿. NOTES) CONNECTOR FOR DFTIONAL PARTS X24A CONNECTOR (WIRELESS RENOTE CONTROLLER) X30A CONNECTOR (INTERFACE ADAPTOR SS1 SELECTOR SWITCH(MAIN/SUB) RECEIVER/DISPLAY UNIT (ATTACHED TO WIRLESS REMOTE CONTROLLER) (DEFROST-ORANGE) SELECTOR SWITCH(MAIN/SUB) SELECTOR SWITCH P LICHE MITLING -P LICHT EMITLING -LICHT EMITTING DIDDE X35A CONNECTOR(GROUP CONTROL ADAPTOR) A 3P PRINTED CIRCUIT BOARD A 4P PRINTED CIRCUIT BOARD BS1 PUSH BUTTON(ON/OFF) H1P LIGHT EMITTING DIODE (TIMER-GREEN) -IGHT EMITTING DIODE LIGHT EMITTING DIODE (WIRELESS ADDRESS SET) CONTROLLER FOR SKY AIR SERIES) (AIR) OR REMOTE (ON-RED) THERMI WIRED НЗР H4P <u>551</u> 552 42P Ē MIS MOTOR(SWING FLAP) MIF MOTOR(INDOOR FLAP) H PMOTOR(INDOOR FAN) MIP MOTOR(DRAIN PUMP) Q1M THERMO SWITCH(MIF EWBEDDED) H THERMISTOR(COIL) H MAGNETIC RELAY(MIA) S MAGNETIC RELAY(MIP) S LIMIT SWITCH(SWING FLAP) S A TP PRINTED CIRCUIT BOARD A 2P PRINTED CIRCUIT BOARD (TRANSFORMER 220~240V/16V) C1 CAPACITOR(MIF) (SERVICE MONITOR GREEN) LIGHT EMITTING DIODE (SERVICE MONITOR GREEN) EMITTING DIODE OR(AIR) S NDOOR GHT THERM MAGNET HAP A2P HBP RyF S10 R2 R2


FXMQ125MF / 200MF / 250MFV1



	INDOOR UNIT	X1M	TERMINAL BLOCK(POWER)
A1P	PRINTED CIRCUIT BOARD	X2M	TERMINAL BLOCK(CONTROL)
C1, C2	CAPACITOR(M1F)	X3M	TERMINAL BLOCK
F1U	FUSE(🐵, 5A, 250V)(A1P)	X51A, X52A	CONNECTOR
HAP	LIGHT EMMITING DIODE	Y1E	ELECTRIC EXPANSION VALVE
	(SERVICE MONITOR-GREEN)	Y1S	SOLENOID VALVE(HOT GAS)
K1M	MAGNETIC RELAY(M1F)		
K1R	MAGNETIC RELAY(M1F)		OPTIONAL PARTS
KPR	MAGNETIC RELAY(M1P)	M1P	MOTOR(DRAIN PUMP)
KSR	MAGNETIC RELAY(Y1S)	S1L	FLOAT SWITCH(DRAIN PUMP)
M1F	MOTOR(FAN)		
Q1M	THERMAL PROTECTOR	WIRE	D REMOTE CONTROLLER
	(M1F EMBEDDED 135℃)	SS1	SELECT SWITCH(MAIN/SUB)
R1T	THERMISTOR(SUCTION AIR)		
R2T	THERMISTOR(COIL, LIQUID)	CONNEC	TOR FOR OPTIONAL PARTS
R3T	THERMISTOR(COIL, GAS)	X18A	CONNECTOR (WIRING ADAPTOR
R4T	THERMISTOR(DISCHARGE AIR)		FOR ELECTRICAL APPENDICES)
T1R	TRANSFORMAR(220-240V/22V)		

NOTES) 1. □□□: TERMINAL BLOCK, ⊡ , D : CONNECTOR, -O : TERMINAL, □: SHORT CIRCUIT CONNECTOR, =III : FIELD WIRING, 2. IN CASE USING CENTRAL REMOTE CONTROLLER, CONNNECT IT TO THE UNIT IN ACCORDANCE WITH THE ATTACHED INSTRUCTION MANUAL, 3. IN CASE INSTALLING THE DRAIN PUMP KIT, REMOVE THE SHORT CIRCUIT CONNECTOR OF X8A AND EXECUTE THE ADDITIONAL WIRING FOR FLOAT SWITCH AND DRAIN PUMP, 4. IN CASE CONNECTING THE INPUT WIRES FROM OUTSIDE, FORCED OFF OR ON/OFF CONTROL OPERATION CAN BE SELECTED BY REMOTE CONTROLLER, IN DETAILS, REFER TO THE INSTALLATION MANUAL ATTACHED TO THE UNIT. 5. DO NOT REMOVE SHORT CIRCUIT CONNECTOR OF X9A.

3D044996C

3D044901B

3. List of Electrical and Functional Parts

3.1 Outdoor Unit

3.1.1 RXYQ5PAY1~8PAY1

Item		Name	Cumb al	Мо	del			
nem	ľ	Name	Symbol -	RXYQ5PAY1	RXYQ8PAY1			
		Туре		JT1GCVD	KYR@SB			
	Inverter	OC protection device	M1C	14.7A				
		Туре						
Compressor	STD 1	OC protection device	M2C	_				
		Туре						
	STD 2 OC protection device		МЗС	-	_			
Fan motor		OC protection device	M1F	1.15A	ЗА			
Electronic expa	nsion valve (Mai	n)	Y1E	Fully closed: 0pls	Fully open: 480pls			
Electronic expa	ectronic expansion valve (Subcool)			_	Fully closed: 0pls Fully open: 480pls			
		For M1C	S1PH	OFF: 4.0 ⁺⁰ 0.12 MPa	ON: 3.0±0.15MPa			
Pressure protection	High pressure switch	h pressure tch For M2C		_				
		For M3C	S3PH	-	_			
	Low pressure	sensor	SLNPL	OFF: 0.	.07MPa			
Temperature	protection	Discharge gas temperature		OFF: 135°C				
protection	Inverter fin ten protection (Radiator fin th		R1T	OFF:	93°C			
		For main PC	A1P	250V	, 15A			
Others	Fuse	board	A2P	250\	/, 3A			
		For Noise filter PC board	F1U	250V AC 5A Class B				

3.1.2 RXYQ10PAY1~12PAY1

Item		Name	Symbol	Мо	del			
nem	r	Name	Symbol –	RXYQ10PAY1	RXYQ12PAY1			
		Туре		JT1GCVD	KYR@SB			
	Inverter	OC protection device	M1C	14.	7A			
		Туре		JT170G-	KYE@T			
Compressor	STD 1	OC protection device	M2C	15.	0A			
		Туре						
	STD 2	OC protection device	МЗС	-	_			
Fan motor		OC protection device	M1F	3A	1.15A			
Electronic expa	nsion valve (Maiı	n)	Y1E	Fully closed: 0pls	Fully open: 480pls			
Electronic expa	nsion valve (Sub	cool)	Y2E	Fully closed: 0pls Fully open: 480pls				
		For M1C	S1PH	OFF: 4.0 ⁺⁰ 0.12 MPa	ON: 3.0±0.15MPa			
Pressure protection	High pressure switch			OFF: 4.0 ⁺⁰ _{-0.12} MPa ON: 3.0±0.15MPa				
		For M3C	S3PH	_	_			
	Low pressure	sensor	SLNPL	OFF: 0.	07MPa			
Temperature	Discharge gas protection (Discharge pip	-	R3T	OFF:	135°C			
protection	Inverter fin terr protection (Radiator fin th	-	R1T	OFF: 93°C				
		For main PC	A1P	250V	, 15A			
Others	Fuse	board	A2P	250\	/, 3A			
		For Noise filter PC board	F1U	250V AC 5A Class B				

Item		Name	Symbol		Model			
nem	I.	Name	Symbol	RXYQ14PAY1	RXYQ16PAY1	RXYQ18PAY1		
		Туре		JT1GCVDKYR@SB				
	Inverter	OC protection device	M1C	14.7A				
		Туре			JT170G-KYE@T			
Compressor	STD 1	OC protection device	M2C		15.0A			
		Туре			JT170G-KYE@T			
	STD 2	OC protection device	МЗС		15.0A			
Fan motor		OC protection device	M1F	1.1	5A	ЗА		
Electronic expa	nsion valve (Maiı	n)	Y1E	Fully clos	sed: 0pls Fully ope	n: 480pls		
Electronic expa	nsion valve (Sub	cool)	Y2E	Fully closed: 0pls Fully open: 480pls				
		For M1C	S1PH	OFF: 4.0	±0.15MPa			
Pressure	High pressure switch	For M2C	S2PH	OFF: 4.0 ⁺⁰ _{-0.12} MPa ON: 3.0±0.15MPa				
protection	ownon	For M3C	S3PH	OFF: 4.0 ⁺⁰ _{-0.12} MPa ON: 3.0±0.15MPa				
	Low pressure	sensor	SLNPL		OFF: 0.07MPa			
Temperature	Discharge gas protection (Discharge pip	-	R3T		OFF: 135°C			
protection	Inverter fin ten protection (Radiator fin th	•	R1T		OFF: 93°C			
		For main PC	A1P		250V, 15A			
Others	Fuse	board	A2P		250V, 3A			
		For Noise filter PC board	F1U		250V AC 5A Class E	3		

3.2 Outdoor Unit - 60Hz 3.2.1 RXYQ5 / 8PAYL, PTL

ltaur		lama	Ci irrah al	Мс	odel			
Item	ľ	lame	Symbol —	RXYQ5PAYL	RXYQ8PAYL			
		Туре		JT1GCVE	KYR@SB			
	Inverter	OC protection device	M1C	14.7A				
_		Туре		_				
Compressor	STD 1	OC protection device	M2C					
		Туре						
	STD 2	OC protection device	M3C	-	-			
Fan motor		OC protection device	M1F	1.15A	ЗА			
Item	Ν	lame	Symbol -	Мс	odel			
item			Cymbol	RXYQ5PTL	RXYQ8PTL			
		Туре		JT100GC	VDK@SB			
	Inverter	OC protection device	M1C	26	.5A			
•		Туре						
-	STD 1	OC protection device	M2C	-	_			
		Туре						
	STD 2	OC protection device	M3C	-	-			
Fan motor		OC protection device	M1F	2.3A	5.5A			
Electronic expa	insion valve (Mair	า)	Y1E	Fully closed: 0pls				
Electronic expa	insion valve (Sub	cool)	Y2E	_	Fully closed: 0pls Fully open: 480pls			
		For M1C	S1PH	OFF: 4.0 ⁺⁰ 0.12 MPa	ON: 3.0±0.15MPa			
Pressure protection	High pressure switch	High pressure switch For M2C		_				
		For M3C	S3PH	-	_			
	Low pressure :		SLNPL	OFF: 0	.07MPa			
Temperature	Discharge gas protection (Discharge pip	•	R3T	OFF:	135°C			
protection	Inverter fin terr protection (Radiator fin th	•	R1T	OFF:	93°C			
		For main PC	A1P	250V	′, 15A			
Others	Fuse	board	A2P	250V, 3A (PT	L : 250V, 15A)			
Caloro		For Noise filter PC board	F1U		.3A Class B r TL model)			

3.2.2 RXYQ10 / 12PAYL, PTL

		-		Model				
Item	١	lame	Symbol –	RXYQ10PAYL	RXYQ12PAYL			
		Туре		JT1GCVE	DKYR@SB			
	Inverter	OC protection device	M1C	14	.7A			
		Туре		JT170G	-KYH@T			
Compressor	STD 1	OC protection device	M2C	15.0A				
		Туре						
	STD 2	OC protection device	M3C	-	_			
Fon motor		OC protection	M1F	3A	1.15A			
Fan motor		device	M2F	—	1.15A			
ltom		lomo	Symbol	Мс	odel			
Item	Г	lame	Symbol –	RXYQ10PTL	RXYQ12PTL			
		Туре		JT100GC	VDK@SB			
	Inverter	OC protection device	M1C	26	.5A			
		Туре		JT17	′0G-K			
	STD 1	OC protection device	M2C	28	.8A			
		Туре						
	STD 2	OC protection device	МЗС	_				
	•	OC protection	M1F	5.5A	2.3A			
Fan motor		device	M2F	_	2.3A			
Electronic expa	nsion valve (Mair	n)	Y1E	Fully closed: 0pls	Fully open: 480pls			
Electronic expa	nsion valve (Sub	cool)	Y2E	Fully closed: 0pls	Fully open: 480pls			
		For M1C	S1PH	OFF: 4.0 ⁺⁰ 0.12 MPa	ON: 3.0±0.15MPa			
Pressure protection	High pressure switch	For M2C	S2PH	OFF: 4.0 ⁺⁰ _{-0.12} MPa	ON: 3.0±0.15MPa			
		For M3C	S3PH	-	_			
	Low pressure	sensor	SLNPL	OFF: 0	.07MPa			
Temperature	Discharge gas protection (Discharge pip	-	R3T	OFF:	135°C			
protection	Inverter fin terr protection (Radiator fin th	•	R1T	OFF	: 93°C			
		For main PC	A1P	250\	/, 15A			
Others	Fuse	board	A2P	250V, 3A (PT	L : 250V, 15A)			
Caloro		For Noise filter PC board	F1U		.3A Class B r TL model)			

3.2.3 RXYQ14 / 16 / 18PAYL, PTL

		,						
Item	N	lame	Symbol		Model			
		T		RXYQ14PAYL	RXYQ16PAYL	RXYQ18PAYL		
	Inverter	Type OC protection	M1C		JT1GCVDKYR@SB 14.7A			
		device						
0		Туре		JT170G-KYH@T				
Compressor	STD 1	OC protection device	M2C	15.0A				
		Туре			JT170G-KYH@T			
	STD 2	OC protection device	M3C		15.0A			
Fon motor		OC protection	M1F	1.1	15A	ЗA		
Fan motor		device	M2F	1.1	15A	ЗA		
ltom		lama	Symbol	Model				
Item		lame	Symbol	RXYQ14PTL	RXYQ16PTL	RXYQ18PTL		
		Туре			JT100GCVDK@SB			
	Inverter	OC protection device	M1C		26.5A			
		Туре			JT170G-K			
	STD 1	OC protection device	M2C		28.8A			
		Туре			JT170G-K			
	STD 2	OC protection device	МЗС		28.8A			
		OC protection	M1F	2.	.3A	5.5A		
Fan motor		device	M2F	2.	.3A	5.5A		
Electronic expa	nsion valve (Mair	n)	Y1E	Fully clo	sed: Opls Fully open	: 480pls		
Electronic expa	nsion valve (Sub	cool)	Y2E	Fully clo	sed: 0pls Fully open	: 480pls		
		For M1C	S1PH	OFF: 4.0	⁺⁰ -0.12 MPa ON: 3.0±	0.15MPa		
Pressure	High pressure switch	For M2C	S2PH	OFF: 4.0	⁺⁰ -0.12 MPa ON: 3.0±	0.15MPa		
protection	ownon	For M3C	S3PH		OFF: 4.0 ⁺⁰ ON: 3.0±0.15MPa			
	Low pressure :	sensor	SLNPL		OFF: 0.07MPa			
Temperature	Discharge gas protection (Discharge pip		R3T		OFF: 135°C			
protection	protection	Inverter fin temperature		OFF: 93°C				
		For main PC	A1P		250V, 15A			
Others	Fuse	board	A2P	250)V, 3A (PTL : 250V, 1	ōA)		
		Fuse For Noise filter PC board			250V AC 6.3A Class E (No fuse for TL model)			

3.3 Indoor Side

3.3.1 Indoor Unit

						Мо	del				
	Parts Name	Symbol	FXFQ25 PVE	FXFQ32 PVE	FXFQ40 PVE	FXFQ50 PVE	FXFQ63 PVE	FXFQ80 PVE	FXFQ100 PVE	FXFQ125 PVE	Remark
Remote	Wired Remote Controller					BRC	1C62				Option
Controller	Wireless Remote Controller					BRC7	F634F				Option
	Fan Motor	M1F			DC280V	56W 8P			DC 320V	120W 8P	
Motors	Drain Pump	M1P		AC220-240V (50Hz) AC220V (60Hz) PLD-12230DM Thermal Fuse 145°C							
	Swing Motor M1S MP35HCA[3P080801-1] Stepping Motor DC12V										
	Thermistor (Suction Air)	R1T			In PC boar	d A2P or w	vired remot	e controller			
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T				ST8605-14 20kΩ	4				
	Thermistor (Heat Exchanger)	R2T			:	ST8602A-1 20kΩ	5	D			
	Float Switch	S1L	FS-0211B								
Othere	Fuse	F1U				250V 5	5A				
Others	Thermal Fuse	TFu	—								
	Transformer	T1R		_							

						Мо	del				
	Parts Name	Symbol	FXCQ 20MVE	FXCQ 25MVE	FXCQ 32MVE	FXCQ 40MVE	FXCQ 50MVE	FXCQ 63MVE	FXCQ 80MVE	FXCQ 125MVE	Remark
Remote	Wired Remote Controller					BRC	1C62				Option
Controller	Wireless Remote Controller					BRC	7C62				Option
						AC 220~2	40V 50Hz				
	Fan Motor	M1F	1¢10W								
Matana				Thermal Fuse 152°C — Thermal protector 135°C : OFF 87°C : ON							
Motors	Drain Pump	M1P			AC220-	240V (50H PLD-12 Thermal F	230DM	(60Hz)			
	Swing Motor	M1S				MT8-L[3P AC200	A07509-1] ~240V				
	Thermistor (Suction Air)	R1T				ST8601-6 20kΩ	φ4 L1250 (25°C)				
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T				ST8605-6 20kΩ	φ8 L1250 (25°C)				
	Thermistor (Heat Exchanger)	R2T		ST8602A-5 φ6 L1000 20kΩ (25°C)							
	Float Switch	S1L				FS-0	211B				
Others	Fuse	F1U				250V 5	5A				
	Transformer	T1R				TR22H	121R8				

				М	odel		
	Parts Name	Symbol	FXKQ 25MAVE	FXKQ 32MAVE	FXKQ 40MAVE	FXKQ 63MAVE	Remark
Remote	Wired Remote Controller			BRO	C1C62	•	Option
Controller	Wireless Remote Controller			BRO	C4C61		
				AC 220~	240V 50Hz		
	Fan Motor	M1F	1 015	W 4P	1¢20W 4P	1¢45W 4P	
			Thermal F	use 146°C	Thermal protector 12	20°C:OFF 105°C: N	
Motors	Drain Pump	M1P		PLD-1	240V (50Hz) 2200DM Fuse 145°C		
	Swing Motor	M1S			[3P080801-1] i0~240V		
	Thermistor (Suction Air)	R1T			13		
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T			7		
	Thermistor (Heat Exchanger)	R2T			-7 φ6 L1600 2 (25°C)		
	Float Switch	S1L		FS-	0211B		
Others	Fuse	F1U		250V	5A		
	Transformer	T1R		TR22	2H21R8		

					Мо	del					
	Parts Name	Symbol	FXDQ 20PBVE(T)	FXDQ 25PBVE(T)	FXDQ 32PBVE(T)	FXDQ 40NBVE(T)	FXDQ 50NBVE(T)	FXDQ 63NBVE(T)	Remark		
Remote	Wired Remote Controller				BRC	1C62			Ontion		
Controller	Wireless Remote Controller				BRC	4C65			- Option		
				AC 220~240V 50Hz							
	Fan Motor	M1F		1¢6	62W		1¢1;	30W			
Motors					Thermal 130°C: OFF	protector -, 83°C: ON					
	Drain Pump	M1P			AC220-24 PLD-12 Thermal F	230DM			*		
	Thermistor (Suction Air)	R1T			ST8601-1 20kΩ	ф4 L=250 (25°С)					
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T			ST8605-4 20kΩ	ф8 L=800 (25°С)					
	Thermistor (Heat Exchanger)	R2T			ST8602A-4 20kΩ	4 φ6 L=800 (25°C)					
	Float Switch	S1L			FS-0	211E			*		
Others	Fuse	F1U			250V 5	5A φ5.2					
	Transformer	T1R			TR22H	H21R8					

*only for FXDQ20~63N(B)VE, FXDQ20~32PBVE (with Drain Pump Type)

							Model					
	Parts Name	Symbol	FXSQ 20MVE	FXSQ 25MVE	FXSQ 32MVE	FXSQ 40MVE	FXSQ 50MVE	FXSQ 63MVE	FXSQ 80MVE	FXSQ 100MVE	FXSQ 125MVE	Remark
Remote	Wired Remote Controller						BRC1C62	2			•	Ontion
Controller	Wireless Remote Controller						BRC4C62	2				Option
						AC 2	20~240V	50Hz				
	Fan Motor	M1F		1¢50W 1¢65W 1¢85W 1¢125W 1¢22						1¢225W		
Motors				-	Thermal F	use 152°0		Thermal protector 135°C : OFF 87°C : ON				
		M1P		AC220-240V (50Hz) PLD-12230DM Thermal Fuse 145°C								
	Thermistor (Suction Air)	R1T					601-4 φ4 0kΩ (25°0					
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T					05-7 φ8 L 0kΩ (25°0					
	Thermistor (Heat Exchanger)						02A-6 φ6 0kΩ (25°0					
Float Switch S1L FS-0211B												
Others	Fuse	F1U	250V 5A φ5.2									
	Transformer	T1R				Т	R22H21F	18				

					Мс	del				
	Parts Name	Symbol	FXMQ 40PVE	FXMQ 50PVE	FXMQ 63PVE	FXMQ 80PVE	FXMQ 100PVE	FXMQ 125PVE	Remark	
Remote	Wired Remote Controller				BRC	1C62				
Controller	Wireless Remote Controller				BRC	4C65				
	Fan Motor	M1F		DC280V	140W 8P		DC373V	350W 8P		
Motors	Drain Pump	M1P		AC220-240V (50/60Hz) PLD-12230DM Thermal protector 145°C						
	Thermistor (Suction Air)	R1T		ST8601-3 φ L630 20kΩ (25°C)						
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T				4 φ8 L1000 (25°C)				
	Thermistor (for Heat Exchanger)	R2T				6 φ8 L1250 (25°C)				
	Float Switch	S1L			FS-0	211B				
	Fuse (A1P)	F1U	250V 3.15A							
Others	Fuse (A2P, A3P)	F3U∙ F4U	250V 6.3A							
	Fuse (A2P)	F2U	250V 5A			_				

	Parts Name	Cumphiel	Мо	del	Demeril
	Parts Name	Symbol	FXMQ200MAVE	FXMQ250MAVE	Remark
Remote	Wired Remote Controller		BRC	1C62	Ontion
Controller	Wireless Remote Controller		BRC	4C62	Option
	Fan Motor	M1F	AC 220~2	40V 50Hz	
Motors	Fall WOLDI		1¢380	0W×2	
	Capacitor for Fan Motor	C1R	10μ F 400V	12µ F 400V	
	Thermistor (Suction Air)	R1T	ST860 ¢4 L	01A-13 630	
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T	ST86	05A-5 1000	
	Thermistor (Heat Exchanger)	R2T	ST86 ¢6 L	02A-6 1250	
	Float switch	S1L	FS-0)211	
Others	Fuse	F1U	250V 5	5A	
	Transformer	T1R	TR22F	H21R8	

				Model		
	Parts Name	Symbol	FXHQ 32MAVE	FXHQ 63MAVE	FXHQ 100MAVE	Remark
Remote	Wired Remote Controller			BRC1C62		Option
Controller	Wireless Controller			BRC7E63W		
			A	C 220~240V/220V 50Hz/60H	Ηz	
	Fan Motor	M1F	1¢6	3W	1¢130W	
Motors			Therma	l protector 130°C : OFF 80	D°C : ON	
motoro	Capacitor for Fan Motor	C1R	3.0μF	-400V	9.0μF-400V	
	Swing Motor	M1S		MT8-L[3P058751-1] AC200~240V	·	
	Thermistor (Suction Air)	R1T		ST8601A-1		
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T		þ8 L = 1250 (25°C)	ST8605-6	
	Thermistor (Heat Exchanger)	R2T		φ6 L = 1250 (25°C)	ST8602A-6 φ6 L = 1250 20kΩ (25°C)	
Othoro	Fuse	F1U		250V 5A		
Others	Transformer	T1R		TR22H21R8		

					Мс	odel				
	Parts Name	Symbol	FXAQ 20MAVE	FXAQ 25MAVE	FXAQ 32MAVE	FXAQ 40MAVE	FXAQ 50MAVE	FXAQ 63MAVE	Remark	
Remote	Wired Remote Controller				BRC	1C62			Ontion	
Controller	Wireless Remote Controller				BRC	7E618			- Option	
					AC 220~2	240V 50Hz				
	Fan Motor	M1F		1¢40W 1¢43W						
Motors				Therma	l protector 130	°C : OFF 80	°C : ON			
	Swing Motor	M1S	MF	24 [3SB40333 AC200~240V		MSFBC	C20C21 [3SB4 AC200~240V	0550-1]		
	Thermistor (Suction Air)	R1T				2 φ4 L400 (25°C)				
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T				2 φ8 L400 (25°C)				
	Thermistor (for Heat Exchanger)	R2T		ST8602-2 φ6 L400 20kΩ (25°C)						
Others	Float Switch	S1L		OPTION						
Others	Fuse	F1U			250V 5	5A				

					Мо	del			
	Parts Name	Symbol	FXLQ 20MAVE	FXLQ 25MAVE	FXLQ 32MAVE	FXLQ 40MAVE	FXLQ 50MAVE	FXLQ 63MAVE	Remark
Remote	Wired Remote Controller				BRC	1C62			Ontion
Controller	Wireless Remote Controller				BRC	4C62			- Option
					AC 220~2	40V 50Hz			
Motors	Fan Motor	M1F	1¢1	5W	1φ2	5W	1¢3	5W	
WIDIOIS				Thermal	protector 135°	C: OFF 12	0°C : ON		
	Capacitor for Fan Motor	C1R	1.0μF	-400V	0.5µF-400V	1.0μF-400V	1.5μF-400V	2.0µF-400V	
	Thermistor (Suction Air)	R1T			ST8601-6 20kΩ	φ4 L1250 (25°C)			
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T			ST8605-9 20kΩ	ф8 L2500 (25°С)			
	Thermistor (for Heat Exchanger)	R2T							
Others	Fuse	F1U			AC25	0V 5A			
Outers	Transformer	T1R			TR22H	H21R8			

					Мо	del			
	Parts Name	Symbol	FXNQ 20MAVE	FXNQ 25MAVE	FXNQ 32MAVE	FXNQ 40MAVE	FXNQ 50MAVE	FXNQ 63MAVE	Remark
Remote	Wired Remote Controller				BRC	1C62			Option
Controller	Wireless Remote Controller				BRC	4C62			Option
					AC 220~2	40V 50Hz			
Motors	Fan Motor	M1F	1φ1	5W	1¢2	5W	1¢3	5W	
MOLOIS				Thermal	protector 135°	C: OFF 12	0°C : ON		
	Capacitor for Fan Motor	C1R	1.0μF	-400V	0.5μF-400V	1.0μF-400V	1.5μF-400V	2.0µF-400V	
	Thermistor (Suction Air)	R1T			ST8601-6 20kΩ	φ4 L1250 (25°C)			
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T			ST8605-9 20kΩ	φ8 L2500 (25°C)			
	Thermistor (for Heat Exchanger)	R2T	ST8602A 0 #612500						
Others	Fuse	F1U			AC25	0V 5A			
Others	Transformer	T1R			TR22	H21R8			

	Parts Name	Cumphiel		Model			Demoril			
	Parts Name	Symbol	FXUQ71MAV1	FXUQ100MAV1	FXU	Q125MAV1	Remark			
Remote	Wired Remote Controller			BRC1C62			Option			
Controller	Wireless Remote Controller			BRC7C528W			- Option			
				AC 220~240V 50Hz						
	Fan Motor	M1F	1¢45W	1 90	W					
			Thermal protector 130°C	Thermal protector 130°	C : OFF	83°C : ON				
Motors	Drain Pump	M1P	AC2	20-240V (50Hz) AC220V (60H PJV-1426	Hz)					
	Swing Motor	M1S		MT8-L[3PA07572-1] AC200~240V						
The maintena	Thermistor (Suction Air)	R1T		ST8601-1						
Thermistors	Thermistor (Heat Exchanger)	R2T		ST8602A-4 φ6 L=800 20kΩ (25°C)						
Others	Float Switch	S1L		FS-0211B						

	Parts Name	Cumpheal		Model		Demonit				
	Parts Name	Symbol -	FXMQ125MFV1	FXMQ200MFV1	FXMQ250MFV1					
Remote	Wired Remote Controller			BRC1C62						
Controller	Wireless Remote Controller									
				AC200~240V 50Hz						
	Fan Motor	M1F	1¢380W							
Motors			Thermal protector 135°C : OFF 87°C : ON							
	Capacitor for Fan Motor	C1R	10μ F 10μ F 400V×2 400V		16μ F 400V					
Solenoid valve	Solenoid valve (Hot gas)	Y1S	Body: VPV-603D Coil: NEV-MOAJ532C1 AC220-240V							
	Thermistor (Suction Air)	R1T		ST8601-13 φ4 L=630 20kΩ (25°C)						
Thermistors	Thermistor (for Heat Exchanger High Temp.)	R3T	ST8605-6 φ8 L=1250 20kΩ (25°C)							
mermisions	Thermistor (Heat Exchanger)	R2T	ST8602A-2 φ6 L=1250 20kΩ (25°C)							
	Thermistor (for discharge air)	R4T	ST8605-8 L=2000 20kΩ (25°C)							
	Float switch	S1L	Option							
Others	Fuse	F1U		250V 5A φ5.2						
	Transformer	T1R		TR22H21R8						

4. Option List

4.1 Option List of Controllers

Operation Control System Optional Accessories

No.	Type Item	FXFQ-P	FXCQ-M	FXKQ-MA	FXDQ-NB FXDQ-PB	FXUQ-M	FXSQ-M	FXMQ-MA	FXMQ-P	FXHQ-MA	FXAQ-MA	FXLQ-MA FXNQ-MA	
	Remote Wireless	BRC7F634F	BRC7C62	BRC4C61	BRC4C65	BRC7C528W	BRC4	4C62	BRC4C65	BRC7E63W	BRC7E618	BRC4C62	
1	controller Wired						BRC1C62						
2	Wired remote controller with weekly schedule timer		BRC1D61						BRC1D61				
3	Simplified remote controller		_		Note 8 BRC2C51	—		Note 8 BRC2C51		-	_	Note 8 BRC2C51	
4	Remote controller for hotel use		—		BRC3A61	—		BRC3A61		-	_	BRC3A61	
5	Adaptor for wiring	★KRP1C63	★KRP1B61	KRP1B61	★KRP1B56	_	KRP	1B61	★ KRP1C64	KRP1C3	1	KRP1B61	
6-1	Wiring adaptor for electrical appendices (1)	★KRP2A62	★KRP2A61	KRP2A61	★KRP2A53	★KRP2A62	KRP2	2A61	★KRP2A61	★KRP2A62	★KRP2A61	KRP2A61	
6-2	Wiring adaptor for electrical appendices (2)	★KRP4AA53	★KRP4A51	KRP4A51	★KRP4A54	★KRP4A53	KRP	4A51	★KRP4AA51	★KRP4A52	★KRP4A51	KRP4A51	
7	Remote sensor	KRCS01-4B	KRCS01-1			KRCS01-1	KRCS01-4B			KRCS01-1			
8	Installation box for adaptor PC board	Note 2, 3 KRP1H98	Note 2, 3 KRP1B96	—	Note 4, 6 KRP1B101	KRP1B97	Note 5 KRP4A91	_	Note 2, 3 KRP4A96	Note 3 KRP1C93	Note 2, 3 KRP4A93	—	
9	Central remote controller						DCS302CA61						
9-1	Electrical box with earth terminal (3 blocks)						KJB311AA						
10	Unified on/off controller						DCS301BA61						
10-1	Electrical box with earth terminal (2 blocks)						KJB212AA						
10-2	Noise filter (for electromagnetic interface use only)		KEK26-1A										
11	Schedule timer						DST301BA61						
12	External control adaptor for outdoor unit (Must be installed on indoor units)	* DTA104A62	★ DTA104A61	DTA104A61	★ DTA104A53	_	DTA10	04A61	★ DTA104A61	★ DTA104A62	★ DTA104A61	DTA104A61	
13	Interface adaptor for SkyAir-series	_	—	_	_	Note 7 DTA102A52	-	_	_	_	_	_	

Note:

- 1. Installation box (No.8) is necessary for each adaptor marked \star .
- 2. Up to 2 adaptors can be fixed for each installation box.
- 3. Only one installation box can be installed for each indoor unit.
- 4. Up to 2 installation boxes can be installed for each indoor unit.
- 5. Installation box (No. 8) is necessary for second adaptor.
- 6. Installation box (No. 8) is necessary for each adaptor.
- 7. This adaptor is required when connecting with optional controller for centralized control.
- 8. BRC2A51 is also available.

Various PC Boards

No.	Part name	Model No.	Function
1	Adaptor for wiring	KRP1B56 KRP1B57 KRP1B59 KRP1B61 KRP1C3	PC board when equipped with auxiliary electric heater in the indoor unit.
2	DIII-NET Expander Adaptor	DTA109A51	 Up to 1024 units can be centrally controlled in 64 different groups. Wiring restrictions (max. length: 1000m, total wiring length: 2000m, max. number of branches: 16) apply to each adaptor.

System Configuration

No.	Item	1	Model No.	Function	
1	Residential central remote controller		Note *2 DCS303A51	Up to 16 groups of indoor units (128 units) can be easily controlled using the large LCD panel. ON/OFF, temperature settings and scheduling can be controlled individually for indoor units.	
2	Central remote control	oller	DCS302CA61	■ Up to 64 groups of indoor units(128 units) can be connected, and ON/OFF, temper	
2-1	Electrical box with earth	terminal (3 blocks)	KJB311AA	setting and monitoring can be accomplished individually or simultaneously. Connectable up to 2 controllers in one system.	
3	Unified ON/OFF contr	roller	DCS301BA61		
3-1	Electrical box with earth	terminal (2 blocks)	KJB212AA	Up to 16 groups of indoor units(128 units) can be turned, ON/OFF individually or simultaneously, and operation and malfunction can be displayed. Can be used in	
3-2	Noise filter (for electromagnetic interface use only)		KEK26-1A	combination with up to 8 controllers.	
4	Schedule timer		DST301BA61	Programmed time weekly schedule can be controlled by unified control for up to 64 groups of indoor units (128 units). Can turn units ON/OFF twice per day.	
5	Interface adaptor for SkyAir-series			 Adaptors required to connect products other than those of the VRV System to the high-speed DIII-NET communication system adopted for the VRV System. * To use any of the above optional controllers, an appropriate adaptor must be installed on the sector of the background controllers. 	
6	Central control adaptor kit	For UAT(Y)- K(A),FD-K	*DTA107A55	the product unit to be controlled.	
7	Wiring adaptor for oth	er air-conditioner	*DTA103A51	Up to 1024 units can be centrally controlled in 64 different groups.	
8	DIII-NET Expander Adaptor		DTA109A51	Wiring restrictions (max. length : 1,000m, total wiring length : 2,000m, max. number of branches : 16) apply to each adaptor.	
8-1	Mounting plate		KRP4A92	■ Fixing plate for DTA109A51	
	•	Noto	•	•	

Note:

- 1. Installation box for * adaptor must be obtained locally.
- 2. For residential use only. Cannot be used with other centralized control equipment.

Building Management System

No.			Part na	ime		Model No.	Function		
1	intelligent Touch Controller	Basic	Hardware	intelligent T Controller	ouch	DCS601C51	 Air-Conditioning management system that can be controlled by a compact all-in-one unit. 		
1-1	nt To rolle		Hardware	DIII-NET plus adaptor		DCS601A52	Additional 64 groups (10 outdoor units) is possible.		
1-2	Cont	Option		P.P.D.		DCS002C51	P. P. D.: Power Proportional Distribution function		
1-3	inte	•	Software	Web		DCS004A51	Monitors and controls the air conditioning system using the Internet and a Web browser application on a PC.		
1-4	Electrical box with earth terminal (4 blocks)				;)	KJB411A	Wall embedded switch box.		
					128 units	DAM602B52			
				Numberof	256 units	DAM602B51			
2	=	Basic	Hardware	units to be	512 units	DAM602B51x2	Air conditioner management system that can be controlled by personal computers.		
	jen er			connected	768 units	DAM602B51x3	P		
	elliç nag				1024 units	DAM602B51x4			
2-1	intelligent Manager III				P.P.D.	DAM002A51	Power Proportional Distribution function		
2-2		Option	Software	Software		DAM004A51	 Monitors and controls the air conditioning system using the Internet and a Web browser application on a PC. 		
2-3		E			Eco	DAM003A51	ECO (Energy saving functions.)		
2-4	Optional DIII Ai unit					DAM101A51	External temperature sensor for intelligent Manager III.		
2-5	Di unit					DEC101A51	8 pairs based on a pair of On/Off input and abnormality input.		
2-6	Dio unit					DEC102A51	4 pairs based on a pair of On/Off input and abnormality input.		
3	line 1	*1 Interf	ace for use	in BACnet [®]		DMS502B51	 Interface unit to allow communications between VRV and BMS. Operation and monitoring of air-conditioning systems through BACnet® communication. 		
3-1	Communication line	Optiona	I DIII board			DAM411B51	 Expansion kit, installed on DMS502B51, to provide 2 more DIII- NET communication ports. Not usable independently. 		
3-2	muni	Optiona	al Di board			DAM412B51	 Expansion kit, installed on DMS502B51, to provide 16 more wattmeter pulse input points. Not usable independently. 		
4	Com	*2 Interf	ace for use	in LONWOR	KS [®]	DMS504B51	 Interface unit to allow communications between VRV and BMS. Operation and monitoring of air-conditioning systems through LONWORKS[®] communication. 		
5	бс	Parallel interface Basic unit				DPF201A51	 Enables ON/OFF command, operation and display of malfunction; can be used in combination with up to 4 units. 		
6	Contact/analog signal	Temperature measurement units				DPF201A52	 Enables temperature measurement output for 4 groups; 0- 5VDC. 		
7	ontact sig	P Temperature setting units				DPF201A53	Enables temperature setting input for 16 groups; 0-5VDC.		
8	ŏ		ion adaptor f erized contro			* DCS302A52	 Interface between the central monitoring board and central control units. 		

Note:

- *1. BACnet[®] is a registered trademark of American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
 *2. LONWORKS[®] is a registered trade mark of Echelon Corporation.
 *3. Installation box for * adaptor must be procured on site.

4.2 Option Lists (Outdoor Unit)

RXYQ5 ~ 18PAY1, PAYL, PTL

Optional accessories		RXYQ5PAY1, PAYL, PTL	RXYQ5PAY1E, PAYLE, PTLE	RXYQ8PAY1, PAYL, PTL RXYQ10PAY1, PAYL, PTL	RXYQ8PAY1E, PAYLE, PTLE RXYQ10PAY1E, PAYLE, PTLE	RXYQ12PAY1, PAYL, PTL RXYQ14PAY1, PAYL, PTL RXYQ16PAY1, PAYL, PTL RXYQ18PAY1, PAYL, PTL	RXYQ12PAY1E, PAYLE, PTLE RXYQ14PAY1E, PAYLE, PTLE RXYQ16PAY1E, PAYLE, PTLE RXYQ18PAY1E, PAYLE, PTLE	
Cool/	Heat Selector	KRC19-26A						
Cool/Heat Selector	Fixing box	g box KJB111A						
Distributive Piping	Refnet header	KHRP26M22H (Max. 4 branch)		KHRP26M22H, (Max. 4 branch) KHRP26M33H (Max. 8 branch)		KHRP26M22H, KHRP26M33H, (Max. 4 branch) (Max. 8 branch) KHRP26M72H (Max. 8 branch)		
Refnet joint		KHRP2	26A22T	KHRP2 KHRP2	26A22T, 26A33T	KHRP26A22T, KHRP26A33T, KHRP26A72T		
Outdoor unit multi connection piping kit		—						
Central drain pan kit		KWC26C160	★KWC26C160E	KWC26C280	★KWC26C280E	KWC26C450	★KWC26C450E	
Digital Pressure Gauge Kit		BHGP26A1(E)						
	C : 3D0530						C : 3D053052C	

RXYQ20 ~ 36PAY1, PAYL, PTL

Optional accessories		RXYQ20PAY1, PAYL, PTL RXYQ22PAY1, PAYL, PTL	RXYQ20PAY1E, PAYLE, PTLE RXYQ22PAY1E, PAYLE, PTLE	RXYQ24PAY1, PAYL, PTL RXYQ26PAY1, PAYL, PTL RXYQ28PAY1, PAYL, PTL	RXYQ24PAY1E, PAYLE, PTLE RXYQ26PAY1E, PAYLE, PTLE RXYQ28PAY1E, PAYLE, PTLE	RXYQ30PAY1, PAYL, PTL RXYQ32PAY1, PAYL, PTL RXYQ34PAY1, PAYL, PTL RXYQ36PAY1, PAYL, PTL	RXYQ30PAY1E, PAYLE, PTLE RXYQ32PAY1E, PAYLE, PTLE RXYQ34PAY1E, PAYLE, PTLE RXYQ36PAY1E, PAYLE, PTLE	
Cool/	Heat Selector			KRC1	9-26A			
Cool/Heat Selector	Fixing box		KJB111A					
Distributive Piping	Refnet header	(Max. 4 KHRP2 (Max. 8 KHRP2	26M22H branch), 26M33H branch), 26M72H branch)	KHRP26M22H, KHRP26M33H, KHRP26M72H, KHRP26M73H (Max. 4 branch) (Max. 8 branch) (Max. 8 branch) (Max. 8 branch)				
Ö	Refnet joint	KHRP2	26A22T, 26A33T, 26A72T	KHRP26A22T, KHRP26A33T, KHRP26A72T, KHRP26A73T				
Outde	oor unit multi connection piping kit	BHFP22P100						
Pipe	size reducer	-	_	KHRP26M73TP, KHRP26M73HP				
Central drain pan kit		KWC26C280 KWC26C450	★KWC26C280E ★KWC26C450E	KWC26C280 KWC26C450	★KWC26C280E ★KWC26C450E	KWC26C450×2	★KWC26C450E×2	
Digita	al Pressure Gauge Kit	BHGP26A1(E)						
	C : 3D05305						C : 3D053052C	

RXYQ38 ~ 54PAY1, PAYL, PTL

Optional accessories		RXYQ38PAY1, PAYL, PTL RXYQ40PAY1, PAYL, PTL RXYQ42PAY1, PAYL, PTL RXYQ44PAY1, PAYL, PTL RXYQ46PAY1, PAYL, PTL	RXYQ38PAY1E, PAYLE, PTLE RXYQ40PAY1E, PAYLE, PTLE RXYQ42PAY1E, PAYLE, PTLE RXYQ44PAY1E, PAYLE, PTLE RXYQ46PAY1E, PAYLE, PTLE	RXYQ48PAY1, PAYL, PTL RXYQ50PAY1, PAYL, PTL RXYQ52PAY1, PAYL, PTL RXYQ54PAY1, PAYL, PTL	RXYQ48PAY1E, PAYLE, PTLE RXYQ50PAY1E, PAYLE, PTLE RXYQ52PAY1E, PAYLE, PTLE RXYQ54PAY1E, PAYLE, PTLE				
Cool	Heat Selector	KRC19-26A							
Cool/Heat Selector	Fixing box	KJB111A							
utive ng	Refnet header	KHRP26M22H, KHRP26M33H, KHRP26M72H, KHRP26M73H (Max. 4 branch) (Max. 8 branch) (Max. 8 branch) (Max. 8 branch)							
Distributive Piping	Refnet joint	KHRP26A22T, KHRP26A33T, KHRP26A72T, KHRP26A73T							
Outdoor unit multi connection piping kit		BHFP22P151							
Pipe size reducer		KHRP26M73TP, KHRP26M73HP							
Central drain pan kit		KWC26C280 KWC26C450×2	★KWC26C280E ★KWC26C450E×2	KWC26C450×3	★KWC26C450E×3				
Digita	al Pressure Gauge Kit	BHGP26A1(E)							

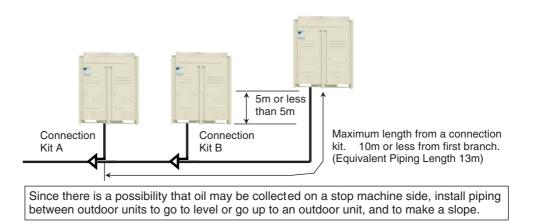
Note)★: Order products

C:3D053052C

RXYQ16 ~ 18PAHY1, PAHYL, PHTL

	Optional accessories	RXYQ16PAHY1, PAHYL, PHTL RXYQ18PAHY1, PAHYL, PHTL	RXYQ16PAHY1E, PAHYLE, PHTLE RXYQ18PAHY1E, PAHYLE, PHTLE		
Cool/	Heat Selector	KRC1	9-26A		
Cool/Heat Selector	Fixing box	KJB	111A		
Distributive Piping	Refnet header	KHRP26M22H, KHRP26M33H, (Max. 4 branch) (Max. 8 branch) KHRP26M72H (Max. 8 branch)			
Ō	Refnet joint	KHRP26A22T, KHRP2	26A33T, KHRP26A72T		
Outdoor unit multi connection piping kit		BHFP22P100			
Central drain pan kit		KWC26C280×2	★KWC26C280E×2		
Digita	al Pressure Gauge Kit	BHGP26A1(E)			
		•	C : 3D053053A		

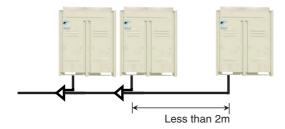
RXYQ24 ~ 30PAHY1, PAHYL, PHTL

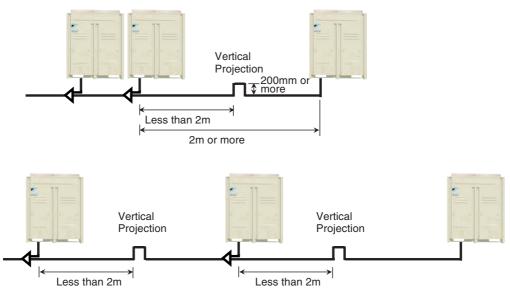

	Optional accessories	RXYQ24PAHY1, PAHYL, PHTL RXYQ26PAHY1, PAHYL, PHTL	RXYQ28PAHY1E, PAHYLE, PHTLE RXYQ30PAHY1E, PAHYLE, PHTLE					
Cool/	Heat Selector		KRC1	9-26A				
Cool/Heat Selector	Fixing box	KJB111A						
utive ng	Refnet header	KHRP26M22H, KHRP26M33H, KHRP26M72H, KHRP26M73H (Max. 4 branch) (Max. 8 branch) (Max. 8 branch) (Max. 8 branch)						
Distributive Piping	Refnet joint	KHRP26A22T, KHRP26A33T, KHRP26A72T, KHRP26A73T						
Outd	oor unit multi connection piping kit	BHFP22P151						
Pipe size reducer		KHRP26M73TP, KHRP26M73HP						
Central drain pan kit		KWC26C280×3 ★KWC26C280E×3 KWC26C280×2 ★KWC2 KWC26C450 ★KWC						
Digita	al Pressure Gauge Kit	BHGP26A1(E)						
С					C : 3D053053A			

RXYQ32 ~ 50PAHY1, PAHYL, PHTL

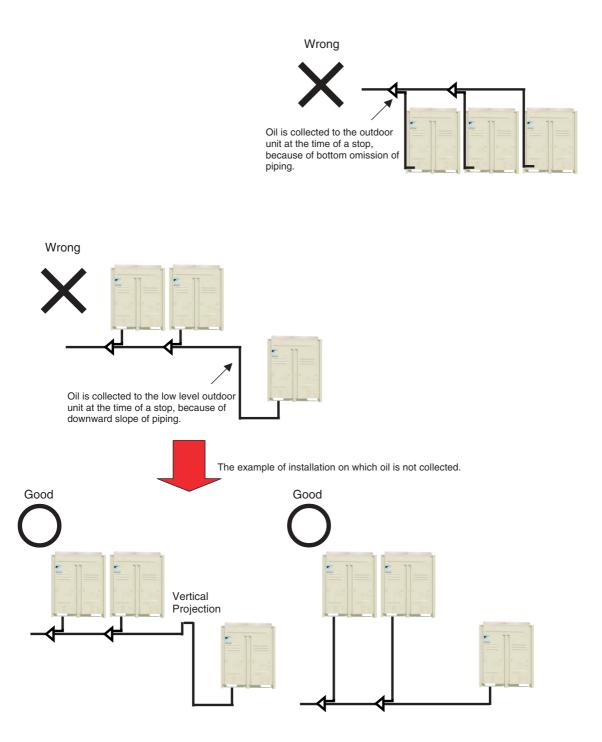
Optional accessories		RXYQ32PAHY1, PAHYL, PHTL RXYQ34PAHY1, PAHYL, PHTL	PAHYLE, PHTLE	RXYQ36PAHY1, PAHYL, PHTL RXYQ38PAHY1, PAHYL, PHTL RXYQ40PAHY1, PAHYL, PHTL RXYQ42PAHY1, PAHYL, PHTL RXYQ44PAHY1, PAHYL, PHTL RXYQ46PAHY1, PAHYL, PHTL RXYQ48PAHY1, PAHYL, PHTL RXYQ50PAHY1, PAHYL, PHTL	RXYQ36PAHY1E, PAHYLE, PHTLE RXYQ38PAHY1E, PAHYLE, PHTLE RXYQ40PAHY1E, PAHYLE, PHTLE RXYQ42PAHY1E, PAHYLE, PHTLE RXYQ44PAHY1E, PAHYLE, PHTLE RXYQ46PAHY1E, PAHYLE, PHTLE RXYQ48PAHY1E, PAHYLE, PHTLE RXYQ50PAHY1E, PAHYLE, PHTLE		
Cool/	Heat Selector			KRC19-26A			
Cool/Heat Selector	Fixing box		KJB111A				
utive ng	Refnet header		KHRP26M22H, KHRP26M33H, KHRP26M72H, KHRP26M73H (Max. 4 branch) (Max. 8 branch) (Max. 8 branch) (Max. 8 branch)				
Distributive Piping	Refnet joint	Refnet joint KHRP26A22T, KHRP26A33T, KHRP26A72T, KHRP26A73T					
Outdo	por unit multi connection piping kit	BHFP22P151					
Pipe	size reducer	KHRP26M73TP, KHRP26M73HP					
Centr	al drain pan kit	KWC26C280 KWC26C450×2	★KWC26C280E ★KWC26C450E×2	KWC26C450×3	★KWC26C450E×3		
Digita	al Pressure Gauge Kit	BHGP26A1(E)					

Note) *: Order products


5. Piping Installation Point5.1 Piping Installation Point


The projection part between multi connection piping kits

When the piping length between the multi connection kits or between multi connection kit and outdoor unit is 2m or more, prepare a vertical projection part (200mm or more as shown below) only on the gas pipe line location less than 2m from multi connection kit.


In the case of 2m or less

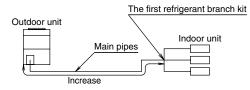
In the case of 2m or more

5.2 The Example of a Wrong Pattern

	Outdoor Unit - Multi Connection Piping Kit	Actual piping length 10m or less, equivalent length 13m or less				
Max.allowable Piping Length	Multi Connection Piping Kit - Indoor Unit	Actual piping length 165m or less, equivalent length 190m or less, the total extension 1000m or less				
r iping Longar	REFNET Joint - Indoor Unit	Actual piping length 40m or less (Refer to Page 425, 426 Note 2 in case of up to 90m)				
	Outdoor Unit - Outdoor Unit	5m or less				
Allowable Level Difference	Outdoor Unit - Indoor Unit	50m or less ★90m or less (when an outdoor unit is lower than indoor units: 40m or less in case of RXYQ5P(A))				
	Indoor Unit - Indoor Unit	15m or less				

Note)★: Available on request if the outdoor unit is above.

6. Example of connection (R-410A Type)


Example	of connection		Example refrigerant bran	ch using REFNET joint	Example refrigerant branch	using REFNET joint an	d REFNET header	Example refrigerant l	oranch using R	EFNET header
	8 indoor units)				Outdoor			Outdoor uni	DEENET	
 (*1) " → (*2) in case of multi outdoor system, re-read to the first Single outdoor system 				12EFNET joint (A-G)						
	Outdoor unit multi connection piping kit as seen from the indoor unit.				circular 1 2 Outdoor un	e f 9 h 2 3 4 5 6 Indoor units (1-8)	<u>+</u>	br cr dr er 1 2 3 0 Indoor un Outdoor unit ∉	its (1-8)	t
		Multi outdoor system		e f g H1 H1 4 5 6 7H2 B 8	H1 REFNET header	H3 REFNET jo H3 REFNET jo H3 REFNET jo h H3 REFNET jo H3 REF	int (A • B)		Тнз Тнз 4 5 6 7 нг г units (1-8)	
		Actual pipe length	Pipe length between outdoor (*2) and inde							
Marian	Between outdoor (*2) and indoor units		Example unit $8: a + b + c + d + e + f + g$	•	Example unit $6: a + b + h \le 16$			Example unit $8: a + i \le 165m$		
Maximum allowable		Equivalent length Total extension length	Equivalent pipe length between outdoor (* Total pipe length from outdoor unit (*2) to	, ,	unvalent pipe length of REFILET joir	III IO DE U.SIII, IIIAI OI REFI	NET fieader to be fift, t	calculation purposes) (See Note 1 - N	ext page)	
length	Between outdoor unit and Outdoor unit multi	Actual pipe length								
	connection piping kit (Only for multi system)	Equivalent length	Pipe length between outdoor unit and Out	door unit multi connection piping kit ≤ 1	0m, Equivalent length between outd	loor unit and Outdoor unit	multi connection piping	kit ≤ 13m Outdoor unit =		a + longth < 10m
Allowable	Between outdoor and indoor units	Difference in height	Difference in height between outdoor and		e outdoor unit is below)				r \leq 10m (Equivale) s \leq 10m (Equivale)	
height length	Between indoor and indoor units	Difference in height	Difference in height between indoor units	· · ·					·. · ·	ent length: \leq 13m)
length	Between outdoor and outdoor units	Difference in height	Difference in height between outdoor unit Pipe length from first refrigerant branch kit		lor) to indoor unit < 10m (Soo Noto	2 Novt page)				, j,
Allowable le	ngth after the branch	Actual pipe length	Example unit $8 : b + c + d + e + f + g + p$		Example unit 6 : b + h \leq 40m, ur			Example unit 8 : i ≤ 40m		
	ant branch kit selection branch kits can only be -410A.		How to select the REFNET joint • When using REFNET joint at the first br. Choose from the following table in accord (Example: REFNET joint A) Outdoor unit capacity type		be.	 Choose from the Note: 250 type 	e indoor unit cannot be otal capacity index		er. branch kit name	below the REFNET header.
			5HP type	KHRP26A2		20	< 200 0 ≤ x< 290	KHRP26M22H (Max. 4 KHRP26M33H (Max. 8	/	
• When	multi outdoor system are installed, be sure to ne special separately sold Outdoor unit multi		8, 10HP type	KHRP26A3	зт		0 ≤ x< 290 0 ≤ x< 640	KHRP26M72H (Max. 8	,	Next page)
conne	ection piping kit.		12~22HP type	KHRP26A7		64		KHRP26M73H (Max. 8	, (
The ta	able at right shows how to select the proper kit.		24HP type~		3T + KHRP26M73TP		-			
			Choose the REFNET joints other than the capacity index of all the indoor units core indoor unit total capacity index	nected below the REFNET joint.				nnection piping kit (This is required wh coordance with the number of outdoor		outdoor unit system.)
			< 200	Refrigerant bran KHRP26A2		Number	of outdoor units	Connection	piping kit name	
			200 ≤ x< 290	KHRP26A3			2 units		P22P100	
			290 ≤ x< 640	KHRP26A7			3 units	BHF	P22P151	
			640 ≤	KHRP26A7	3T + KHRP26M73TP					
	Example for indoor units con	nected downstream	Example REFNET joint C: indoor units 3	+4+5+6+7+8	Example REFNET joint B: indoo Example REFNET header: indo	oor units 1+2+3+4+5		Example REFNET header: indoor	units 1+2+3+4+[5+6+7+8
Pipe size	e selection		Temper grade and wall thickness for pipes (Temper grade, O type and 1/2H type indic H 3300.)		Piping between Outdoor unit and Piping between first Outdoor unit branch kit. (Part A)	t multi connection piping ki	t and first refrigerant	 Piping between refrigerant branch Choose from the following table all the indoor units connected be 	in accordance with the low this.	
	s of the pipes in the table shows the requirer re Gas Control low. (As of Jan. 2003)	nents of Japanese	Copport tube W/T		 Choose from the following table Piping between Outdoor unit multi 	in accordance with the out	door unit capacity type.	 Do not let the connection piping ex 		
	s and material shall be selected in accordance	ce with local code.	Copper tube O.D. (Minimum require		Piping between outdoor unit and (Outdoor unit multi connecti	on piping kit. (Part C)	Indoor unit total capacity index	Piping si	· · ·
F- - - - -		4 4 - 6 U	φ6.4 0.8	0	Choose from the following table the outdoor units connected ab			< 150	Gas pipe	Liquid pipe
For the multi	outdoor unit system, select in accordance with	th the following figure.	φ9.5 0.8	O type	the outdoor units connected ab		Unit:mm)	< 150 150 ≤ x< 200	φ15.9 φ19.1	¢9.5
			φ12.7 0.8	0		Piping size	. ,	200 ≤ x< 290	φ22.2	¥0.0
			φ15.9 0.9		Outdoor unit capacity type	Gas pipe	Liquid pipe	290 ≤ x< 420	¢28.6	φ12.7
			φ19.1 0.8		5HP type	φ15.9		420 ≤ x< 640		φ15.9
			φ22.2 0.8 φ25.4 0.8		8HP type	φ19.1	φ 9 .5	640 ≤ x< 920	¢34.9	φ19.1
الجبا المالجيا ا		طا للجالطا	φ23.4 0.6 φ28.6 0.9		10HP type	φ22.2	A10.7	920 ≤	¢41.3	
			φ20.0 0.5 φ31.8 1.1		12~16HP type 18~22HP type	φ28.6	φ12.7	Piping between refrigerant branchMatch to the size of the connect	kit and indoor unit ion piping on the indoo	r unit. (Unit:mm)
			¢34.9 1.2		24HP type		φ 15.9		Piping si	(/
	━━┫┛╲		φ38.1 1.3	2	26~34HP type	φ34.9		Indoor unit capacity type	Gas pipe	Liquid pipe
			¢41.3 1.4	3	36~54HP type	¢41.3	φ 19.1	20 · 25 · 32 · 40 · 50 type	φ12.7	φ 6.4
/ Р	art A Part B	Part C			(See Note 1 - Next page)			63 · 80 · 100 · 125 type	φ15.9 φ10.1	60 F
		`						200 type 250 type	φ19.1 φ22.2	φ9.5
									=	

How to calculate the additional refrigerant to be charged		(Total length(m piping size at ¢) of liquid $\times 0.37$	+ (Total length(m) of liquic piping size at \$\$19.1	ⁱ)×0.26		REFRIGERAN		REFRI FOR EXCE	
Additional refrigerant to be charged : R (kg)	R =	$+ \left \begin{pmatrix} \text{Total length} \\ \text{piping size a} \end{pmatrix} \right $	(m) of liquid $\times 0.18$	$+ \left \begin{pmatrix} \text{Total length}(m) \text{ of liq} \\ \text{piping size at } \phi 12.7 \end{pmatrix} \right $	$(uid) \times 0.12$		T PUMP SYS	STEM -		TY OF
(R should be rounded off in units of 0.1 kg.)		+ Total length piping size a	(m) of liquid		uid) × 0.02	22	TABLE A			TAB
		<u></u>	LE A				<u></u>	ABLE B		
			THE AMOUNT OF	INDOOR CONNECTION			MOE	DEL NAME	E [RX(Y)Q ~ P]	
		MODEL NAME	REFRIGERANT	CAPACITY [X]	5P~8P	IOP 12P~14P 16	6P 18P~22P 24	4P~28P 3	0P~32P 34P 3	6P 38F
		RX(Y)Q5P	0kg	X ≤ 100%					0kg	
		RX(Y)Q8 ~ 12P 0.5kg 100% < X ≤ 120%				0.5kg				
		RX(Y)Q14 ~ 22P	1.0kg	120% < X ≤ 130%		0.5	kg			
		RX(Y)Q24 ~ 30P	1.5kg	130% < X ≤ 140%		0.5kg			.0kg	
		RX(Y)Q32 ~ 38P	2.0kg	140% < X ≤ 150%		0.5kg		1.0kg		
		RX(Y)Q40 ~ 48P	2.5kg	150% < X ≤ 160%	0.5kg		1.0kg		1.5kg	
		RX(Y)Q50 ~ 54P	3.0kg	160% < X ≤ 170%	0.5kg	1.0kg		1.5k		
				170% < X ≤ 180%	0.5kg	1.0kg	1.5kg]	2.0kg	
				180% < X ≤ 190%	0.5kg	1.0kg	1.5kg	0.01/2	2.0kg 2.5kg	2
				190% < X ≤ 200%	0.5kg	1.0kg	1.5kg	2.0kg	2.5Ky	
			-	FNET joint and REFNET	header f	or the systems	and each pipe	e length a	as shown belo	w.
		Outdoor system Total capacity of	: RXYQ34P~ indoor unit : 116%			$R = (\underbrace{30 \times 0.2}_{\uparrow} $	$\frac{26}{10 \times 0.1}$	8+ <u>10×</u> ↑	$0.12 + 40 \times 0.$	059+
		$a: \phi 19.1 \times 30m \ d: \phi 9.5 \times 10m \ g: \phi 6.4 \times 10m \ j: \phi 6.4 \times 10m \ a \ b$								f
			i e : ¢9.5 × 10m	1 × 9m	= 16.738 ⊏	> 16.7	kg			
		$c: \phi 9.5 \times 10m$	f : φ9.5 × 10m				Ind off units o			

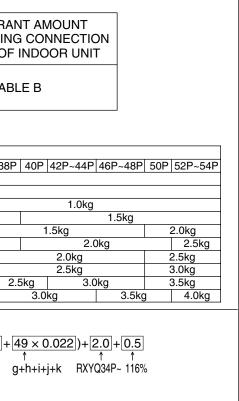
*Note 1

When the equivalent pipe length between outdoor and indoor units is 90m or more, the size of main pipes (both gas-side and liquid-side) must be increased.

Depending on the length of the piping, the capacity may drop, but even in such case it is able to increase the size of main pipes.

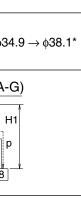
Diameter of above case

odel Gas	Liquid	Model	Gas	Liquid
20 Type	φ19.1	RXYQ34 Type	φ 38.1 *	φ22.2
22 Type	φ19.1	RXYQ36 Type	Not Increased	φ22.2
24 Type Not Increased	φ19.1	RXYQ38 Type	Not Increased	φ22.2
26 Type \$38.1*	φ22.2	RXYQ40 Type	Not Increased	φ22.2
28 Type \$38.1*	φ22.2	RXYQ42 Type	Not Increased	φ22.2
30 Туре ф38.1*	φ22.2	RXYQ44 Type	Not Increased	φ22.2
32 Type \$38.1*	φ22.2	RXYQ46 Type	Not Increased	φ22.2
5	Q20 Type \$\phi 31.8* Q22 Type \$\phi 31.8* Q24 Type \$\phi 31.8* Q24 Type Not Increased Q26 Type \$\phi 38.1* Q28 Type \$\phi 38.1* Q30 Type \$\phi 38.1*	Q20 Type \$\phi \$1.8* \$\phi \$19.1 Q22 Type \$\phi \$1.8* \$\phi \$19.1 Q24 Type \$\phi \$1.8* \$\phi \$19.1 Q24 Type Not Increased \$\phi \$19.1 Q26 Type \$\phi \$38.1* \$\phi \$22.2 Q28 Type \$\phi \$38.1* \$\phi \$22.2 Q30 Type \$\phi \$38.1* \$\phi \$22.2	Q20 Type \$\phi \$1.8* \$\phi \$19.1 RXYQ34 Type Q22 Type \$\phi \$1.8* \$\phi \$19.1 RXYQ36 Type Q24 Type Not Increased \$\phi \$19.1 RXYQ36 Type Q24 Type Not Increased \$\phi \$19.1 RXYQ38 Type Q26 Type \$\phi \$38.1* \$\phi \$22.2 RXYQ40 Type Q28 Type \$\phi \$38.1* \$\phi \$22.2 RXYQ42 Type Q30 Type \$\phi \$38.1* \$\phi \$22.2 RXYQ44 Type	Q20 Type \$\phi 31.8* \$\phi 19.1 RXYQ34 Type \$\phi 38.1* Q22 Type \$\phi 31.8* \$\phi 19.1 RXYQ36 Type \$\phi 38.1* Q24 Type Not Increased \$\phi 19.1 RXYQ38 Type Not Increased Q24 Type Not Increased \$\phi 19.1 RXYQ38 Type Not Increased Q26 Type \$\phi 38.1* \$\phi 22.2 RXYQ40 Type Not Increased Q28 Type \$\phi 38.1* \$\phi 22.2 RXYQ42 Type Not Increased Q30 Type \$\phi 38.1* \$\phi 22.2 RXYQ44 Type Not Increased


*Note 2

Allowable length after the first refrigerant branch kit to indoor units is 40 m or less, however it can be extended up to 90 m if all the following conditions are satisfied. (In case of "Branch with REFNET joint")

Required Conditions	Example Drawings						
 It is necessary to increase the pipe size between the first branch kit and the final branch kit. (Reducers must be procured on site) However, the pipes that are same pipe size with main pipe must not be increased. 	8 $b+c+d+e+f+g+p \le 90 \text{ m}$ increase the pipe size of b, c, d, e, f, g	$ \begin{array}{ll} \mbox{Increase the pipe size as follows} \\ \varphi \ 9.5 \rightarrow \varphi 12.7 & \varphi 15.9 \rightarrow \varphi 19.1 & \varphi 22.2 \rightarrow \varphi 25.4^* & \varphi 34 \\ \varphi 12.7 \rightarrow \varphi 15.9 & \varphi 19.1 \rightarrow \varphi 22.2 & \varphi 28.6 \rightarrow \varphi 31.8^* \end{array} $					
2. For calculation of Total extension length, the actual length of above pipes must be doubled. (except main pipe and the pipes that are not increased)	$\begin{array}{l} a+b\times 2+c\times 2+d\times 2+e\times 2+f\times 2+g\times 2\\ +h+i+j+k+l+m+n+p\leq 1000 \ m \end{array}$	Outdoor unit REFNET joint (A-0					
3. Indoor unit to the nearest branch kit \leq 40 m	h, i, j p ≤ 40 m	$\begin{bmatrix} a & b & c & d & e & f & g & H \\ \hline a & d & d & d & d & d \end{bmatrix}$					
4. The difference between [Outdoor unit to the farthest indoor unit] and [Outdoor unit to the nearest indoor unit] \leq 40 m	The farthest indoor unit $\boxed{8}$ The nearest indoor unit $\boxed{1}$ $(a+b+c+d+e+f+g+p)-(a+h) \le 40 \text{ m}$	h i j k I m n p 1 2 3 4 5 6 7 Indoor units (1 - 8)					


*Note 3

If the pipe size above the REFNET header is \$34.9 or more, KHRP26M73HP is required.

Model	Gas	Liquid
RXYQ48 Type	Not Increased	φ22.2
RXYQ50 Type	Not Increased	φ22.2
RXYQ52 Type	Not Increased	φ22.2
RXYQ54 Type	Not Increased	φ22.2

*If available on the site, use this size. Otherwise, it can not be increased.

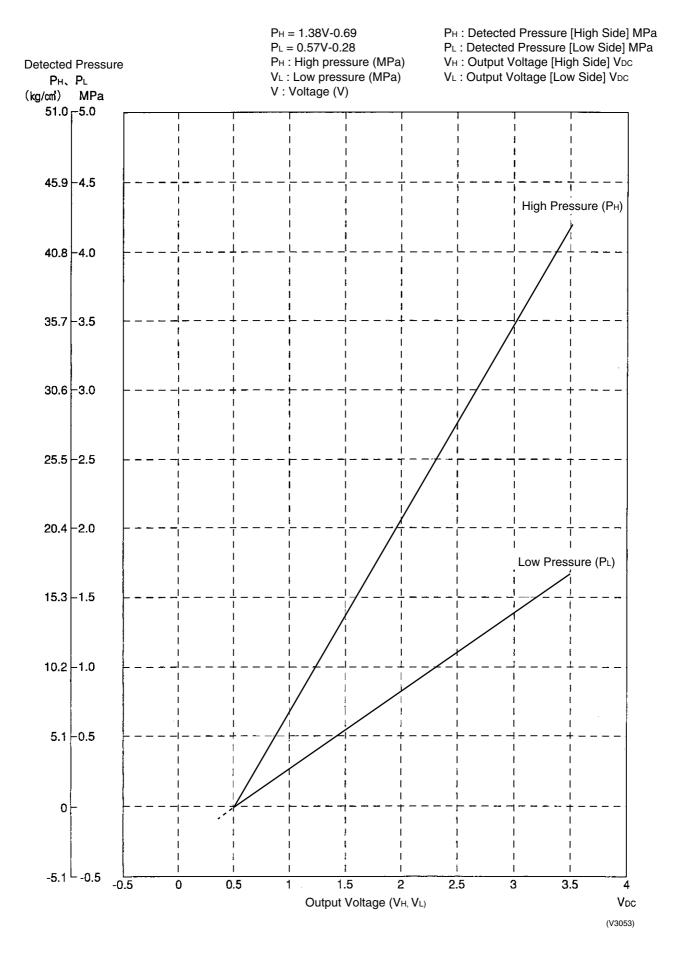
* If available on the site, use this size. Otherwise it can not be increased.

Outdoor unit for fin thermistor R1T

7. Thermistor Resistance / Temperature **Characteristics**

Indoor unit	For air suction	R1T
	For liquid pipe	R2T
	For gas pipe	R3T
Outdoor unit	For outdoor air	R1T
	For coil	R2T
	For suction pipe	R4T
	For Receiver gas pipe	R5T
	For Receiver outlet liquid pipe	R6T

(k Ω)


T°C	0.0
-10	-
-8	-
-6	88.0
-4	79.1
-2	71.1
0 2	64.1 57.8
4	52.3
6	47.3
8	42.9
10	38.9
12	35.3
14	32.1
16	29.2
18	26.6
20	24.3
22	22.2
24	20.3
26	18.5
28 30	17.0
30	15.6 14.2
32	13.1
36	12.0
38	11.1
40	10.3
42	9.5
44	8.8
46	8.2
48	7.6
50	7.0
52	6.7
54 56	6.0 5.5
58	5.5 5.2
60	4.79
62	4.46
64	4.15
66	3.87
68	3.61
70	3.37
72	3.15
74	2.94
76	2.75
78	2.51
80	2.41
82 84	2.26 2.12
86	1.99
88	1.87
90	1.76
92	1.65
94	1.55
96	1.46
98	1.38

	1011	leceiver o	une	t liquid pip		T IC
						(kΩ
T°C	0.0	0.5		T°C	0.0	0.5
-20	197.81	192.08		30	16.10	15.76
-19	186.53	181.16		31	15.43	15.10
-18	175.97	170.94		32	14.79	14.48
-17	166.07	161.36		33	14.18	13.88
-16	156.80	152.38		34	13.59	13.31
-15	148.10	143.96		35	13.04	12.77
-14	139.94	136.05		36	12.51	12.25
-13	132.28	128.63		37	12.01	11.76
-12	125.09	121.66		38	11.52	11.29
-11	118.34	115.12		39	11.06	10.84
-10	111.99	108.96		40	10.63	10.41
-9	106.03	103.18		41	10.21	10.00
-8	100.41	97.73		42	9.81	9.61
-7	95.14	92.61		43	9.42	9.24
-6	90.17	87.79		44	9.06	8.88
-5	85.49	83.25		45	8.71	8.54
-3 -4	81.08	78.97		45	8.37	8.21
-4 -3	76.93	74.94		40	8.05	7.90
-3 -2	73.01	74.94		47	7.75	7.60
-2 -1		67.56		40 49		
-1	69.32 65.84	64.17		49 50	7.46 7.18	7.31
1						6.78
	62.54	60.96		51	6.91	
2	59.43	57.94		52	6.65	6.53
3	56.49	55.08		53	6.41	6.53
4	53.71	52.38		54	6.65	6.53
5	51.09	49.83		55	6.41	6.53
6	48.61	47.42		56	6.18	6.06
7	46.26	45.14		57	5.95	5.84
8	44.05	42.98		58	5.74	5.43
9	41.95	40.94		59	5.14	5.05
10	39.96	39.01		60	4.96	4.87
11	38.08	37.18		61	4.79	4.70
12	36.30	35.45		62	4.62	4.54
13	34.62	33.81		63	4.46	4.38
14	33.02	32.25		64	4.30	4.23
15	31.50	30.77		65	4.16	4.08
16	30.06	29.37		66	4.01	3.94
17	28.70	28.05		67	3.88	3.81
18	27.41	26.78		68	3.75	3.68
19	26.18	25.59		69	3.62	3.56
20	25.01	24.45		70	3.50	3.44
21	23.91	23.37		71	3.38	3.32
22	22.85	22.35		72	3.27	3.21
23	21.85	21.37		73	3.16	3.11
24	20.90	20.45		74	3.06	3.01
25	20.00	19.56		75	2.96	2.91
26	19.14	18.73		76	2.86	2.82
27	18.32	17.93		77	2.77	2.72
28	17.54	17.17		78	2.68	2.64
29	16.80	16.45		79	2.60	2.55
30	16.10	15.76		80	2.51	2.47

Outdoor Unit Thermistors for Discharge Pipe (R3T, R31~33T)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										(kΩ)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T°C	0.0	0.5	T°C	0.0	0.5]	T°C	0.0	0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	640.44	624.65	50	72.32	70.96		100	13.35	13.15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	609.31	594.43	51	69.64	68.34		101	12.95	12.76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	579.96	565.78	52	67.06	65.82		102	12.57	12.38
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	552.00	538.63	53	64.60	63.41		103	12.20	12.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	525.63	512.97	54	62.24	61.09		104	11.84	11.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	500.66	488.67	55	59.97	58.87		105	11.49	11.32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		477.01	465.65	56	57.80	56.75		106	11.15	10.99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		454.60	443.84	57	55.72	54.70		107	10.83	10.67
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		433.37	423.17	58	53.72	52.84			10.52	10.36
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	413.24	403.57	59	51.98	50.96		109	10.21	10.06
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	394.16	384.98	60	49.96	49.06		110	9.92	9.78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		376.05	367.35	61	48.19	47.33		111	9.64	9.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		358.88	350.62	62	46.49			112	9.36	9.23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		342.58	334.74	63	44.86	44.07			9.10	8.97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
4298.7596.819217.0716.801424.164.114394.9293.069316.5416.291434.064.014491.2589.479416.0415.791443.963.914587.7486.049515.5515.311453.863.814684.3882.759615.0814.851463.763.724781.1679.619714.6214.401473.673.624878.0976.609814.1813.971483.583.544975.1473.719913.7613.551493.493.45										
4394.9293.069316.5416.291434.064.014491.2589.479416.0415.791443.963.914587.7486.049515.5515.311453.863.814684.3882.759615.0814.851463.763.724781.1679.619714.6214.401473.673.624878.0976.609814.1813.971483.583.544975.1473.719913.7613.551493.493.45										
4491.2589.479416.0415.791443.963.914587.7486.049515.5515.311453.863.814684.3882.759615.0814.851463.763.724781.1679.619714.6214.401473.673.624878.0976.609814.1813.971483.583.544975.1473.719913.7613.551493.493.45										
4587.7486.049515.5515.311453.863.814684.3882.759615.0814.851463.763.724781.1679.619714.6214.401473.673.624878.0976.609814.1813.971483.583.544975.1473.719913.7613.551493.493.45										
4684.3882.759615.0814.851463.763.724781.1679.619714.6214.401473.673.624878.0976.609814.1813.971483.583.544975.1473.719913.7613.551493.493.45										
4781.1679.619714.6214.401473.673.624878.0976.609814.1813.971483.583.544975.1473.719913.7613.551493.493.45										
4878.0976.609814.1813.971483.583.544975.1473.719913.7613.551493.493.45										
49 75.14 73.71 99 13.76 13.55 149 3.49 3.45										
	50	72.32	70.96	100	13.35	13.15		150	3.41	3.37

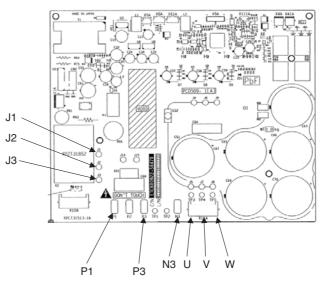
8. Pressure Sensor

9. Method of Checking The Inverter's Power Transistors and Diode Modules

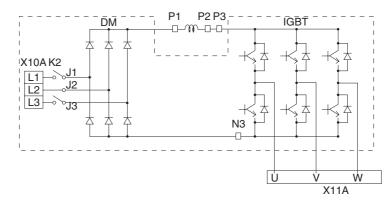
9.1 Method of Checking The Inverter's Power Transistors and Diode Modules

Checking failures in power semiconductors mounted on inverter PC board

Check the power semiconductors mounted on the inverter PC board by the use of a multiple tester.


<ltems to be prepared>

- Multiple tester : Prepare the analog type of multiple tester.
 - For the digital type of multiple tester, those with diode check function are available for the checking.


<Test points>

- Turn OFF the power supply. Then, after a lapse of 10 minutes or more, make measurement of resistance.
- <Preparation>
- To make measurement, disconnect all connectors and terminals.

Inverter PC board

Electronic circuit

- According to the checking aforementioned, it is probed that the malfunction results from the faulty inverter. The following section describes supposed causes of the faulty inverter.
- Faulty compressor (ground leakage)
- Faulty fan motor (ground leakage)
- Entry of conductive foreign particles
- Abnormal voltage (e.g. overvoltage, surge (thunder), or unbalanced voltage)

In order to replace the faulty inverter, be sure to check for the points aforementioned.

1. Power module checking

When using the analog type of multiple tester, make measurement in resistance measurement mode in the $x1k\Omega$ range.

No.		ouring	Criterion	Remark					
	+	-							
1	P3	U							
2	P3	V	2 to $15k\Omega$						
3	P3	W							
4	U	P3							
5	V	P3	Not less	It may take time to determine the					
6	W	P3	than						
7	N3	U	15kΩ (including)	resistance due					
8	N3	V	(including)	to capacitor charge or else.					
9	N3	W		C C					
10	U	N3							
11	V	N3	2 to $15k\Omega$						
12	W	N3	Ī						

When using the digital type of multiple tester, make measurement in diode check mode ($\rightarrow \leftarrow$).

mode (→⊢).								
No.		uring int	Criterion	Remark				
	+	-						
1	P3	U	Not less	It may take time to				
2	P3	V	than 1.2V	determine the voltage due to capacitor				
3	P3	W	(including)	charge or else.				
4	U	P3						
5	V	P3						
6	W	P3	0.3 to 0.7V					
7	N3	U	0.3 10 0.7 V					
8	N3	V						
9	N3	W						
10	U	N3	Not less	It may take time to				
11	V	N3	than 1.2V	determine the voltage due to capacitor				
12	W	N3	(including)	charge or else.				

2. Diode module checking

When using the analog type of multiple tester, make measurement in resistance measurement mode in the $x1k\Omega$ range.

No.	Meas po	uring int	Criterion	Remark				
	+	-						
1	P1	J1						
2	P1	J2	2 to $15k\Omega$					
3	P1	J3						
4	J1	P1						
5	J2	P1	Not less	It may take time to determine the				
6	J3	P1	than					
7	N3	J1	15kΩ (including)	resistance due				
8	N3	J2	(including)	to capacitor charge or else.				
9	N3	J3		C C				
10	J1	N3						
11	J2	N3	2 to $15k\Omega$					
12	J3	N3						

When using the digital type of multiple tester, make measurement in diode check mode ($\rightarrow \leftarrow$).

mouc	(-	<i>.</i>		
No.	Meas po	uring int	Criterion	Remark
	+	-		
1	P1	J1	Not less	It may take time to
2	P1	J2	than 1.2V	determine the voltage due to capacitor
3	P1	J3	(including)	charge or else.
4	J1	P1		
5	J2	P1		
6	J3	P1	0.3 to 0.7V	
7	N3	J1	0.3 10 0.7 V	
8	N3	J2		
9	N3	J3		
10	J1	N3	Not less	It may take time to
11	J2	N3	than 1.2V	determine the voltage due to capacitor
12	J3	N3	(including)	charge or else.

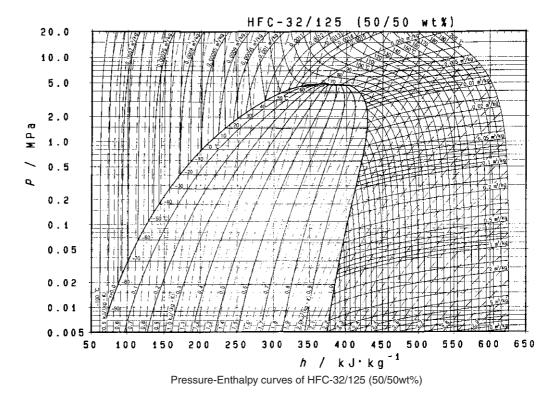
Part 8 Precautions for New Refrigerant (R-410A)

1.	Prec	cautions for New Refrigerant (R-410A)	434
	1.1	Outline	434
	1.2	Refrigerant Cylinders	436
	1.3	Service Tools	437

1. Precautions for New Refrigerant (R-410A)

1.1 Outline

1.1.1 About Refrigerant R-410A

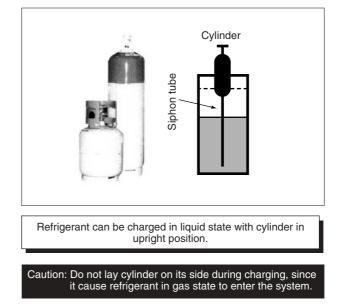

- Characteristics of new refrigerant, R-410A
- 1. Performance
 - Almost the same performance as R-22 and R-407C
- 2. Pressure
 - Working pressure is approx. 1.4 times more than R-22 and R-407C.
- 3. Refrigerant composition

Few problems in composition control, since it is a Quasi-azeotropic mixture refrigerant.

	HFC units (Units usi	HCFC units	
Refrigerant name	R-407C	R-410A	R-22
Composing substances			Single-component refrigerant
Design pressure	3.2 MPa (gauge pressure) = 32.6 kgf/cm ²	4.0 MPa (gauge pressure) = 40.8 kgf/cm ²	2.75MPa (gauge pressure) = 28.0 kgf/cm ²
Refrigerant oil	Synthetic	oil (Ether)	Mineral oil (Suniso)
Ozone destruction factor (ODP)	0	0	0.05
Combustibility	None	None	None
Toxicity	None	None	None

- ★1. Non-azeotropic mixture refrigerant: mixture of two or more refrigerants having different boiling points.
- ★2. Quasi-azeotropic mixture refrigerant: mixture of two or more refrigerants having similar boiling points.
- ★3. The design pressure is different at each product. Please refer to the installation manual for each product.

(Reference) 1 MPa = 10.19716 kgf / cm²



$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Specific entropy		0 '''		0 10 1				0	Tanatan
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(1,1/1/a1/)									Temperature
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(kJ/KgK) Liquid Vapor							,		(C)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.005						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.649 2.074									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.663 2.066									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.676 2.058									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.689 2.051									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.702 2.044									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.715 2.037									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.728 2.030									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.741 2.023	1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.754 2.017									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.766 2.010	400.9	125.7	0.744	1.380	4.071	1355.3	99.03	99.18	-52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.769 2.009	401.1	126.3	0.745	1.386	4.153	1354.0	101.17	101.32	-51.58
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.779 2.004							109.51		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.791 1.998									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.803 1.992									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.816 1.987									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.828 1.981									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.840 1.976									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.852 1.970									
32 249.46 248.81 1290.6 9.732 1.424 0.817 153.8 411.2 30 271.01 270.28 1283.9 10.53 1.430 0.826 156.6 412.1 28 293.99 293.16 1277.1 11.39 1.436 0.835 159.5 413.1 26 318.44 317.52 1270.2 12.29 1.442 0.844 162.4 414.0 24 344.44 343.41 1263.3 13.26 1.448 0.854 165.3 414.9 -22 372.05 370.90 1256.3 14.28 1.455 0.864 168.2 415.7	0.864 1.965									
30 271.01 270.28 1283.9 10.53 1.430 0.826 156.6 412.1 28 293.99 293.16 1277.1 11.39 1.436 0.835 159.5 413.1 26 318.44 317.52 1270.2 12.29 1.442 0.844 162.4 414.0 24 344.44 343.41 1263.3 13.26 1.448 0.854 165.3 414.9 -22 372.05 370.90 1256.3 14.28 1.455 0.864 168.2 415.7	0.875 1.960									
28 293.99 293.16 1277.1 11.39 1.436 0.835 159.5 413.1 26 318.44 317.52 1270.2 12.29 1.442 0.844 162.4 414.0 24 344.44 343.41 1263.3 13.26 1.448 0.854 165.3 414.9 -22 372.05 370.90 1256.3 14.28 1.455 0.864 168.2 415.7	0.887 1.955	411.2	153.8	0.817	1.424	9.732	1290.6	248.81	249.46	32
28 293.99 293.16 1277.1 11.39 1.436 0.835 159.5 413.1 26 318.44 317.52 1270.2 12.29 1.442 0.844 162.4 414.0 24 344.44 343.41 1263.3 13.26 1.448 0.854 165.3 414.9 -22 372.05 370.90 1256.3 14.28 1.455 0.864 168.2 415.7	0.899 1.950	412.1	156.6	0.826	1.430	10.53	1283.9	270.28	271.01	30
26 318.44 317.52 1270.2 12.29 1.442 0.844 162.4 414.0 24 344.44 343.41 1263.3 13.26 1.448 0.854 165.3 414.9 -22 372.05 370.90 1256.3 14.28 1.455 0.864 168.2 415.7	0.911 1.946	413.1	159.5					293.16	293.99	
·24 344.44 343.41 1263.3 13.26 1.448 0.854 165.3 414.9 ·22 372.05 370.90 1256.3 14.28 1.455 0.864 168.2 415.7	0.922 1.941									
-22 372.05 370.90 1256.3 14.28 1.455 0.864 168.2 415.7	0.934 1.936				1.448		1263.3		344.44	- 24
	0.945 1.932									
1 -ZU I 4VI.34 4VU.001 1Z49.Z I5.371 1.451 0.8751 171.1 415.51	0.957 1.927	416.6	171.1	0.875	1.461	15.37	1249.2	400.06	401.34	-20
-18 432.36 430.95 1242.0 16.52 1.468 0.886 174.1 417.4	0.968 1.923	417.4	174.1		1.468			430.95	432.36	
-16 465.20 463.64 1234.8 17.74 1.476 0.897 177.0 418.2	0.980 1.919									
-14 499.91 498.20 1227.5 19.04 1.483 0.909 180.0 419.0	0.991 1.914									
12 536.58 534.69 1220.0 20.41 1.491 0.921 182.9 419.8	1.003 1.910									
10 575.26 573.20 1212.5 21.86 1.499 0.933 185.9 420.5	1.014 1.906	420.5	185.9	0.933	1 499	21.86	1212.5	573.20	575.26	10
-8 616.03 613.78 1204.9 23.39 1.507 0.947 189.0 421.2	1.025 1.902									
-6 658.97 656.52 1197.2 25.01 1.516 0.950 192.0 421.9	1.036 1.898									
4 704.15 701.49 1189.4 26.72 1.524 0.975 195.0 422.6	1.048 1.894									
-2 751.64 748.76 1181.4 28.53 1.533 0.990 198.1 423.2	1.059 1.890									
0 801.52 798.41 1173.4 30.44 1.543 1.005 201.2 423.8	1.070 1.886									
2 853.87 850.52 1165.3 32.46 1.552 1.022 204.3 424.4	1.081 1.882									
4 908.77 905.16 1157.0 34.59 1.563 1.039 207.4 424.9	1.092 1.878									
6 966.29 962.42 1148.6 36.83 1.573 1.057 210.5 425.5	1.103 1.874									
8 1026.5 1022.4 1140.0 39.21 1.584 1.076 213.7 425.9	1.114 1.870									
10 1089.5 1085.1 1131.3 41.71 1.596 1.096 216.8 426.4	1.125 1.866	A'96 A	216.9	1 096	1 506	41.71	11313	1085-1	1089.5	10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.136 1.860									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.147 1.859									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.158 1.855								1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.169 1.851									
$\begin{bmatrix} 10 & 1.511.2 & 1005.5 & 1005.1 & 55.20 & 1.050 & 1.150 & 225.7 & 427.05 \\ 20 & 1449.4 & 1443.4 & 1085.6 & 56.48 & 1.666 & 1.215 & 233.0 & 428.1 \\ \end{bmatrix}$	1.180 1.847									
22 1530.9 1524.6 1075.9 59.96 1.683 1.243 236.4 428.3	1.191 1.843									
24 1615.8 1609.2 1066.0 63.63 1.701 1.273 239.7 428.4	1.202 1.839									
26 1704.2 1697.2 1055.9 67.51 1.721 1.306 243.1 428.6	1.214 1.834									
28 1796.2 1788.9 1045.5 71.62 1.743 1.341 246.5 428.6	1.225 1.830									
30 1891.9 1884.2 1034.9 75.97 1.767 1.379 249.9 428.6 32 1091.2 1992.2 1024.1 20.58 1.702 1.420 253.4 428.6	1.236 1.826				1					
32 1991.3 1983.2 1024.1 80.58 1.793 1.420 253.4 428.6 24 2004 5 2005 2 1012 0 85 48 1.822 1.465 255.0 428.4	1.247 1.822									
34 2094.5 2086.2 1012.9 85.48 1.822 1.465 256.9 428.4 36 2301.7 2100.1 1001.4 20.00 1.055 1.514 260.5 400.0	1.258 1.817				1					
36 2201.7 2193.1 1001.4 90.68 1.855 1.514 260.5 428.3 38 331.0 3304.0 990.5 96.20 1.801 1.500 364.1 499.0	1.269 1.813									
38 2313.0 2304.0 989.5 96.22 1.891 1.569 264.1 428.0 40 2409.4 2410.3 977.2 102.1 1.923 1.620 267.7 427.7	1.281 1.808									
40 2428.4 2419.2 977.3 102.1 1.932 1.629 267.8 427.7 42 2548.1 2528.6 964.6 108.4 1.020 1.605 271.5 422.2	1.292 1.803									
42 2548.1 2538.6 964.6 108.4 1.979 1.696 271.5 427.2	1.303 1.798									
44 2672.2 2662.4 951.4 115.2 2.033 1.771 275.3 426.7 46 0000.7 0007.7 100.4 0.005 1.0771 275.3 426.7	1.315 1.793									
46 2800.7 2790.7 937.7 122.4 2.095 1.857 279.2 426.1 48 2933.7 2923.6 923.3 130.2 2.168 1.955 283.2 425.4	1.327 1.788 1.339 1.782									
50 3071.5 3061.2 908.2 138.6 2.256 2.069 287.3 424.5 52 3214.0 3203.6 892.2 147.7 2.362 2.203 291.5 423.5	1.351 1.776 1.363 1.770							3203 A		
52 5214.0 5203.0 652.2 147.7 2.302 2.203 291.5 423.054 3361.4 3351.0 875.1 157.6 2.493 2.363 295.8 422.4	1.376 1.764									
$\begin{bmatrix} 54 & 3501.4 & 3501.0 & 875.1 & 137.0 & 2.395 & 2.3651 & 295.8 & 422.4 \\ 56 & 3513.8 & 3503.5 & 856.8 & 168.4 & 2.661 & 2.557 & 300.3 & 421.0 \\ \end{bmatrix}$	1.389 1.757									
$\begin{bmatrix} 56 & 5513.6 & 5503.5 & 656.8 & 166.4 & 2.661 & 2.557 & 500.5 & 421.0 \\ 58 & 3671.3 & 3661.2 & 836.9 & 180.4 & 2.883 & 2.799 & 305.0 & 419.4 \\ \end{bmatrix}$	1.403 1.749									
$\begin{bmatrix} 50 \\ 60 \end{bmatrix} 3834.1 \\ 3824.2 \\ 814.9 \\ 193.7 \\ 3.191 \\ 3.191 \\ 3.106 \\ 310.0 \\ 417.6 \\ 310.0 \\ 417.6 \\ 193.7 \\ 3.191 \\ 3.106 \\ 310.0 \\ 417.6 \\ 310.0 $	1.403 1.749				1					
62 4002.1 3992.7 790.1 208.6 3.650 3.511 315.3 415.5	1.433 1.732									
64 4175.7 4166.8 761.0 225.6 4.415 4.064 321.2 413.0	1.450 1.722									

Thermodynamic characteristic of R-410A	
--	--

1.2 Refrigerant Cylinders

- Cylinder specifications
- The cylinder is painted refrigerant color (pink).
- <u>The cylinder valve is equipped with a siphon tube.</u>

- Handling of cylinders
- (1) Laws and regulations

R-410A is liquefied gas, and the High-Pressure Gas Safety Law must be observed in handling them. Before using, refer to the High-Pressure Gas Safety Law. The Law stipulates standards and regulations that must be followed to prevent accidents with high-pressure gases. Be sure to follow the regulations.

(2) Handing of vessels

Since R-410A is high-pressure gas, it is contained in high-pressure vessels. Although those vessels are durable and strong, careless handling can cause damage that can lead to unexpected accidents. Do not drop vessels, let them fall, apply impact or roll them on the ground.

(3) Storage

Although R-410A is not flammable, it must be stored in a well-ventilated, cool, and dark place in the same way as any other high-pressure gases.

It should also be noted that high-pressure vessels are equipped with safety devices that releases gas when the ambient temperature reaches more than a certain level (fusible plug melts) and when the pressure exceeds a certain level (spring-type safety valve operates).

1.3 Service Tools

R-410A is used under higher working pressure, compared to previous refrigerants (R-22,R-407C). Furthermore, the refrigerating machine oil has been changed from Suniso oil to Ether oil, and if oil mixing is occurred, sludge results in the refrigerants and causes other problems. Therefore, gauge manifolds and charge hoses that are used with a previous refrigerant (R-22,R-407C) can not be used for products that use new refrigerants. Be sure to use dedicated tools and devices.

	(Compatibilit	у	
Tool	HFC		HCFC	Reasons for change
	R-410A	R-407C	R-22	
Gauge manifold Charge hose		×		 Do not use the same tools for R-22 and R-410A. Thread specification differs for R-410A and R-407C.
Charging cylinder	>	<	0	Weighting instrument used for HFCs.
Gas detector	C)	×	• The same tool can be used for HFCs.
Vacuum pump (pump with reverse flow preventive function)	0			 To use existing pump for HFCs, vacuum pump adaptor must be installed.
Weighting instrument	0			
Charge mouthpiece	×			 Seal material is different between R-22 and HFCs. Thread specification is different between R-410A and others.
Flaring tool (Clutch type)		0		• For R-410A, flare gauge is necessary.
Torque wrench		0		Torque-up for 1/2 and 5/8
Pipe cutter		0		
Pipe expander	0			
Pipe bender	0			
Pipe assembling oil	×			Due to refrigerating machine oil change. (No Suniso oil can be used.)
Refrigerant recovery device	Check your recovery device.		y device.	
Refrigerant piping	See the chart below.		elow.	 Only φ19.1 is changed to 1/2H material while the previous material is "O".

Tool compatibility

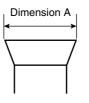
As for the charge mouthpiece and packing, 1/2UNF20 is necessary for mouthpiece size of charge hose.

Copper tube material and thickness

		Ve-up	\ \	/e-upII
	F	R-407C	F	R-410A
Pipe size	Material	Thickness	Material	Thickness
		t (mm)		t (mm)
φ 6.4	0	0.8	0	0.8
φ 9 .5	0	0.8	0	0.8
φ12.7	0	0.8	0	0.8
φ15.9	0	1.0	0	1.0
φ19.1	0	1.0	1/2H	1.0
φ22.2	1/2H	1.0	1/2H	1.0
φ 25.4	1/2H	1.0	1/2H	1.0
φ 28.6	1/2H	1.0	1/2H	1.0
φ 31.8	1/2H	1.2	1/2H	1.1
φ 38.1	1/2H	1.4	1/2H	1.4
φ 44.5	1/2H	1.6	1/2H	1.6

* O: Soft (Annealed)

H: Hard (Drawn)


Specifications

Dimension A

Unit:mm

Nominal size	Tube O.D.	A ⁺⁰ _{-0.4}			
Nominal size	Do	Class-2 (R-410A)	Class-1 (Conventional)		
1/4	6.35	9.1	9.0		
3/8	9.52	13.2	13.0		
1/2	12.70	16.6	16.2		
5/8	15.88	19.7	19.4		
3/4	19.05	24.0	23.3		

- Differences
- Change of dimension A

For class-1: R-407C For class-2: R-410A

Conventional flaring tools can be used when the work process is changed. (change of work process) Previously, a pipe extension margin of 0 to 0.5mm was provided for flaring. For R-410A air

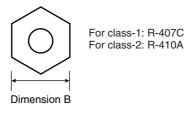
Previously, a pipe extension margin of 0 to 0.5mm was provided for flaring. For R-410A air conditioners, perform pipe flaring with a pipe extension margin of 1.0 to 1.5mm. (For clutch type only)

Conventional tool with pipe extension margin adjustment can be used.

Si34-803

Unit:mm

2. Torque wrench



- Specifications
 - Dimension B


Nominal size	Class-1	Class-2	Previous
1/2	24	26	24
5/8	27	29	27

No change in tightening torque No change in pipes of other sizes

- Differences
- Change of dimension B
 Only 1/2", 5/8" are extended

3. Vacuum pump with check valve

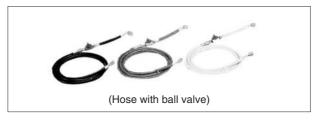
- Specifications
- Discharge speed
 50 l/min (50Hz)
 60 l/min (60Hz)
- Suction port UNF7/16-20(1/4 Flare) UNF1/2-20(5/16 Flare) with adapter
- Maximum degree of vacuum Select a vacuum pump which is able to keep the vacuum degree of the system in excess of -100.7 kPa (5 torr - 755 mmHg).

- Differences
- · Equipped with function to prevent reverse oil flow
- Previous vacuum pump can be used by installing adapter.

4. Leak tester

- Specifications
- Hydrogen detecting type, etc.
- Applicable refrigerants R-410A, R-407C, R-404A, R-507A, R-134a, etc.
- Differences
- Previous testers detected chlorine. Since HFCs do not contain chlorine, new tester detects hydrogen.
- 5. Refrigerant oil (Air compal)

- Specifications
- Contains synthetic oil, therefore it can be used for piping work of every refrigerant cycle.
- · Offers high rust resistance and stability over long period of time.
- Differences
- Can be used for R-410A and R-22 units.


6. Gauge manifold for R-410A

- Specifications
- High pressure gauge
 0.1 to 5.3 MPa (-76 cmHg to 53 kg/cm²)
- Low pressure gauge
 - 0.1 to 3.8 MPa (-76 cmHg to 38 kg/cm²)
- $1/4" \rightarrow 5/16"$ (2min \rightarrow 2.5min)
- No oil is used in pressure test of gauges.
 → For prevention of contamination


- Temperature scale indicates the relationship between pressure and temperature in gas saturated state.
- Differences
- Change in pressure
- Change in service port diameter

7. Charge hose for R-410A

- Specifications
- Working pressure 5.08 MPa (51.8 kg/cm²)
- Rupture pressure 25.4 MPa (259 kg/cm²)
- Available with and without hand-operate valve that prevents refrigerant from outflow.
- Differences
- Pressure proof hose
- · Change in service port diameter
- · Use of nylon coated material for HFC resistance

8. Charging cylinder

- Specifications
- Use weigher for refrigerant charge listed below to charge directly from refrigerant cylinder.
- Differences
- The cylinder can not be used for mixed refrigerant since mixing ratio is changed during charging.

When R-410A is charged in liquid state using charging cylinder, foaming phenomenon is generated inside charging cylinder.

9. Weigher for refrigerant charge

- Specifications
- High accuracy TA101A (for 10-kg cylinder) = ± 2g TA101B (for 20-kg cylinder) = ± 5g
- Equipped with pressure-resistant sight glass to check liquid refrigerant charging.
- A manifold with separate ports for HFCs and previous refrigerants is equipped as standard accessories.
- Differences
- Measurement is based on weight to prevent change of mixing ratio during charging.

10. Charge mouthpiece

- Specifications
- + For R-410A, 1/4" \rightarrow 5/16" (2min \rightarrow 2.5min)
- Material is changed from CR to H-NBR.
- Differences
- Change of thread specification on hose connection side (For the R-410A use)
- Change of sealer material for the HFCs use.

Index

A

A0	
A1	261
A3	
A6	264, 265
A7	
A8	270
A9	271
Abnormal Discharge Pipe Temperature	
Abnormal Outdoor Fan Motor Signal	298
Abnormal Power Supply Voltage	
Actuation of High Pressure Switch	
Actuation of Low Pressure Sensor	
Address Duplication of Centralized Controller	[,] 338
Address Duplication, Improper Setting	350
AF	
AJ	274
Applicable range of Field setting	201

С

C1	275
C4	277
C5	278
C6	279
С9	280
CC	281
Check 3	
Check 4	361
Check No. 1	359
Check No. 2	359
Check Operation not Executed	328
CJ	282
Compressor Motor Overcurrent/Lock	290
Cool / Heat Mode Switching	226
Current Sensor Malfunction	

D

Detailed Explanation of Setting Modes	.202
Display "Under Centralized Control" Blinks	
(Repeats Double Blink)	.358
Display "Under Centralized Control" Blinks	
(Repeats Single Blink)	.355
Drain Level above Limit	.273

Е

E1	283
E3	284
E4	286
E5	288
E6	290
E7	291
E9	294
Emergency Operation	158
Error of External Protection Device	

F

F3	296
F6	297
Failure of Combination (Between Indoor unit PC	
Board and Fan PC Board)	279
Failure of Transmission (Between Indoor unit PC	
Board and Fan PC Board)	275
Fan Motor (M1F) Lock, Overload	264
Faulty Field Setting after Replacing Main PC Boar	d or
Faulty Combination of PC Board	322
Field Setting	197
Functional Parts Layout	87
RXYQ10P(A)	89
RXYQ12P(A)	90
RXYQ14P(A), 16P(A), 18P(A)	
RXYQ5P(A)	87
RXYQ8P(A)	88

Н

H7	 298
H9	 299

I

Improper Combination of Indoor and Outdoor Units,
Indoor Units and Remote Controller336Improper Combination of Optional Controllers for
Centralized Control348Injection Control (only for RXYQ5P(A))156Inverter Compressor Abnormal310Inverter Compressor Motor Lock288Inverter Current Abnormal312Inverter Over-Ripple Protection319Inverter Start up Error314

J

J2	 300
J3	301
J5	 302
J6	 303
J9	 305
JC	 307

L

L4	308
L5	310
L8	312
L9	
LC	316
List of Electrical and Functional Parts	406
Indoor Unit	412
Outdoor Unit	406
Outdoor Unit - 60Hz	409

Low Pressure Drop Due to Refrigerant Shortage or
Electronic Expansion Valve Failure
Μ
M1
M8
MA
Malfunction code indication by outdoor unit
PC board
Malfunction of Capacity Determination Device274
Malfunction of Discharge Pipe Thermistor (R3, R31~33T)
Malfunction of Drain Level Control System
(S1L)
Malfunction of High Pressure Sensor
Malfunction of Humidity Sensor System
Malfunction of Inverter Radiating Fin Temperature
Rise
Malfunction of Inverter Radiating Fin Temperature
Rise Sensor
Malfunction of Liquid Pipe Thermistor (R6T)304
Malfunction of Low Pressure Sensor
Malfunction of Moving Part of Electronic Expansion
Valve (Y1E)271
Malfunction of Moving Part of Electronic Expansion
Valve (Y1E, Y2E)294
Malfunction of Outdoor Unit Fan Motor291
Malfunction of Subcooling Heat Exchanger Gas Pipe
Thermistor (R5T)305
Malfunction of Swing Flap Motor (M1S)268
Malfunction of System, Refrigerant System Address
Undefined343
Malfunction of Thermistor (R1T) for Suction Air280
Malfunction of Thermistor (R2T) for
Heat Exchanger277
Malfunction of Thermistor (R2T, R7T) for
Suction Pipe
Malfunction of Thermistor (R3T) for Gas Pipes278
Malfunction of Thermistor (R4T) for Outdoor Unit Heat
Exchanger
Malfunction of Thermostat Sensor in Remote
Controller282
Malfunction of Transmission Between Centralized
Controller and Indoor Unit
Malfunction of Transmission Between Indoor and
Outdoor Units in the Same System
Malfunction of Transmission Between
Indoor Units
Malfunction of Transmission Between Inverter and
Control PC Board
Malfunction of Transmission Between Main and
Sub Remote Controllers
Malfunction of Transmission Between Optional
Controllers for Centralized Control
Malfunction of Transmission Between
Outdoor Units
Malfunction of Transmission Between Remote
Controller and Indoor Unit
MC
Monitor Mode224

0

Operation Lamp Blinks	353
Outdoor Air Processing Unit-Field Setting	
Outdoor Unit PC Board Layout	196

Ρ

319
320
345
423
424
322
325
181

R

Refrigerant Circuit	
FXMQ125MFV1~250MFV1	
RXYQ10P(A), 12P(A)	82
RXYQ14P(A), 16P(A), 18P(A)	
RXYQ5P(A)	78
RXYQ8P(A)	80
Refrigerant Flow for Each Operation Mode	92
RXYQ10P(A), 12P(A)	100
RXYQ14P(A), 16P(A), 18P(A)	104
RXYQ5P(A)	
RXYQ8P(A)	
Refrigerant Overcharged	297
Reverse Phase, Open Phase	324

S

Setting by push button switches	218
Symptom-based Troubleshooting	242
System is not Set yet	342

Т

The Example of A Wrong Pattern 4	24
Troubleshooting	
(OP: Central Remote Controller) 3	345
Troubleshooting	
(OP: Unified ON/OFF Controller) 3	53

U

•	
U0	323
U1	
U2	325
U3	328
U4	
U5	331
U7	
U8	334
U9	
UA	336
UC	
UE	339
UF	
UH	343

Drawings & Flow Charts

A

Abnormal Discharge Pipe Temperature	296
Abnormal Outdoor Fan Motor Signal	298
Abnormal Power Supply Voltage	270
Actuation of High Pressure Switch	284
Actuation of Low Pressure Sensor	286
Address Duplication of Centralized Controller	338
Address Duplication. Improper Setting	350

С

-	
Centralized Control Group No. Setting	
BRC1C Type	210
BRC4C Type	211
BRC7C Type	211
BRC7E Type	
Group No. Setting Example	
Check No. 1	359
Check No. 2	359
Check Operation not Executed	328
Compressor Motor Overcurrent/Lock	290
Contents of Control Modes	212
How to Select Operation Mode	213
Control of Outdoor Air Processing Unit (Uniqu	е
Control for Outdoor Air Processing Unit)	174
Discharge Air Temperature Control	175
Selection of Operation Mode (by suction a	air
thermostat)	
Current Sensor Malfunction	

D

Display "Under Centralized Control" Blinks	
(Repeats Double Blink)3	58
Display "Under Centralized Control" Blinks	
(Repeats Single Blink)3	55
Drain Level above Limit2	73
Drain Pump Control10	65
When the Float Switch is Tripped and "AF" is	
Displayed on the Remote	
Controller1	66
When the Float Switch is Tripped During Heatir	ıg
Operation1	66
When the Float Switch is Tripped while the	
Cooling Thermostat is OFF1	65
When the Float Switch is Tripped While the	
Cooling Thermostat is ON1	65

Е

Error of External Protection Device	260
Example of connection (R-410A Type)	425

F

Failure of Combination (Between Indoor unit PC	
Board and Fan PC Board)	.279
Failure of Transmission (Between Indoor unit PC	
Board and Fan PC Board)	.275

Fan Motor (M1F) Lock, Overload	264
Faulty Field Setting after Replacing Main PC Board	lor
Faulty Combination of PC Board	322
Field Setting from Outdoor Unit	214
Mode changing procedure	218
Setting by dip switches	216
Freeze Prevention	172
Functional Parts Layout	. 87
RXYQ10P(A)	. 89
RXYQ12P(A)	. 90
RXYQ14P(A), 16P(A), 18P(A)	. 91
RXYQ5P(A)	. 87
RXYQ8P(A)	

I

Improper Combination of Indoor and Outdoor Uni Indoor Units and Remote Controller Improper Combination of Optional Controllers for	336
Centralized Control	348
Inverter Compressor Abnormal	310
Inverter Compressor Motor Lock	288
Inverter Current Abnormal	
Inverter Over-Ripple Protection	319
Inverter Start up Error	
·	

L

Louver Control for Preventing Ceiling Dirt	167
Low Pressure Drop Due to Refrigerant Shortage	or
Electronic Expansion Valve Failure	323

Μ

Malfunction of Capacity Determination Device 274
Malfunction of Discharge Pipe Thermistor
(R3, R31~33T)
Malfunction of Drain Level Control System
(S1L)
Malfunction of High Pressure Sensor 306
Malfunction of Humidity Sensor System
Malfunction of Inverter Radiating Fin Temperature
Rise
Malfunction of Inverter Radiating Fin Temperature
Rise Sensor
Malfunction of Liquid Pipe Thermistor (R6T) 304
Malfunction of Low Pressure Sensor 307
Malfunction of Moving Part of Electronic Expansion
Valve (Y1E) 271
Malfunction of Moving Part of Electronic Expansion
Valve (Y1E, Y2E) 294
Malfunction of Outdoor Unit Fan Motor 291
Malfunction of Subcooling Heat Exchanger Gas Pipe
Thermistor (R5T) 305
Malfunction of Swing Flap Motor (M1S) 268
Malfunction of System, Refrigerant System Address
Undefined 343

Malfunction of Thermistor (R1T) for	
Outdoor Air299	
Malfunction of Thermistor (R1T) for	
Suction Air	
Malfunction of Thermistor (R2T) for	
Heat Exchanger	
Malfunction of Thermistor (R2T, R7T) for Suction Pipe	
Malfunction of Thermistor (R3T) for Gas Pipes278	
Malfunction of Thermistor (R4T) for	
Outdoor Unit Heat Exchanger	
Malfunction of Thermostat Sensor in Remote	
Controller	
Malfunction of Transmission Between Centralized	
Controller and Indoor Unit	
Malfunction of Transmission Between Indoor and	
Outdoor Units in the Same System	
Malfunction of Transmission Between	
Indoor Units	
Malfunction of Transmission Between	
Inverter and Control PC Board	
Malfunction of Transmission Between Main and Sub Remote Controllers	
Malfunction of Transmission Between Optional	
Controllers for Centralized Control	
Malfunction of Transmission Between	
Outdoor Units	
Malfunction of Transmission Between Remote	
Controller and Indoor Unit	
Method of Checking The Inverter's Power Transistors	
and Diode Modules430	
Monitor Mode224	
•	

0

Operation Lamp Blinks
Operation of The Remote Controller's Inspection /
Test Operation Button250
Outdoor Unit PC Board Layout196

Ρ

PC Board Defect	261, 283, 345
Piping Diagrams	364
Indoor Unit	371
Outdoor Unit	364
Piping Installation Point	423
The Example of a Wrong Pattern .	424
Power Supply Insufficient or	
Instantaneous Failure	325
Pressure Sensor	429

R

	70
Refrigerant Circuit	/8
RXYQ10P(A), 12P(A)	83
RXYQ14P(A), 16P(A), 18P(A)	85
RXYQ5P(A)	78
RXYQ8P(A)	81
Refrigerant Flow for Each Operation Mode .	
RXYQ10P(A), 12P(A)	100
RXYQ14P(A), 16P(A), 18P(A)	104
RXYQ5P(A)	92
RXYQ8P(A)	

297
253
251
324

S

Self-diagnosis by Wired Remote Controller 246
Self-diagnosis by Wireless Remote Controller 247
Setting of Low Noise Operation and Demand
Operation231
Image of operation in the case of A 232, 234
Image of operation in the case of
A and B 232, 234
Image of operation in the case of B 232, 234
Simplified Remote Controller 199
BRC2A51, BRC2C51 199
System is not Set yet

Т

Test Operation	180
Thermostat Sensor in Remote Controller	
Cooling	168
Heating	169
Troubleshooting	
(OP: Central Remote Controller)	345
Troubleshooting	
(OP: Unified ON/OFF Controller)	353
Troubleshooting by Remote Controller	245

W

Wired Remote Controller	197
Wireless Remote Controller - Indoor Unit	198
BRC4C type	198
BRC7C type	198
BRC7E type	198
Wiring Diagrams for Reference	375
Field Wiring	385
Indoor Unit	391
Outdoor Unit	375

- Daikin Industries, Ltd.'s products are manufactured for export to numerous countries throughout the world. Daikin Industries, Ltd. does not have control over which products are exported to and used in a particular country. Prior to purchase, please therefore confirm with your local authorised importer, distributor and/or retailer whether this product conforms to the applicable standards, and is suitable for use, in the region where the product will be used. This statement does not purport to exclude, restrict or modify the application of any local legislation.
- Ask a qualified installer or contractor to install this product. Do not try to install the product yourself. Improper installation can result in water or refrigerant leakage, electrical shock, fire or explosion.
- Use only those parts and accessories supplied or specified by Daikin. Ask a qualified installer or contractor to install those parts and accessories. Use of unauthorised parts and accessories or improper installation of parts and accessories can result in water or refrigerant leakage, electrical shock, fire or explosion.
- Read the User's Manual carefully before using this product. The User's Manual provides important safety instructions and warnings. Be sure to follow these instructions and warnings.

If you have any enquiries, please contact your local importer, distributor and/or retailer.

Cautions on product corrosion

JQA-1452

1. Air conditioners should not be installed in areas where corrosive gases, such as acid gas or alkaline gas, are produced. 2. If the outdoor unit is to be installed close to the sea shore, direct exposure to the sea breeze should be avoided. If you need to install the outdoor unit close to the sea shore, contact your local distributor.

JMI-0107

Dealer

ISO 9001 is a plant certification system defined by the International Organization for Standardization (ISO) relating to quality assurance. ISO 9001 certification covers

quality assurance aspects related to the design, development, manufacture, installation, and supplementary service" of products manufactured at the plant.

About ISO 14001

ISO 14001 is the standard defined by the International Organization for Standardization (ISO) relating to environmental management systems. Our group has been acknowledged by an internationally accredited compliance organisation as having an appropriate programme of environmental protection procedures and activities to meet the requirements of ISO 14001.

DAIKIN INDUSTRIES, LTD.

Head Office: Umeda Center Bldg., 2-4-12, Nakazaki-Nishi, Kita-ku, Osaka, 530-8323 Japan

Tokyo Office:

JR Shinagawa East Bldg., 2-18-1, Konan, Minato-ku, Tokvo, 108-0075 Japan http://www.daikin.com/global_ac/

©All rights reserved

• Specifications, designs and other content appearing in this brochure are current as of June 2008 but subject to change without notice.

Si34-803 Printed in Japan 06/2008 AK